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Background: Early recurrence (ER) of hepatocellular carcinoma (HCC) is defined as recurrence that 
occurs within two years after resection. Our study aimed to determine the optimal peritumoral regions of 
interest (ROI) range by comparing the effect of multiple peritumoral radiomics ROIs on predicting ER of 
HCC, and to develop and validate a combined clinical-radiomics prediction model.
Methods: A total of 160 HCC patients were randomly divided into a training cohort (n=112) and a 
validation cohort (n=48). The intratumoral original ROI was outlined based on enhanced computed 
tomography images and then used as the base to sequentially extend outward 1–5 mm to form peritumoral 
ROI. We developed a logistic regression model to predict ER of HCC. The efficacy of different ROI 
prediction models was compared to determine the optimal ROI. The combined model divided the patients 
into a high-risk group and low-risk group.
Results: Ninety-seven (60.6%) of the patients were ER; the remaining 63 (39.4%) were not ER. The 
area under the curve values and 95% confidence intervals for ROI 3 were 0.867 (0.802–0.933) and 0.807 
(0.682–0.931) in the training and validation cohorts, respectively, and ROI 3 was identified as the optimal 
ROI. Multivariate logistic regression analysis determined microvascular invasion (MVI) (P=0.037) and alpha-
fetoprotein (AFP) (P=0.013) to be independent risk factors for ER. The combined clinical-radiomic model 
containing the radiomics score, MVI, and AFP had the optimal predictive efficacy, with area under the curve 
values and 95% confidence intervals of 0.903 (0.848–0.957) and 0.830 (0.709–0.952) in the training and 
validation cohort, respectively. Subgroup analysis showed significantly ER predicted in the high-risk group 
than the low-risk group (P<0.001).
Conclusions: Peritumoral radiomics 3 mm range was determined as the optimal ROI in this study. The 
clinical-radiomics combined models can effectively stratify high- and low-risk patients for timely clinical 
treatment and decision making.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
malignancies and the third leading cause of cancer deaths 
worldwide (1). Surgical hepatectomy or liver transplantation 
is the main treatment option for patients with HCC and 
the predominant curative treatment modality (2). The 
main problem after resection is the high rate of tumor 
recurrence. HCC recurrence after resection can be classified 
as early recurrence (ER), occurring within 2 years, and late 
recurrence, occurring >2 years after resection (3,4). The ER 
rate after tumor resection is about 5–60% (5). Currently, 
multiple HCC staging systems are key for prognosis and 
treatment guidance (6,7). However, these systems do not 
provide quantifiable risk measures, and none are sufficient to 
accurately predict tumor recurrence. Therefore, identifying 
reliable predictors associated with ER after HCC resection is 
critical for patient risk stratification, treatment decisions, and 
improving long-term survival.

Radiomics enables an in-depth description of tumor 
phenotypes by extracting large and quantitative imaging 
features and has shown great potential both in providing 
intratumoral information about heterogeneous tumors and 
in predicting prognosis after tumor treatment (8,9). Regions 
of interest (ROI) are the study target regions used to extract 
radiomics features, and the extent of the ROI largely 
determines the predictive efficacy of radiomics models (10).  
In recent years, some studies have been conducted to 
predict the recurrence and survival, microvascular invasion 
(MVI) of HCC using radiomics models (11-13). Ji  
et al. showed that radiomics models based on enhanced 
computed tomography (CT) could effectively predict early 
HCC recurrence (14). However, the peritumoral region 
around the tumor consisting of parenchyma can more 
effectively reflect the state of the tumor microenvironment 
(TME) and changes (15,16), which is valuable for assessing 
the aggressive behavior of tumors. Several studies have 
included the peritumoral range for ROI analyses, gradually 
recognizing the importance of this region for tumor 
radiomics ROI (17-19). Nevertheless, the choice of the 
peritumoral ROI range for predicting ER of HCC remains 
controversial (20,21), and the optimal peritumoral ROI 
range needs to be further explored.

In this study, we hypothesized that different peritumoral 
range in CT-based radiomics may have different effects 
on predicting ER. Therefore, the aim of the study was 
to evaluate the effect of multiple peritumoral regions on 
ER prediction in HCC and thus to determine the optimal 
ROI range and to construct a combined clinical radiomics 
prediction model. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-226/rc).

