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The application of machine learning for the development of clinical decision-support

systems in audiology provides the potential to improve the objectivity and precision

of clinical experts’ diagnostic decisions. However, for successful clinical application,

such a tool needs to be accurate, as well as accepted and trusted by physicians. In

the field of audiology, large amounts of patients’ data are being measured, but these

are distributed over local clinical databases and are heterogeneous with respect to the

applied assessment tools. For the purpose of integrating across different databases,

the Common Audiological Functional Parameters (CAFPAs) were recently established

as abstract representations of the contained audiological information describing relevant

functional aspects of the human auditory system. As an intermediate layer in a clinical

decision-support system for audiology, the CAFPAs aim at maintaining interpretability

to the potential users. Thus far, the CAFPAs were derived by experts from audiological

measures. For designing a clinical decision-support system, in a next step the CAFPAs

need to be automatically derived from available data of individual patients. Therefore,

the present study aims at predicting the expert generated CAFPA labels using three

different machine learning models, namely the lasso regression, elastic nets, and random

forests. Furthermore, the importance of different audiological measures for the prediction

of specific CAFPAs is examined and interpreted. The trained models are then used to

predict CAFPAs for unlabeled data not seen by experts. Prediction of unlabeled cases is

evaluated by means of model-based clustering methods. Results indicate an adequate

prediction of the ten distinct CAFPAs. All models perform comparably and turn out to

be suitable choices for the prediction of CAFPAs. They also generalize well to unlabeled

data. Additionally, the extracted relevant features are plausible for the respective CAFPAs,

facilitating interpretability of the predictions. Based on the trained models, a prototype

of a clinical decision-support system in audiology can be implemented and extended

towards clinical databases in the future.
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INTRODUCTION

Clinical decision-making is a complex and multi-dimensional
process which comprises gathering, interpreting, and evaluating
data in the context of a clinical case, in order to derive an
evidence-based action (1). Due to the complexity of the process,
clinical decision-making is obviously prone to errors. Their
rates in general practice have been estimated as high as 15%
(2). Arguably, wrong clinical decisions can have considerable
negative impact on the quality of life of the affected individuals
(3). This is also true for decision-making in audiology.
Considering that [1] about 5% of the world population and one
third of individuals aged above 65 years suffer from disabling
hearing loss (4), [2] that the age group above 65 years is the
fastest growing population (5), and [3] that decisions are prone
to error also in audiology, it is important to continuously
improve the precision of clinical decision-making in
this domain.

Flaws in clinical decision-making are partly caused by
individual differences between physicians with respect to their
level of expertise, the subjective nature of the decision-making
process, as well as environmental factors. For instance, highly
experienced physicians tend to bemore accurate in their choice of
treatment as compared to novices (6). Furthermore, also experts,
similarly to novice physicians, like humans in general, are
susceptible to cognitive processing biases. Most often occurring
distortions were described as the availability bias, confirmation
bias, and premature closure, amongst others (7). Lastly, different
physicians may have access to different measurements (data)
because different clinics may use different test batteries in their
assessment kits which can vary with respect to their measurement
precision and validity (8). Additionally, it is possible that in
the longitudinal evaluation of a patient, required data from
previous potential examinations is missing, or inconsistencies in
the administered tests entail difficulties for a physician newly
involved in the case (8). In summary, the aforementioned
factors arguably lead to variability in the clinical decision-making
process across physicians and clinics, and facilitate distortions in
diagnostic outcomes. To improve the objectivity, precision and
reproducibility of physicians’ decision-making, clinical decision-
support systems (CDSS) have received an increased attention in
many health care domains.

CDSS are information systems that aim to improve
clinical decision-making by providing relevant information
on relationships between measurements and diagnosis to
physicians, patients, or other individuals involved in the
clinical context (9). They aim to reduce the information load of
physicians by summarizing it through the extraction of patterns
and predictions from large amounts of data (10). For instance,
physicians can be informed with probabilities of certain medical
findings and treatment recommendations, based on imputed
case-relevant data which can help to achieve well-informed
judgements (9). In addition, CDSS can rule out subjectivity
in clinical judgements. Not only can they reduce the impact
of processing biases on diagnostic outcomes, but also support
novice physicians in their decision-making process to eliminate
inter-physician variability in diagnostic outcomes.

The advantage of CDSS has been demonstrated in many
previous studies. Just to exemplify with a few, Paul et al. (11)
introduced a computerized CDSS for antibiotic treatment. Based
on a sample of 2,326 patients in three different countries,
the study demonstrated that TREAT improved the hits for
an appropriate antibiotic treatment to 70% as compared with
physicians who only achieved 57% hits. Another example for a
successful CDSS was provided by Dong et al. (12). The authors
developed a rule-based CDSS for the classification of headache
disorders which correctly identified several types of conditions
with an accuracy above 87.2%.

Despite the demonstrated potential of using CDSS, in practice
a widespread usage is oftentimes lacking. Developed CDSS may
not go beyond the trial stage and physicians may choose not to
adopt them (13). Consequently, research has tried to identify
potential reasons that lead physicians to refrain from using a
CDSS. The Technology Acceptance Model developed by Davis
(14) aims to explain this problem of users acceptance with respect
to Information Technology in general. It concludes that user’s
acceptance is influenced by design features, perceived usefulness,
and perceived ease of use. The perceived ease of use represents
how effortless a system can be adopted and it will causally affect
the perceived usefulness. This, in turn, entails how such a system
would benefit the user and enhance his or her performance.
However, it is believed that physicians may be more prone to
assess a system based on trust, rather than its usefulness or ease
of use (15). Wendt et al. (16) state that the extent to which
users are convinced of the validity of the information provided
by the CDSS is crucial for acceptance. On the one hand, this
can be achieved by including physicians in the development
of such CDSS, by means of interviewing physicians along with
extensive piloting. This could lead towards a CDSS that addresses
the physicians needs and, additionally, incorporate it in such a
way that it fits into the physician’s workflow. On the other hand,
enabling physicians to understand how the CDSS works may
further increase their trust towards them. As a result, physicians
evaluate and interpret the system’s output and determine its
validity, enhancing the level of comfort in utilizing the CDSS
(17). Consequently, black box CDSS are rarely accepted, so that
understandable algorithms need to be established for achieving
physician’s trust.

In the medical discipline of audiology, in addition to
the aforementioned issues, the heterogeneity of the applied
assessment tools among different clinics leads to further
challenges in clinical decision-making (8). As a result,
comparability in audiological diagnostics and treatment
recommendations across clinics is compromised. This in turn
may lead to some of the errors that occur in provided diagnostic
decisions. Moreover, the differences in applied audiological
measures may turn out to pose challenges for the development
of a CDSS, aiming to enhance diagnostic precision. This is
because data from different measurement sources need to be
accounted for and integrated in a CDSS. Thus far, the use
of machine learning and CDSSs in the field of audiology is
restricted to automatizing audiological measures (18, 19),
predicting specific diseases, e.g. vertiginous disorders (20), or for
a broad classification of individuals into auditory profiles (21).
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For instance, Song et al. (18) proposed an automated audiometry
based on machine learning that resulted in similar estimates at
audiogram frequencies, while requiring fewer samples than the
traditional manual procedure. Further, Sanchez Lopez et al. (21)
identified four different auditory profiles using unsupervised
learning, which differ on the dimension of audibility and
non-audibility related distortions and may be used for the
development of audiological test batteries. However, to the best
of our knowledge, no CDSS was yet proposed aiming to support
physicians in their general diagnostic endeavor for a variety of
audiological findings.