Methods

Study population and follow-up

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The Ethics 
Committee of the Third Xiangya Hospital approved 
the study and waived the requirement for informed 
consent of patients due to the retrospective nature of this 
study. Data were obtained from patients with HCC who 
underwent routine preoperative contrast-enhanced CT 
examinations within 1 month prior to surgery between 
January 2014 and December 2019. The inclusion and 
exclusion criteria were as follows. Inclusion criteria: (I) 
enhanced CT examination within 1 month before surgery; 
(II) postoperative pathological diagnosis of HCC; (III) 
no other treatment such as radiofrequency ablation, 
immunotherapy, transarterial chemoembolization and other 
treatments before surgical resection; and (IV) complete 
clinical data. Exclusion criteria: (I) a combination of tumors 
from other sites; (II) metastatic HCC and intrahepatic 
cholangiocarcinoma; (III) CT image quality did not meet 
the requirements; (IV) lost to follow-up; (V) tumors were 
close to the liver border or major blood vessels.

All patients were followed up by outpatient and/or 
telephone visits to determine ER. Outpatient follow-up was 
reviewed within 1 month after surgery and every 3 months 
thereafter. The review included alpha-fetoprotein (AFP), 
CT, and magnetic resonance imaging (MRI) to determine if 
the patient had an ER. ER was defined as new intrahepatic 
lesions and/or extrahepatic metastases within 2 years after 
HCC resection. The follow-up ended in December 2021 
for all patients.
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CT image acquisition

Enhanced CT images of all patients were exported from  
picture archiving and communication system (PACS) system 
and saved as dicom images in medicine files for analysis. 
Images were obtained from two different CT scanners. 
(I) GE Revolution CT and (II) Philips Brilliance 64 CT  
(Table S1). After the completion of the plain scan, a 
nonionic contrast agent (iohexol, 300 mg/mL; GE 
Healthcare) was administered at a dose of 60 to 110 mL 
(1.5 mL/kg) and an average injection rate of 3.0 mL/s. 
Using the mass injection tracking technique: images of the 
arterial phase were acquired 15 s after the abdominal aortic 
attenuation value reached 100 HU; images of the portal 
phase and delayed phase were acquired 30 and 180 s after 
the arterial phase, respectively.

ROI segmentation

Figure 1 shows the flow of the study. After training, two 

radiologists with 5 years of experience who were unaware 
of the patient’s clinical information and ER, performed 
original region of interest (OROI) segmentation of arterial 
and portal CT images in ITK-SNAP software (Version 
3.6.0, www.itksnap.org). The three-dimensional ROI was 
formed by manually outlining the tumor edge layer by layer, 
followed by importing the three-dimensional ROI and the 
original image together into Artificial Intelligent Kit version 
3.2.2 (GE Healthcare) using the function of dilation as the 
basis of the OROI to expand 1–5 mm outward sequentially 
(Figure 2). For areas with multiple lesions, we selected the 
one with the largest diameter for segmentation. ROIs were 
outlined by an experienced radiologist under the guidance 
of an expert radiologist with 20+ years of experience.

Image preprocessing and feature extraction

Radiomics feature extraction was performed with Artificial 
Intelligent Kit version 3.2.2 (GE Healthcare), which was 
in concordance with the Image Biomarker Standardization 
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Figure 1 Flow diagram of the study.
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Initiative (IBSI) guideline (22). Image preprocessing and 
feature extraction were performed by Artificial Intelligent 
Kit version 3.2.2. The voxels of all images were resampled 
at the same size of 1 mm × 1 mm × 1 mm. A gaussian 
smooth filter algorithm was used for noise reduction. 
The voxel intensity dispersion range was limited to 64. 
To evaluate the reproducibility and robustness of tumor 
delineation or feature extraction, inter- and intraclass 
correlation coefficients (ICCs) were calculated. After one 
month, 30 randomly selected cases of which the CT images 
were delineated by reader were segmented by radiologist 
A and radiologist B, for evaluation of the intra-observer 
(radiologist A twice) and inter observer (radiologist A vs. 
radiologist B) agreement. A total of 792 features were 
extracted from each patient, including 396 features from 
each of the arterial and portal phase CT images, with the 
suffix “_P” added to the portal phase features. Six types of 
features were extracted from each ROI, including histogram 
features, gray level co-occurrence matrix (GLCM) features, 
gray level run length matrix (GLRLM) features, gray level 
size zone matrix (GLSZM) features, form factor features, 
and Haralick features (Table S2).