To address this issue and to work out the relevant constituents
of a more generally applicable CDSS in the field of audiology
that are transparent to the physicians with respect to their
underlying properties, Buhl et al. (8) developed the Common
Audiological Functional Parameters (CAFPAs). The CAFPAs aim
to represent the functional aspects of the human auditory system
in an abstract and measurement-independent way. They can
act as an interpretable intermediate representation in a CDSS,
i.e. CAFPAs are estimated from audiological measures, and the
CAFPAs can be used to infer probabilities of audiological findings
or treatment recommendations. In other words, the CAFPAs aim
to integrate audiological data from a variety of sources, next
to allowing physicians to interpret and validate them. This is
achieved through ten different parameters, describing relevant
conditions which help to determine hearing disorders (8).

Due to their characteristic of being an abstract representation
that does not depend on specific audiological measures, the
CAFPAs provide a common framework for physicians, regardless
of environmental factors, i.e. differences in audiological measures
and clinical expertise. In addition, the CAFPAs were defined in
an expert-driven way, through discussions among experts (8)
and by considering the statistical analysis performed by Gieseler
et al. (22). By including audiological experts into the development
process of the CAFPAs, the crucial aspect of users involvement,
here physicians, has been addressed. In summary, the need for
a CDSS with decision-making steps that become transparent
to physicians is addressed by the CAFPA framework aiming to
act as interpretable intermediate layer in a CDSS. This property
ensures that a future CDSS based upon the CAFPAs will not be a
black box.

Buhl et al. (8) already demonstrated the general feasibility of
the CAFPAs to be used as abstract representation of audiological
knowledge. By an expert survey conducted in the opposite
direction as compared with the typical diagnostic process,
audiological experts rated outcomes of audiological measures
and CAFPAs for given diagnostic cases (i.e., audiological
findings as well as treatment recommendations). This resulted
in audiologically plausible distributions. As a next step towards
a CDSS for audiology, Buhl et al. (23) built a labeled data set in
the typical direction of audiological diagnostics, i.e. experts rated
audiological findings, treatment recommendations, and CAFPAs
based on individual patients’ data from audiological measures.
The suitability of the given data set as a training distribution for
future algorithmic audiological classification tasks was assessed
and confirmed. Hence, Buhl et al. (23) provided a data set with
expert-derived CAFPAs for given audiological measure data in

a sample of individual patients. Based on this data set, machine
learning models for the automatic estimation of CAFPAs from
audiological measures can now be built and evaluated as a next
step towards a CDSS in audiology.

The current study therefore aims at:

1. Predicting expert determined CAFPAs for given audiological
measures using machine learning models;

2. Identifying the most relevant features for the prediction
of ten different CAFPAs from the audiological measures,
in order to ensure the interpretability of the models
and increase physicians’ future acceptance of automatically
derived CAFPAs;

3. Evaluating the potential of the trained models in predicting
CAFPAs for unlabeled data i.e., unlabeled patient cases from
available databases.

METHOD

Data Set
As outlined above, CommonAudiological Functional Parameters
(CAFPAs) are intended as intermediate representations between
audiological measures and diagnostic decisions in a CDSS. To
empirically instantiate CAFPAs, Buhl et al. (23) conducted an
expert survey on a data set containing audiological measures
(Ntotal = 595) provided by the Hörzentrum Oldenburg GmbH
(Germany). Thus, given the audiological data, experts were asked
to assess CAFPAs, as well as to provide diagnostic decisions for
N labeled = 240 patients. The remaining data of Nunlabeled = 355
patients will be used as unlabeled cases for further evaluations
of the trained algorithms. With the labeled data set we intend to
quantify the link from audiological measures to CAFPAs.

Common Audiological Functional Parameters
The CAFPAs describe functional aspects of the human auditory
system and are thereby independent of the choice of audiological
measures. The covered functional aspects are summarized in
Table 1 and Figure 1A.

In a CDSS for audiology, the CAFPAs are planned to act as
an interpretable intermediate layer. They should be determined
from audiological measures. Subsequently, a classification of
audiological findings, diagnoses, or treatment recommendations
for the provision with hearing devices could be performed based
on their basis. The CAFPAs are defined on a continuous scale
in the interval [0 1], indicating the degree of impairment. Their
scale can be graphically displayed in a traffic-light-like color
scheme (cf. Figure 1B), where for the respective functional aspect
green [0] represents “normal” and red [1] represents “maximally
pathological” status.

Expert Survey
The database of the Hörzentrum Oldenburg GmbH (Germany)
contains audiological measures, cognitive tests, and self-reports
on multiple questionnaires from more than 2,400 patients.
Complete data on main variables relevant for the expert survey
was available for 595 patients. A detailed description of this
database was published by Gieseler et al. (22). In the expert survey
by Buhl et al. (23), a part of this database was labeled for the
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TABLE 1 | Overview and description of CAFPAs.

Functional

aspects

CAFPA Description

Hearing

Threshold

CA1

CA2

CA3

CA4

The CAFPAs CA1-CA4 refer to the hearing

threshold at increasing frequencies. Hearing

threshold refers to the minimum sound level

that is required to hear a sound. It is indicated

as the threshold at which a sound is detected

at least 50% of the time. The hearing

thresholds are given in decibels of the hearing

level (dB HL) for given frequencies in

comparison to the normal population. Values

between 0 and 20 dB HL are considered to be

within the normal range, whereas increasing dB

HL values correspond to increasing hearing

loss for the given frequencies (24).

Suprathreshold

deficits

CU1

CU2

These components refer to deficits at levels

above the threshold (24) for lower (CU1) and

higher frequencies (CU2). Even if hearing

threshold levels are within the normal range,

deficits may still be present in the

suprathreshold range, e.g. with deficits in

speech recognition (25).

Binaural hearing CB Binaural hearing reflects processes taking

place in the central nervous system, which

enables hearing with two ears simultaneously

(24, 26). On the one hand, this entails the ability

to perceive different signals that reach the two

ears as one, termed binaural fusion (24). On the

other hand, binaural hearing allows spatial

hearing and sound localization (26, 27).

Neural

processing

CN This CAFPA broadly defines the involvement of

neural components in the hearing process,

such as the cochlear and auditory neurons (24).

Cognitive

components

CC Cognitive components play a role in hearing

deficits. Studies have widely indicated a

correlation between age-related hearing loss

and cognitive decline, even though the causal

mechanisms remain unclear (28). Cognitive

decline may reduce available cognitive

resources for auditory processing. Conversely,

reduced auditory input caused by hearing loss

may lead to a degradation of inputs to the

brain, causing cognitive decline. In any case, a

strong association between cognitive measures

and hearing loss has been found (29).

Socio-economic

status

CE This CAFPA contains information regarding the

socio-economic status of an individual, which

is a combined measure of economic and social

status, found to be positively associated with

better health (30).

purpose of linking CAFPAs to audiological diagnostics. Thereby,
audiological experts were asked to label individual cases from the
database. They were asked to indicate expected CAFPA values
as well as audiological findings and treatment recommendations
on a one-page survey sheet on which the patients’ data were
displayed in a graphical manner.

The following audiological measures and subjective patients’
reports were displayed to the experts. The audiogram (for
air and bone conduction), which characterizes the hearing
threshold of a patient, i.e. which minimum sound pressure

level can be perceived at different frequencies. The adaptive
categorical loudness scaling [ACALOS; (31)] which aims to assess
the loudness perception of the patient. Furthermore, speech
intelligibility was captured with the Goettingen sentence test
[GOESA; (32)]. The Vocabulary test [German: Wortschatztest
(WST); (33)] was used as a measure of verbal intelligence.
Information regarding the socio-economic status was assessed
with the Scheuch-Winkler index [SWI; (34)]. The DemTect (35)
was selected as a measure of cognitive performance which also
serves as a screening measure for dementia. Finally, self-reports
on age, gender, first language, the presence of tinnitus in the
left/right ear, and hearing problems in quiet and in noise were
additionally displayed to the experts.

Experts were asked to indicate expected CAFPA values on
a continuous color bar based on their clinical experience in
audiology. Furthermore, they had to tick diagnostic cases from
a provided list of options. Audiogram and loudness scaling
results were available for both ears. If there was an asymmetry
between the ears in a given case, experts were instructed to
consider only the worse ear for estimating respective CAFPAs
and diagnostic classes. According to the above procedure, expert
labels were obtained for 240 different patient cases. Out of these,
for consistency check, a subset was given to multiple experts.
Thus, in total 287 labeled expert survey sheets were available. The
mean age of the sample including labeled cases was 67.5 (SD =

11.3). For the present analyses, the expert labels provided for the
CAFPAs are assumed to reflect the ground clinical truth. They
will be denoted as ‘labeled’ CAFPAs in the following.

Model-Building
CAFPAs, which serve as labels, are defined on a continuous
scale, leading to a regression problem to be solved for automatic
generation of CAFPA values given the above mentioned
audiological data (features) for the patients (data points). The
model space of the given regression problem contains the
lasso regression, elastic nets, and random forests approaches.
These predictors will be applied and evaluated in comparison
with regard to the loss function. The model space covers
the range between higher interpretability and lower flexibility
(lasso regression, elastic net) and lower interpretability and
higher flexibility [random forests; see (36)]. The comparative
evaluation aims at capturing the well-known trade-off between
interpretability and potentially higher predictive performance
accuracy, whereby the first is a similarly crucial feature for a CDSS
in order to be accepted in applied context.

We use a 10-fold Cross-Validation (CV) in themodel-building
process. The data set for the prediction of each CAFPA was
randomly split into training (80% of the sample, containing the
validation set) and test sets (20%). The validation set is used for
hyperparameter tuning. In contrast, the test set is not being used
in the model-building process, but for evaluating the model with
respect to prediction accuracy for future cases.

Features and Labels
Each of the ten CAFPAs was treated as individual label.
Features are the audiological measures as used in the expert
survey (Table 2). If an audiological measure includes several
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FIGURE 1 | Common Audiological Functional Parameters (CAFPAs). (A) Functional aspects of the human auditory system represented by the CAFPAs. (B) Exemplary

CAFPA representation. The color bar corresponds to the interval [0 1]. The respective value of each CAFPA is indicated by the color of the area, as well as by the

vertical line within the color bar.

TABLE 2 | Overview of audiological measures and features.

Measure Number of

Features

Features

Audiogram (air

conduction)

11 Frequencies: {0.125, 0.25, 0.5, 0.75, 1.0, 1.5,

2.0, 3.0, 4.0, 6.0, 8.0} kHz; worse ear

(according to PTA) selected

Audiogram (bone

conduction)

7 Frequencies: {0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0}

kHz worse ear (according to PTA) selected

Asymmetry score 1 Difference of pure-tone average (PTA) hearing

loss for left and right ear in dB

Adaptive categorical

loudness scaling

(ACALOS)

12 With 1.5 & 4 kHz narrowband noise; worse ear

selected

– Lcut (juncture point between linear parts of the

loudness function)

– Mlow (slope of first linear part)

– Mhigh (slope of second linear part)

– L2.5 (hearing threshold level)

– L25 (medium-loudness level)

– L50 (uncomfortable level) (37)

Goettingen sentence

test (GOESA)

3 SRT (speech reception threshold) Slope SI

(speech intelligibility) (32)

Vocabulary test

(WST)

1 Sum of correct answers (33)

DemTect 1 Sum score of five tests (08: suspect of

dementia; 912: slight cognitive impairment;

1318: normal cognitive behavior) (35)

Hearing problems

(HP)

2 quiet; noise 0 (no hearing loss) to 5 (very severe)

Scheuch-Winkler

Index (SWI)

1 Sum score for categories profession,

education, and income (34)

Age 1 Age in years

Language 1 Native speaker (German); non-native speaker

Gender 1 Male; female

Tinnitus 2 Presence; right and left ear

measurement variables (e.g., the audiogram is measured for
different frequencies), each of these variables is used as feature.
In total, 44 features were used for modeling. Corresponding to

FIGURE 2 | Schematic overview of the model-building pipeline. Numbers in

brackets indicate dimensions. (A) Pre-processing and generation of 20 data

sets based on multiple imputation of missing values. (B) Building models on

each imputed data set for each CAFPA. (C) Prediction of CAFPAs with the

three selected models on each imputed data set. Evaluation of prediction

accuracy using the Mean Absolute Error (MAE), and R² averaged across

multiple data sets.

the instruction in the expert survey to rate CAFPAs for the worse
ear in case of an asymmetric hearing loss, only audiogram and
adaptive categorical loudness scaling data for the respective worse
ear of each patient are included as features. To retain information
regarding the asymmetry between ears, an asymmetry score
serves as an additional feature. This score reflects the absolute
difference in dB between the pure-tone average hearing loss
(PTA; audiogram (air conduction) averaged over the frequencies
0.5, 1, 2, and 4 kHz) of the left and right ear [e.g., (38)]. Figure 2
depicts the general analysis pipeline for predicting the CAFPAs.