Feature selection and modeling construction

Radiomics features that showed both intra-observer and 
inter-observer ICC values greater than 0.75 (indicating 
satisfactory agreement) were selected for subsequent 

analysis. All features were normalized using the R software 
“caret” package, and then the features were analyzed 
for redundancy. Pearson correlation coefficient analysis 
was performed for the normally distributed features, 
and Spearman’s rank correlation coefficient analysis was 
performed for the non-normally distributed features. 
Least absolute shrinkage and selection operator (LASSO) 
regression was performed to downscale and filter the 
remaining features, and the optimal regularization 
parameter lambda was identified using a fivefold cross-
validation method. The radiomics features with nonzero 
coefficients were screened as the most predictive features, 
and the radiomics score (Rad score) of the selected features 
was further calculated. Finally, the Rad score was used to 
build a logistic regression prediction model.

Statistical analysis

All statistical analyses were performed using R software 
(Version 3.6.1, https://www.r-project.org). Normally 
distributed continuous variables were expressed as the 
mean and standard deviation, and non-normally distributed 
continuous variables were expressed as the median and 
quartiles. Categorical variables were expressed as the number 
of cases and percentages. Continuous variables between the 
two groups were tested using the Mann-Whitney U test 
or t-test. Categorical variables were compared by the Chi-
square test. Univariate and multivariate logistic regression 

A B C D

E F G

Figure 2 Schematic diagram of ROI segmentation. CT images of portal phase (A) and the arrow shows the lesions. OROI (B). OROI 

extend outward in sequence 1–5 mm to form ROI 1–5 (C-G). CT, computed tomography; OROI, original region of interest; ROI, regions 
of interest.
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analyses were performed to identify clinical factors. LASSO 
regression was used for feature selection. Clinical factors 
were combined with the optimal ROI to build a logistic 
combination model. A nomogram was used to visualize 
the prediction models. The model prediction accuracy in 
the training and validation cohort was quantified by the 
area under the curve (AUC), and calibration curves and 
decision curves were used to evaluate the models. The 
AUCs of different models were compared using Delong’s 
test. The cutoff values for high-low risk stratification were 
determined based on the maximum Youden index of the 
combined model receiver operator characteristic (ROC) 
curve, and high-low risk stratification was performed for all 
patients. All statistical tests were two-tailed, and P<0.05 was 
considered a statistically significant difference.

Results

Baseline characteristics

Table 1 shows the baseline clinical characteristics of all 
patients. The 160 HCC patients were randomized in a 7:3 
ratio, with 112 patients divided into the training cohort and 
48 patients into the validation cohort. Ninety-seven (60.6%) 
of the patients were ER; 63 (39.4%) did not. None of the 
variables were significantly different between the groups.

Clinical factors model construction

The results of the univariate and multivariate analyses of 
clinical factors associated with ER in the training cohort are 
summarized in Table 2. Univariate and multivariate logistic 
regression analyses revealed MVI (OR =2.83, P=0.037) 
and AFP (>100 ng/mL) (OR =3.32, P=0.013) as clinically 
independent risk factors for ER. The clinical model had 
AUC values and 95% confidence intervals (CIs) of 0.724 
(0.638–0.809) and 0.694 (0.552–0.837) in the training and 
validation cohorts, respectively.

Different ranges of ROI radiomics model construction

OROI-ROI 5 had 3, 6, 11, 14, 2, and 12 features used to 
build radiomics models, respectively (Figure S1, Table S3). 
The predictive ability of each ROI radiomics model in the 
training and validation cohort are summarized in Table 3. 
ROI 3 was determined to be the optimal ROI based on the 
AUC values in the training and validation cohorts, and the 
Rad score was calculated and compared for each patient 

in ROI 3 (Figure 3A,3B). Rad scores were significantly 
higher in ER-positive patients than in ER-negative patients  
(Figure 3C,3D). The correlation heatmap depicted the 
correlation coefficient matrix for the 14 features in the 
ROI 3 radiomics model in the training cohort (Figure S2). 
Heatmap depicted the 14 features in the ROI 3 radiomics 
model in the ER-positive and ER-negative groups within 
the training cohort (Figure S3).

Comparison of radiomic models with different ranges  
of ROI

The ROC curves  for  OROI-ROI 5 are shown in  
Figure 4A,4B. The training cohort had the largest AUC 
value for ROI 3, which was significantly different from 
the OROI AUC value (P=0.012). The validation cohort 
also had the largest AUC value for ROI 3, which was not 
significantly different from the other ROIs. ROI 3 was 
determined to be the optimal ROI.