Pre-processing
To avoid statistical dependency due to multiple evaluations of
certain patients by multiple experts, for all analyses we randomly
selected the CAFPA results of one experts’ response only. For all
features, but for hearing problems in quiet and noise (74.3%),
at least 94.2% of the data were available. Where necessary,
we imputed missing data on features by using Multivariate
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Imputation with Chained Equations [MICE; (39)]. MICE is an
approach in which missing values on one feature are estimated
based on the remaining features included into the imputation
model. Missing values are replaced by predicted values with
an added random error term. To minimize potential bias due
to one single addition of the random error, the imputation
process is repeated multiple times. Imputed values are updated
in each iteration, resulting in a given imputed data set. By
generating multiple such imputed data sets, MICE accounts
for the uncertainty that stems from predicting missing values
(39). It is a superior missing data technique as compared with
single imputation methods, such as mean or predicted values
imputation (40). We used 20 iterations for each imputed data
set and generated a total amount of 20 imputed data sets. This
amount was shown to be sufficient for successful estimation of
the missing data (39, 41). The plausibility of the imputed values
was visually inspected across iterations and imputed data sets,
as well as through a density plot of the imputed values for each
feature. Modeling was carried out on each of the 20 imputed data
sets, instead of averaging the data prior to the model-building
process (41). Thus, we averaged the predicted CAFPAs after being
estimated over multiple data sets.

Missing labels were not imputed. For the prediction of each
CAFPA label only those cases were included for which the
corresponding CAFPA label was available. In total, 97.5% of the
labeled CAFPAs were available. Thus, for each predicted CAFPA,
only minor sample size differences occurred.

Lasso Regression and Elastic Net
Lasso regression and elastic net are both linear regression
models that are closely related to each other. As with linear
regression, coefficients are estimated, such that the Residual
Sum of Squares (RSS) is minimized. Both lasso regression and
elastic net perform feature selection by introducing a penalty
for the size of the coefficients (36). By feature selection, a more
parsimonious model is being achieved, so that model flexibility
and interpretability is optimized. Lasso regression and elastic nets
use different penalties. Whereaslasso regression introduces the
l1 penalty (Equation 1), elastic nets combine the l1 with the l2
penalty (Equation 2).

RSS + λ

p
∑

j=1

∣

∣βj

∣

∣ (1)

RSS + λ

p
∑

j=1

β2
j (2)

With l1, the model will penalize the sum of the absolute values
of the regression coefficients depending on the tuning parameter
λ and thus, sparse models result because coefficients can be
shrunken exactly to zero. The size of the selected λ determines
the strength of the penalty, with larger values of λ corresponding
to a stronger regularization (36). The tuning parameter is
being selected by cross-validation in the model-building process
(see below).

In contrast, the l2 penalty does not eliminate coefficients,
but shrinks irrelevant features towards zero, next to grouping

correlated features together by assigning them similar coefficient
sizes (36). Combining both penalties, as in elastic nets, will have
three consequences: Irrelevant features will be eliminated, less
important features will be shrunken towards zero and correlated
features will be grouped together. The relative contribution of
each penalty can be fine-tuned with α, a tuning parameter
ranging on a scale from [0 1]. As part of the model building
process features were standardized for both lasso regression and
elastic net, to ensure an equal impact on all coefficients.

For lasso regression, we evaluated λ values that cover the
range between the least squares estimate (simple linear regression
including all features, λ = 0) to the null model (including no
feature and using the mean of the labels as predicted value, λ →

inf). The λ value minimizing the loss function of the validation
set was selected by means of 10-fold CV separately for each
imputed data set.

For elastic net, we performed a grid search of the length 10
for α and λ, using the caret train() function in R. That is, we
considered a combination of ten potential values for both α and
λ in the grid. Values for α and λ minimizing the loss function on
the validation set were selected with 10-fold CV for each imputed
data set (cf. Figure 4).

Random Forests
Random forests combine multiple decision trees for improving
the accuracy and robustness of predictions as compared to
those achieved by a single decision tree. Decision trees perform
recursive binary splitting of the feature space, that is, a feature
that leads to the largest reduction of the RSS is being selected for
a split, such that two distinct regions are obtained at every step
of the tree building process. In every step, the splitting procedure
is repeated based on other features, such that multiple regions
in the multivariate space of the observed data are obtained.
The prediction is different for each determined region and it
corresponds to the mean of the observed response variable in the
respective regions. For random forests, multiple trees are built.
To avoid building the same decision tree multiple times, only a
specified number of features was considered at each split. This
enforces different structures of the achieved decision trees and it
has the effect of de-correlating the trees before being averaged for
the final prediction. As such, the variance of the prediction for
future cases (test data) is being minimized (36).

For the current analyses, we tuned the number of features
considered at each split (mtry) using the tuneRF() function from
the randomForest package in R (42). TuneRF() searches for
optimal values for mtry given the data. The final number of
features selected at each split was then determined using the
proposed mtry values for the 500 trees built for each fold of the
10-fold CV.

Model Evaluation Based on Labeled Cases
Prediction of the CAFPAs
We evaluated the models’ performance using the Mean Absolute
Error (MAE) as loss function and the coefficient of determination
(R²) between labeled and predicted CAFPA values. As mentioned
above, for each of the ten CAFPAs, 20 imputed data sets exist.
Accordingly, we built all models (lasso, elastic net and random
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FIGURE 3 | Feature importance (FI) analysis pipeline. FI Method indicates the

specific method for each model to extract the relevant features.

forest) multiple times on each imputed data set. This resulted
in 20 × 3 models for each CAFPA [20 × 3 × 10]. For final
model evaluation, we then averaged the MAE and R² values
acrossmultiple estimations for each CAFPA [3× 10]. In addition,
the correlation between the labeled and predicted values were
estimated and plotted. Density plots for labeled and predicted
values are provided as well. The null model was chosen as a
general baseline to improve upon.

Feature Importance
For assessing feature importance, we randomly selected one
of the 20 imputed data sets, as we did not expect significant
differences between the data sets. Furthermore, we did not
observe differences when inspecting the standard deviation of
the predicted CAFPAs across multiple imputed data set. The
selected data set was used to build all three models using Leave-
One-Out-Cross-Validation (LOOCV) for each CAFPA [1 × 3 ×
10]. LOOCV performs CV by leaving out one observation to be
considered as validation set. No additional test set was set aside
(differently from the prediction of the CAFPAs), considering that
no predictions on future data are made. Figure 3 depicts the
feature importance analysis pipeline.

Feature importance assessment is identical for lasso regression
and elastic net and it directly follows from the definition of the
methods. Due to the different approaches of feature selection that
characterize the specific models, selected features differ across
models. We used the selection frequency of each feature across
all LOOCV models to determine feature importance. Features
selected for more than 50% of the LOOCV models are candidate
features to be considered relevant.

For each random forest model, we calculated a feature
importance measure. For each tree (n = 500) in the random
forest, 2/3 of the data was used for resampling with replacement.
The remaining 1/3 of the data is termed out-of-bag (OOB).
Predictions for each data point i were made by averaging all trees
in which i was part of the OOB sample. The loss function can be
calculated from the resulting predictions (36). Subsequently, the
importance of a given feature p was determined by calculating
the loss function for each tree in the forest, including all features,
next to calculating them with a permuted feature p’ (36). The
average difference between the two loss functions was then
normalized and scaled to range from 0 to 100, with 100 being the
most important (43). Here, all features with importance values

above 50 were considered candidate features. Features selected
as candidates by all three models were taken as most relevant
features for the prediction of a respective CAFPA.

Model Application to Unlabeled Cases
Our aim was to obtain a model that allows predicting CAFPAs
in the context of a CDSS. Thus, it is crucial that the obtained
model(s) are accurate at estimating CAFPAs on unlabeled cases.
Therefore, the models were applied to the additional 355 cases
(mean age = 67.6, SD = 12.3) of our data set (Ntotal = 595)
for which no expert labels on CAFPAs are available. To evaluate
the predictions on unlabeled cases, we applied model-based
clustering (section Prediction of CAFPAs and Clustering for the
Unlabeled Data Set). Ideally, we should find the same number
of clusters in the CAFPAs predicted by the models from the
unlabeled data set, as on the labeled data set.

Pre-processing
For the purpose of imputing missings in the unlabeled data set
using MICE, we merged this data set with the labeled, previously
imputed data set. Because in the future CAFPAs should be
predicted for individual cases as part of a CDSS for audiology,
potential missing data in single patients will have to be imputed
on the basis of larger databases. Thus, merging the unlabeled
data set with the labeled one to deal with missingness is in line
with procedures suitable for a prospective CDSS. Apart from
merging the data sets, the imputation procedure for the features
was identical to the one described before. After imputation, we
separated the two data sets. In contrast to the model-building
analysis, for clustering purposes missing data on CAFPAs
were also imputed. However, the imputation was performed
exclusively on the basis of the available labeled CAFPAs without
considering the features in the imputation model.

To obtain a comparable data set to the labeled one with respect
to its size as well as demographic characteristics of the cases
(i.e., age, gender, and first language), we applied propensity score
matching [PSM; (44)]. The propensity score is defined as the
conditional probability that a data point belongs to a treatment
group (e.g., in our case to the labeled vs. unlabeled sample) given
a set of covariates. It can be estimated by logistic regression (45).
Data points with a similar propensity score in the labeled vs.
unlabeled data are matched according to the Nearest Neighbor
(NN) matching technique (46). NN refers to matching each
propensity score from the treatment group (unlabeled data) with
the nearest propensity from the control group (labeled data). As
a result of the PSM, the unlabeled data set used for unsupervised
prediction of the CAFPAs and for subsequent evaluation with
model-based clustering consists of 240 cases (mean age = 67.4,
SD = 11.8) that are maximally similar to the labeled cases with
respect to demographic features.

Prediction of CAFPAs and Clustering for the

Unlabeled Data Set
We predicted CAFPAs for the unlabeled cases using the three
previously trained models (lasso, elastic net, random forests),
each containing 20 models, resulting from the 20 imputed
data sets in the model-building part of the present analysis.
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FIGURE 4 | Hyperparameter selection for lasso regression and elastic net using 10-fold CV, exemplarily for CA2 and a randomly selected imputed data set. Both plots

display the mean-squared error (MSE) as a function of log(λ). The dotted line indicates the values leading to the smallest MSE. (A) Tuning of λ for lasso regression. The

standard error of λ across CV-folds is shown. (B) Tuning of λ for different levels of α with elastic net.

To evaluate the predictions for unlabeled cases, we applied
model-based clustering to [1] the labeled CAFPAs and [2]
predicted CAFPAs from the data not containing labels. Model-
based clustering assumes the data to stem from a mixture of
gaussian distributions, where each cluster k is represented by
a cluster specific mean vector µk and a covariance matrix Σk

(38). The covariance matrix determines the shape, volume, and
orientation of the clusters (e.g., varying or equal shape, volume,
and orientation). Thus, to determine the most suitable number of
clusters for given data, model-based clustering applies different
parameterizations of the covariance matrix for different numbers
of components [see (47) for the different parameterizations of
the covariance matrix]. Accordingly, multiple clustering models
can be compared with regard to their properties (i.e., covariance
structure and number of components) and the best fitting
model selected for the cluster analysis. Model selection can
be performed by means of the Bayesian Information Criterion
(BIC), which evaluates the likelihood of the model given the data
and parameterization, with larger BIC values indicating better fit
of a model (48).

To select the optimal model and number of clusters
for the data set including labeled CAFPAs, we inspected
the BIC to choose the parameterization of the covariance
matrix. Thereafter, we determined the optimal number of
clusters via visual inspection of the resulting average CAFPA
patterns for each cluster. That is, the largest number of
clusters differentiating labeled CAFPA patterns was selected
(cf. Supplementary Figures 6, 7). As the clusters exist in a
multidimensional space, i.e. the ten CAFPA dimensions, we
applied principle component analysis (PCA) to visualize the
clusters. PCA is a dimensionality reduction method that linearly
combines features to result in a new set of orthogonal principle
components (PCs). The PCs are ordered with regard to variance,
i.e. the first PC explains the largest amount of variance in the
data (49). This allows a visualization of clusters in a 2D space

(PC1 and PC2), while retaining a large amount of variance
existing in the data (50). We then intended to reproduce
the same number of clusters of CAFPAs estimated, in the
unlabeled data set using the same covariance parameterization,
for the purpose of providing comparability between labeled and
predicted clusters.

RESULTS

Model Evaluation Based on Labeled Cases
Model-Building
Figure 4 illustrates the CV results from tuning λ for lasso
regression, as well as α and λ for the elastic net, exemplarily, for
CA2 of a randomly selected imputed data set. Values for α and
λ were selected that lead to the largest error reduction in the
validation set, as indicated by the dotted line. The results for the
remaining CAFPAs for the given imputed data set are provided
in the Supplementary Figures 1, 2. Figure 5 depicts the MAE of
the trained models for the training and test set across CAFPAs, in
comparison to the MAE of the null model. The performance of
the lasso regression and the elastic net is comparable. The test
error for random forest is slightly higher as compared to the
training error but not yet indicative of overfitting.

Prediction of CAFPAs
Figure 6 displays the models’ performance at predicting the
CAFPAs. In case of all three models, the predicted CAFPAs in
the test set were averaged over the imputed data sets. Figure 6A
shows the mean absolute error (MAE) between labeled and
predicted CAFPAs for the three models as compared with the
null model. Although different models perform best for different
CAFPAs as indicated by the color bars, the performance across
models is comparable, and all models improve upon the null
model. The average reduction of MAE over CAFPAs is also
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FIGURE 5 | Training and test set loss function (MAE) across CAFPAs for the three models (A) lasso regression, (B) elastic net, and (C) random forest. MAE values

correspond to a randomly selected imputed data set.