Construction and evaluation of the combined clinical-
radiomics model

Based on the above study, two clinical risk factors, AFP and 
MVI, were combined with ROI 3 Rad score to establish a 
combined clinical-radiomics model. The ROC curves of 
the clinical model, the radiomics model and the combined 
model are shown in Figure 4C,4D. The sensitivity, 
specificity, accuracy, and AUC values and 95% of the 
combined model in the training cohort were 0.908, 0.766, 
0.848, and 0.903 (0.848–0.957), respectively. The sensitivity, 
specificity, accuracy, AUC and 95% CIs of the combined 
model in the validation cohort were 0.781, 0.750, 0.771, and 
0.830 (0.709–0.952), respectively. Nomograms were drawn 
to visualize the predictive ability of the model (Figure 5A). 
In the training and validation cohort, the ROI 3 radiomics 
score combined with clinical factors constituted a combined 
model that further enhanced the predictive model efficacy, 
and the combined model had the optimal predictive efficacy 
(Table 4). Delong-test results indicated that there were 
significant differences between predictive performance of 
radiomic model, clinical model, and combined model in 
both cohorts (Figure 5B,5C).

The calibration curves showed high agreement between 
the predicted and actual probabilities in both the training 
and validation cohorts (Figure 6A,6B). Within a range, 
the decision curves showed that the combined model had 
a higher net benefit rate than both the radiomics model 
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Table 1 Baseline demographics of patients included in the study

Characteristic All patients, N=160 Training cohort, N=112 Validation cohort, N=48 P value

Age (years) 0.576

≥50 109 (68.1) 76 (67.9) 33 (68.8)

<50 51 (31.9) 36 (32.1) 15 (31.2)

Gender 0.3

Female 18 (11.2) 15 (13.4) 3 (6.2)

Male 142 (88.8) 97 (86.6) 45 (93.8)

ALT (U/L) 0.25

≥50 45 (28.1) 35 (31.2) 10 (20.8)

<50 115 (71.9) 77 (68.8) 38 (79.2)

AST (U/L) 0.535

≥40 81 (50.6) 59 (52.7) 22 (45.8)

<40 79 (79.4) 53 (47.3) 26 (54.2)

ALB (g/L) 0.269

≥45 30 (18.8) 18 (16.1) 12 (25.0)

<45 130 (81.2) 94 (83.9) 36 (75.0)

Tumor size (cm) 0.397

≥5 97 (60.6) 65 (58.0) 32 (66.7)

<5 63 (39.4) 47 (42.0) 16 (33.6)

Child-Pugh class 0.462

A 126 (78.8) 87 (77.7) 39 (81.2)

B 34 (21.2) 25 (22.3) 9 (18.8)

HBV >0.99

Negative 23 (14.4) 16 (14.3) 7 (14.6)

Positive 137 (85.6) 96 (85.7) 41 (85.2)

AFP (ng/mL) 0.224

≤100 90 (56.2) 67 (59.8) 23 (47.9)

>100 70 (43.8) 45 (40.2) 25 (52.1)

Platelet 150.0 (101.8–200.5) 141.0 (97.0–197.0) 160.5 (105.3–203.8) 0.335

INR 1.10 (1.03–1.18) 1.10 (1.03–1.19) 1.09 (1.04–1.17) 0.901

PT (s) 12.6 (11.8–13.4) 12.6 (11.8–13.3) 12.5 (11.8–13.5) 0.689

Tumor number 0.93

Single 129 (80.6) 91 (81.2) 38 (79.2)

Multiple 31 (19.4) 21 (18.8) 10 (20.8)

Cirrhosis 0.653

Negative 76 (47.5) 55 (49.1) 21 (43.8)

Positive 84 (52.5) 57 (50.9) 27 (56.2)

Table 1 (continued)
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Table 1 (continued)

Characteristic All patients, N=160 Training cohort, N=112 Validation cohort, N=48 P value

BCLC >0.99

A 73 (45.6) 51 (45.5) 22 (45.8)

B 87 (54.4) 61 (54.5) 26 (54.2)

MVI >0.99

Negative 97(60.6) 68 (60.7) 29 (60.6)

Positive 63 (39.4) 44 (39.3) 19 (39.4)

Early recurrence 0.397

No 63 (39.4) 47 (42.0) 16 (33.3)

Yes 97 (60.6) 65 (58.0) 32 (66.7)

Data are expressed as median (IQR) or number (percentage). ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, 
albumin; AFP, alpha-fetoprotein; INR, international normalized ratio; PT, prothrombin time; HBV, hepatitis B virus; BCLC, Barcelona Clinic 
Liver Cancer; MVI, microvascular invasion; IQR, interquartile range.