FIGURE 6 | Model-specific predictive performance accuracy for the CAFPAs on the test set, averaged over multiple imputed data sets. Different models are

color-coded. (A) Mean absolute error (MAE) for each CAFPA. indicates the predictive performance of the null model, and the foremost bar color denotes the model

with best predictive performance. (B) Mean and standard deviation of the MAE reduction as compared to the null model, averaged over CAFPAs. (C) Coefficient of

determination (R²) for each CAFPA. The depicted bar color indicates the model with the best predictive performance. The symbols denote the performance of the

respective comparison models.

similar for the different models (Figure 6B), with the random
forests performing slightly worse.

Figure 6C shows the coefficient of determination (R²) for
labeled CAFPAs in the test set. In line with the MAE results,
the plot indicates that the performance of lasso regression, elastic
net, and random forests was very similar. However, the random
forest performed slightly worse for some CAFPAs (CA3, CB,
CE). In comparison over CAFPAs, larger differences in predictive

performance occurred. The audiogram-related CAFPAs CA1-CA4

were predicted best, while performance accuracy was lowest for
the suprathreshold CAFPA CU2 and the neural CAFPA CN.

With Figure 7 we provide a more detailed view on the
models’ predictive performance for different CAFPAs. The scatter
plots (Figure 7A) indicate the labeled vs. predicted CAFPAs for
individual patients. In addition to the depicted correlations, the
range of the labeled and predicted CAFPA values with regard
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FIGURE 7 | Detailed overview on model performance for different CAFPAs. LR (lasso regression); EN (elastic net); RF (random forests) (A) Predicted vs. labeled

CAFPA values (for the test set, averaged over imputed data sets) for all CAFPAs. The three models are color-coded. The Pearson correlation r and corresponding

linear associations are depicted in the corresponding color. The level of significance p is indicated by *, **, ***, for p < 0.05, p < 0.01, p < 0.001, respectively. The

dotted line indicates perfect prediction. (B) Absolute frequency density plots (bandwidth = 0.015) for the, ten CAFPAs. Different rows depict the distributions of the

labeled CAFPAs, next to the distributions achieved by the three models. The x-axis indicates the CAFPA values; the y-axis the absolute frequency of the labeled

CAFPAs and those predicted by the respective model. In the background, the color codes corresponding to the CAFPA interval [0 1] are depicted (cf. Figures 1B, 9).

to the interval [0 1] is being visualized in the plot. Except
for the neural CAFPA CN and the cognitive CAFPA CC, all
labeled CAFPAs cover the complete range of potential values. The
predicted CAFPAs for all three models generally cover a smaller
range of potential CAFPA values, that is, very high values are
rarely predicted by the models. Only for the audiogram-related

CAFPAs CA2-CA4 both labeled and predicted values span the
complete interval [0 1].

The range of the predicted CAFPAs is further visualized
in Figure 5B. Frequency density plots for all CAFPAs are
depicted for labeled and predicted values. The labeled CAFPAs
are generally distributed over the whole interval [0 1], with a
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FIGURE 8 | Feature importance for predicting CAFPAs. CAFPAs are displayed in the center of the figure; features in the upper and bottom parts. Measurement

parameters are represented by white boxes (cf. Table 1 for abbreviations and units). Black lines displayed as connections between the measures and the CAFPAs

indicate features selected by all three models to be relevant for the prediction of the respective CAFPA.

tendency towards lower (green) values especially for the CAFPAs
CA1, CA2, CU1, and CC which characterizes the expert ratings,
but also the underlying audiological data. To conclude on a
sound prediction of CAFPAs, in addition to a high correlation
between labeled and predicted CAFPA values and an overlapping
value range of the two, the shape of the predicted CAFPA
distribution should be similar to the one of the labeled CAFPA
scores (see Figure 7B). For most CAFPAs and models, the
label distributions are well reproduced by the distributions
of the predicted CAFPA scores. Differences between models
are smaller than differences between CAFPAs. The strongest
similarity between labeled and predicted scores is obtained for the
audiogram-related CAFPAs CA1-CA4. However, the distributions
for CN and CC are limited to a restricted CAFPA range as
compared with the label distributions. For example, the two
maxima of the label CN distribution are not covered by the
distributions of the predicted scores.

Feature Importance
For all models, we assessed feature importance using Leave-One-
Out-Cross-Validation (LOOCV). Figure 8 provides a summary
of the most relevant features for predicting the different
CAFPAs. All features (audiological measures) included in
the data set (cf. Table 2) are represented in the plot, and
those measures that were selected as relevant features by all
three models are connected with the respective CAFPA. The
candidate features for each model separately are provided in the
Supplementary Figures 3–5.

The most important features for the audiogram-related
CAFPAs CA1-CA4 are air and bone conduction audiogram for
plausible frequencies, i.e., frequencies that increase over the
four CAFPAs defined for different frequency ranges. For the
cognitive CAFPA CC and the socio-economic CAFPA CE, the
models agreed on only one respective feature, namely DemTect
and the Scheuch-Winkler-Index, respectively. In contrast, the
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FIGURE 9 | CAFPA clusters estimated using model-based clustering. Rows depict the clusters for labeled CAFPAs (labeled data set), as well as the predicted

CAFPAs for matched, unlabeled patients, originating from the models lasso regression (LR), elastic net (EN), and random forest (RF), respectively (unlabeled data set).

(A) CAFPA patterns for five estimated clusters (columns). The average CAFPAs assigned to each cluster are depicted by the color of the respective area as well as by

the vertical line in the color bar. Standard deviations are depicted by horizontal lines in the color bars. N indicates the number of patients assigned to each cluster.

(B) Combined representation of the five estimated clusters. For visualization purposes, the clusters are displayed in the plane given by the first and second principal

component (PC) estimated for the respective CAFPA data. The percentage of explained variance by PC1 and PC2 is indicated on the respective axis. Different colors

of data points and two-dimensional Gaussian distributions correspond to the different clusters in the columns of (A).

selected features for the suprathreshold CAFPAs CU1 and
CU2, as well as the binaural CAFPA CB and neural CAFPA
CN are more widely distributed over different audiological
measures. Some audiological measures such as ACALOS at
4.0 kHz or tinnitus, and demographic information as well as
the asymmetry score were not selected by all of the models
for any CAFPA as relevant features, but at least by one model
(see Supplementary Figures 3–5).

Model Evaluation Based on Unlabeled
Cases
Next, we applied the three models to unlabeled cases for the
purpose of investigating the feasibility of predicting plausible
CAFPAs also for unlabeled cases. This is an important step
toward a CDSS for audiology. Model-based clustering was then
used to estimate distinguishable clusters in the ten-dimensional
CAFPA data. According to a combination of visual inspection
and the BIC, the labeled CAFPAs were best characterized by
five clusters using the model λkAk with the identifier VVI.
Accordingly, the distribution of the covariance matrix Σk is

diagonal, with varying volume and shape, and an orientation
aligned with the coordinate axes (51). Six clusters with the
same covariance parameterization reached a marginally higher
BIC value (BIC = 1698.8) as compared to five clusters (BIC
= 1695.3, Supplementary Figure 6). The additional cluster,
however, mainly leads to a separation of the healthy patients
into two clusters with higher and lower values for the socio-
economic CAFPA CE (Supplementary Figure 7). As separating
healthy patients solely on socio-economic status is undesirable,
we argue for using five clusters for further analysis. We then
applied the same clustering method to the CAFPAs for the
240 matched, unlabeled cases which we predicted using the
previously trained lasso regression, elastic net, and random
forest. The obtained clusters are depicted in Figure 9A using the
typical CAFPA representation that was introduced and used in
Buhl et al. (8, 23). Figure 9B additionally displays a combined
representation of the five clusters for assessing how well the
clusters can be distinguished.

From the left to the right, the labeled CAFPA patterns
(labeled data set; first row of Figure 9A) indicate an increasing
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degree of hearing loss which is expressed by increasing
average CAFPA values. The largest differences between the
clusters occur for the audiogram-related CAFPAs CA1-CA4.
In comparison to the CAFPA distributions published in Buhl
et al. (23), the obtained clusters are in line with normal
hearing (cluster 1), different degrees of high-frequency hearing
loss (cluster 24), and a more severe, broadband hearing loss
(cluster 5). The corresponding plot in Figure 9B shows five
distinguishable clusters.

The clusters for predicted CAFPAs on unlabeled cases using
the three models (unlabeled data set; second to fourth row in
Figure 9A) show CAFPA patterns that are very similar to the
labeled CAFPA patterns. However, different numbers of cases
were associated to the different clusters, with generally more
patients allocated to the clusters with lower CAFPAs. The largest
deviation in terms of patients’ allocation frequency occurred for
random forest, where cluster 5 includes more patients, but on
average with less severe hearing loss. This is consistent with
the generally lower CAFPA values that the models predicted,
in contrast to labeled CAFPAs (cf. Figure 7B). Clusters 2 and
3 for random forest are very similar, with the main difference
in the socio-economic CAFPA CE. Cluster 3 only contains 12
patients, which is also visible in Figure 9B. In general, similar
clusters were obtained for the threemodels, i.e. themodels agreed
on the cluster allocation for most of the cases. The agreement
between lasso regression and elastic net amounts to 96% and
for both lasso regression and random forests and elastic net and
random forests to 68%. Further, this similarity becomes evident
in Figure 9B), where clusters are displayed on a similar plane
in the dimensions of the two first principal components, i.e.,
PC1 and PC2 are explaining similar amount of variance. In
contrast to the clusters for lasso regression and elastic net, the
clusters for random forest are depicted with opposite sign with
respect to PC2, which is however the same due to symmetry
of principal component analysis. Here, the clusters 2 and 3
overlap considerably.

DISCUSSION

The present study proved the feasibility of automatically
predicting Common Audiological Functional Parameters
(CAFPAs) from audiological measures. For developing a clinical
decision-support system (CDSS) using CAFPAs as interpretable,
intermediate representation of audiological knowledge, the
automatic prediction of CAFPAs comprises the last step towards
a full working first prototype of such a system. We predicted
CAFPAs on the expert-determined data from Buhl et al.
(23) using lasso regression, elastic net, and random forests.
Interpretability of the model predictions was assessed by feature
importance measures, and the potential of predicting CAFPAs
for unlabeled cases was evaluated using model-based clustering.

Prediction of CAFPAs
The three models worked reasonably well in predicting the
CAFPAs, even though optimal predictive performance cannot
yet be achieved. One reason is the limited amount of available

data, especially in the range of hearing deficits, and second the
choice of the models to some extent. That is, due to the small
number of available labeled clinical cases, it was plausible to start
with rather simple models to avoid overfitting. As soon as more
data becomes available, model flexibility and complexity could be
increased, and the here trained methods can be further evaluated
to determine which of them turns out to be optimal for CAFPA
prediction within a CDSS. Given the available data, the prediction
accuracy of the three models was similar, while larger differences
occurred between the different CAFPAs, i.e. not all CAFPAs were
equally well predicted.

One explanation for performance differences among CAFPAs
could be that some CAFPAs are more directly related to
the audiological measures than others. This aspect is further
discussed in the next section, where we turn to feature
importance. A second explanation may be that experts more
strongly agree when labeling some of the CAFPAs. Especially
given a continuous scale, experts’ ratings can be expected to differ
from each other to some extent. For example, a meta-analysis
of inter-rater reliability on performance status assessment in
cancer patients indicated good agreement between raters for
about half of the studies; the other half achieved only low
to moderate agreement (52). Another study investigated the
inter- and intra-rater reliability of audiologists in the estimation
of hearing thresholds in newborns, using auditory brainstem
response (53). The intra-class correlation of 0.873 was concluded
to be satisfactory. However, this value indicates that differences
between raters exist. Thus, labels provided by experts, as in the
current study, may introduce some bias themselves, although
Buhl et al. (23) qualitatively found a good agreement among
experts for two reference cases which were given to multiple
experts. Such experts’ biases, in turn, could lead to less optimal
predictions for some of the CAFPAs by using statistical models.
To account for these biases and to measure the extent of error
introduced by experts, future studies are needed to generate labels
by multiple experts for the same cases.

Model Interpretability via Feature
Importance Assessment
By analyzing feature importance, we gained crucial insights into
the model-building process as well as into the relationships
between audiological measures and CAFPAs. Without exception,
all models selected audiologically plausible features for predicting
different CAFPAs. This means that the automated generation
of CAFPAs could be demonstrated to build upon similar
audiological measures like physicians are expected to use in their
decision making. Thus, the differences in predictive performance
of the models for different CAFPAs (cf. section Prediction of
CAFPAs) can be assumed to be due to the measures contributing
to the respective CAFPA, as indicated by feature importance.
For example, the threshold-related CAFPAs CA1 and CA2 are
among the best-predicted ones. These are closely related to the
audiogram (8). For predicting them, the models selected suitable
audiogram frequencies, as well as the hearing threshold level
L2.5 at 1.5 kHz from the adaptive categorical loudness scaling
(ACALOS). In contrast, the CAFPAs that were not as well
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predicted (e.g., neural CAFPA CN; binaural CAFPA CB) may be
more vaguely related to the measures. That is, impairment in
the neural and binaural domain cannot be directly inferred from
a single audiological measure, but rather from a combination
of audiological measures. Thus, for these CAFPAs, additional
measures that better characterize the respective functional aspect
need to be included in future test batteries.