Table 2 Univariate and multivariate logistic analysis in training cohort

Characteristics
Univariate analysis Multivariate analysis

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Age (years)

≥50

<50 0.41 (0.17–0.96) 0.039 0.70 (0.27–1.86) 0.478

Gender

Female

Male 1.53 (0.49–4.81) 0.469

ALB (g/L)

<45

≥45 0.52 (0.19–1.44) 0.207

ALT (U/L)

<50

≥50 0.80 (0.36–1.79) 0.588

AST (U/L)

<40

≥40 1.30 (0.61–2.75) 0.5

PT (s) 1.05 (0.84–1.31) 0.682

Platelet 1.00 (1.00–1.01) 0.779

INR 1.16 (0.11–12.17) 0.903

Table 2 (continued)
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Table 2 (continued)

Characteristics
Univariate analysis Multivariate analysis

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Tumor size (cm) 0.914

<5

≥5 1.04 (0.49–2.23)

Child-Pugh class

A

B 1.18 (0.56–2.48) 0.663

HBV 

Negative

Positive 0.8 (0.27–2.39) 0.696

AFP (ng/mL)

≤100

>100 5.24 (2.18–12.58) <0.001 3.32 (1.28–8.58) 0.013

Tumor number

Single

Multiple 1.22 (0.46–3.23) 0.69

Cirrhosis

Negative

Positive 1.14 (0.54–2.43) 0.725

BCLC

A

B 0.81 (0.38–1.73) 0.59

MVI

Negative

Positive 4.93 (2.05–11.82) <0.001 2.83 (1.06–7.51) 0.037

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; AFP, alpha-fetoprotein; INR, international normalized ratio; 
PT, prothrombin time; HBV, hepatitis B virus; BCLC, Barcelona Clinic Liver Cancer; MVI, microvascular invasion.

and the clinical model (Figure 6C,6D). Net reclassification 
improvement (NRI) and integrated discrimination 
improvement (IDI) were measured to quantify the 
prediction accuracy of the radiomics models and combined 
model (Table S4). Analysis of accuracy showed that the IDI 
and NRI of combined models compared with clinical model 
in training and validation cohorts were all larger than 0 
with all P<0.001, indicating a better prediction power of the 
combined model compared with clinical model.

Risk stratification and subgroup analysis

The predicted total score for each patient was calculated 
based on the nomogram, and the cutoff value determined, 
based on the ROC maximum Youden index of the combined 
model in the training cohort, was 66.5. High- and low-
risk stratification was performed based on the cutoff value 
(Figure S4A,S4B). Patients with a score <66.5 in the 
training cohort and validation cohort were considered to 
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Table 3 Predictive performance of different models in the training and validation cohort

ROI Cohort Sensitivity Specificity Accuracy AUC (95% CI)

OROI Training cohort 0.492 0.851 0.643 0.710 (0.614–0.806)

Validation cohort 0.656 0.821 0.688 0.707 (0.547–0.867)

ROI 1 Training cohort 0.523 0.872 0.67 0.759 (0.669–0.848)

Validation cohort 0.625 0.812 0.688 0.695 (0.541–0.850)

ROI 2 Training cohort 0.662 0.83 0.732 0.784 (0.698–0.870)

Validation cohort 0.75 0.75 0.75 0.711 (0.545–0.877)

ROI 3 Training cohort 0.8 0.787 0.795 0.867 (0.802–0.933)

Validation cohort 0.719 0.812 0.75 0.807 (0.682–0.931)

ROI 4 Training cohort 0.554 0.915 0.705 0.765 (0.677–0.853)

Validation cohort 0.844 0.75 0.812 0.752 (0.583–0.921)

ROI 5 Training cohort 0.677 0.766 0.714 0.777 (0.693–0.862)

Validation cohort 0.875 0.5 0.75 0.705 (0.544–0.866)

ROI, regions of interest; OROI, original region of interest; AUC, area under the curve; CI, confidence intervals.
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Figure 3 Radiomics scores. Radiomics scores (Rad scores) for each patient in the training (A) and validation cohort (B). Box plot comparison 
of Rad scores for patients in the early recurrence positive and early recurrence negative groups in the training (C) and validation cohort (D). 
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Figure 4 ROC curves. ROC curves of OROI-ROI 5 in the training (A) and validation cohort (B). ROC curves of the clinical model, 
radiomics model, and combined model in the training (C) and validation cohort (D). OROI, original region of interest; ROC, receiver 
operator characteristic curve; AUC, area under the curve; ROI, regions of interest.