In several regards, assessing feature importance contributes
to interpretability of the decision-making process. In model-
building, it gives access to information with respect to features
which were selected by the model. Thereby, it also allows
analyzing how experts derived the CAFPAs in the current study,
as well as characterizing the data set itself. In addition, being
provided with audiological measures (as input of the model)
and the derived CAFPAs (output), physicians may be able to
understand and trust the automatized generation of the CAFPAs
in a CDSS. Therefore, feature importance also helps to achieve
physicians trust towards the diagnostic system and could ensure
the physician about the validity of decisions provided by the
model. Both are crucial for enhancing acceptability and for
reinforcing future implementations of an audiological CDSS
into the clinical routine (15, 16). The models considered in
this study all belong to “intrinsically interpretable” models
according to Jung and Nardelli (45), that is, the selected features
directly provide interpretability to the experts. However, if in the
future more complex models are used, explanations of model
predictions that are most informative to specific users could be
constructed using the probabilistic model described in Jung and
Nardelli (45).

Additionally, by demonstrating that the CAFPAs can be
predicted by plausible audiological measures, assessed by
commonly used test batteries, here, we provide further empirical
support for the concept of the CAFPAs as an abstract
representation of the human auditory system. That is, machine
learning models were generally capable to learn the underlying
relation between audiological measures and the CAFPAs. This is
especially relevant for future applications of a CDSS employing
the CAFPAs, since predictions in the medical field need to
be grounded on available knowledge in the given domain to
avoid flawed predictions (54). For instance, in Cooper et al.
(55) a neural network predicted low or high risk of in-hospital
mortality for pneumonia patients. Subsequent studies analyzing
feature importance, however, have revealed that the model
assumed asthma to be a protective factor, even though in
reality the opposite is true. The prediction error was caused
by asthma patients being more carefully treated, due to their
higher mortality risk (56). Clearly, this example highlights the
importance of the interpretability of predictions within a CDSS in
general, and together with the presented results it demonstrates
the benefit of the interpretability of the CAFPA predictions
that we could achieve in this work. Based on our hitherto
available results on CAFPAs, physicians can be provided with
the audiological measures that are most influential for the
respective CAFPA prediction. As a next step towards a CDSS for
audiology, it will be of interest to further enhance interpretability,
i.e. by providing physicians with the exact proportions of
measurement importance.

Model Evaluation on the Unlabeled Data
Set
A future CDSS would have to be applied to unlabeled cases.
Thus, it must be possible to evaluate if plausible CAFPAs can be
predicted for unlabeled cases. For this purpose, we applied the
trained models on a demographically matched data set of cases
for which no labeled CAFPAs were available. Subsequently, we
applied model-based clustering on the predicted CAFPAs and
obtained five distinguishable clusters that resemble the clusters
contained in the labeled CAFPAs.

In clinical practice, different audiological findings occur,
such as cochlear hearing loss related to inner ear dysfunction,
conductive hearing loss related to middle ear dysfunction, or
central hearing loss related to impaired transmission of neuronal
signals to the brain. As the data set used in this study consists
of a rather small number of clinical cases, it seems plausible
that not all audiological findings are well represented in the
data set. In particular, the most frequent cases in the current
data set are high-frequency hearing loss patients, broadband
hearing loss patients, and normal hearing individuals. Thus, the
five clusters represent the most frequent audiological findings
in the underlying data set well, including different degrees of
hearing loss (23). Consequently, it can be assumed that collecting
a sufficient amount of more severe clinical cases for additional
audiological findings would allow differentiating more clusters.

The performance differences between models for different
CAFPAs are reflected in the resulting clusters, as these models
were used for the prediction of the CAFPAs for unlabeled
cases. If prediction accuracy can be improved in the future for
certain CAFPAs, e.g., by including larger data sets and more
measures, the separation of audiological findings by the clustered
CAFPA patterns will further improve. However, already with
the current prediction accuracy, plausible and distinguishable
patterns were demonstrated.

Finally, assessing the obtained clusters using the graphical
representation of CAFPA patterns, which was introduced by Buhl
et al. (8), allows for direct comparability of audiological findings,
and it contributes to interpretability of the CDSS by providing a
visualization of the functional aspects which describe the group
of patients belonging to the respective cluster.

Clinical Decision-Support System Using
CAFPAs
On the way of setting up a CDSS using CAFPAs as interpretable,
intermediate layer, the current study closes the gap towards
a CDSS working with the input data from a single patient:
The prediction models trained here can be used in the
future to automatically generate CAFPAs, based on which
a classification of audiological findings can be performed.
The classification performance could be compared to the
classification performance based on the labeled CAFPAs from the
expert data set (57).

Most potential for improving toward a testable CDSS lies in
applications of the here described models and their extension
to larger clinical databases in the model-building process. This
is because currently we obtained different performance for
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different CAFPAs. The analysis of feature importance revealed
that the CAFPAs were backed up by different amounts of
appropriate audiological measures. Hence, data sets are needed
that contain a higher number of patients for all clinically
relevant audiological findings, which are characterized by a test
battery with information about all functional aspects covered by
CAFPAs. In addition, feature importance analysis could also be
used in the future to identify redundant audiological measures
contained in test batteries used in clinical settings.

For the purpose of integrating data from different clinical
test batteries comprising different audiological measures, the
CAFPAs act as abstract representation and data standardization
format which is independent from the exact choice of measures.
Especially data from electronic health records (EHR), i.e. digitally
available data from different clinics, could be easily integrated
as training data, if CAFPA labels are available for at least some
of them. Expert-based estimations of CAFPAs are arguably the
most time-consuming. Our future aim is to estimate CAFPAs
by a combination of algorithmic generation and expert-coding.
For example, experts could confirm and revise automatically
estimated CAFPAs instead of labeling each patient case based on
audiological data alone.

CONCLUSION

In the current study, we applied three modeling approaches,
lasso regression, elastic net, and random forests, for the
prediction of Common Audiological Functional Parameters
(CAFPAs). As all three models provide similar predictive
performance, currently all appear suitable choices for an
algorithmic prediction of the CAFPAs. We demonstrated that
it was possible to estimate CAFPAs as intermediate layer in a
clinical decision-support system for audiology, that is, as abstract
and interpretable representation for potential users of a CDSS for
audiological decision-making.

In line with the aim of setting up an interpretable CDSS for
audiology, different aspects provide interpretability to the future
users of the tool. First, the CAFPAs themselves act as interpretable
representation of audiological knowledge which is independent
of the exact choice of measurements, that is, the user can assess
the functional aspects that are responsible for the classification
of a certain audiological finding. Second, the analysis of feature
importance helps the user to reproduce which measures are
influential to the estimation of CAFPAs.

Finally, the reported cluster analysis allowed assessing CAFPA
prediction performance on unlabeled cases. This is an important
property to be covered in a future CDSS. The achieved cluster

similarity between labeled and predicted CAFPAs revealed that
the trainedmodels generalize well to unlabeled cases, which could
also be visually assessed by the CAFPA patterns. Building upon
previous work by Buhl et al., the present work is a substantial step
towards a CDSS for audiology. However, the models still need
to be applied and evaluated on new, larger and more variable
clinical data sets in the future. Interpretability needs to be always
maintained, even if the models described here might become
more flexible when tuned and applied to future data.
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