be in the low-risk group, and patients with a score ≥66.5 
were considered to be at high-risk group, with a statistically 
significant difference in the total score between the two 
groups (Figure S4C,S4D). The difference in the proportion 
of predicted ER between the low-risk and high-risk 
subgroups was statistically significant in the training cohort 
(2.1% vs. 80.0%; P<0.001) and the validation cohort (12.5% 
vs. 58.1%; P<0.001) (Table S5). 

Discussion

In this study, we first elucidated that enhanced CT-based 
intratumoral and peritumoral ROI radiomics models of 
different ranges could improve the predictive efficacy of 

ER after HCC resection. We then compared the predictive 
efficacy of peritumoral ROI radiomics models of different 
ranges and determined ROI 3 as the optimal ROI. Next, we 
developed a combined clinical-radiomics model based on 
the peritumoral 3 mm ROI radiomics, and the combined 
model showed the optimal predictive efficacy. Finally, the 
combination-based model effectively stratified all patients 
into high- and low-risk categories.

In terms of clinical factors, previous studies have also 
shown that high AFP levels are associated with ER in HCC 
(23,24), which is consistent with our results. MVI is an 
important prognostic factor for HCC (25,26). According 
to our study, MVI positivity was strongly associated with 
ER after HCC resection, suggesting aggressive behavior 

https://cdn.amegroups.cn/static/public/QIMS-23-226-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-226-Supplementary.pdf
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Table 4 Predictive performance of different models in the training and validation cohorts

Models Cohort Sensitivity Specificity Accuracy AUC (95% CI)

Clinical model Training cohort 0.677 0.681 0.679 0.724 (0.638–0.809)

Validation cohort 0.781 0.5 0.688 0.694 (0.552–0.837)

Radiomics model Training cohort 0.8 0.787 0.795 0.867 (0.802–0.933)

Validation cohort 0.719 0.812 0.75 0.807 (0.682–0.931)

Combined model Training cohort 0.908 0.766 0.848 0.903 (0.848–0.957)

Validation cohort 0.781 0.75 0.771 0.830 (0.709–0.952)

AUC, area under the curve; CI, confidence intervals.

and poorer survival outcomes in HCC, probably because 
peritumoral tissues are the first and most susceptible to 
tumor cells, and their surrounding MVI further acts as a 
major hematogenous dissemination pathway for portal vein 

tumor thrombosis and metastasis (27). Our clinical model 
showed only moderate predictive performance, suggesting 
that the basic clinicopathological factors are not sufficiently 
predictive and that additional factors are needed to improve 
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Figure 6 Prediction models evaluation. Calibration curves of the combined model in training (A) and validation cohort (B). Decision curve 
analysis for the combined model of training (C) and validation cohort (D).

the prediction of ER after HCC surgery.
In terms of radiomics, Previous studies have found that 

peritumoral radiomics is more valuable in assessing tumor 
heterogeneity (28,29). However, existing radiomic studies 
are controversial with regard to the range of peritumoral 
ROIs for predicting HCC recurrence (20,30,31). Therefore, 
we constructed multiple models with different ranges of 
ROI radiomics to explore the highly aggressive peritumoral 
region. Considering that the actual boundary of the tumor is 
larger than the tumor boundary on imaging, we formed five 
different peritumoral ROIs by extending the intratumoral 
OROI by 1–5 mm. The results of the study showed that 
the AUC of peritumoral 3 mm ROI 3 was 0.865 and 0.803 
in the training cohort and validation cohort, respectively, 
which was the optimal ROI; and the peritumoral 3 mm 
range was determined to be the optimal ROI.

The ROI 3 radiomics model contained the radiomics 
features with the most predictive properties. The 

combination of radiomics features from different 
categories provides the optimal predictive performance. 
Although explaining the complex relationship between 
pathophysiological processes and structural features of 
tumors remains a challenge to be overcome, tumors 
with higher structural heterogeneity tend to be more  
aggressive (32). The higher is the heterogeneity of HCC, 
the more likely it is to break through the envelope and 
infiltrate into the surrounding area. This is manifested in 
the image as an increase in image grayscale inhomogeneity 
and an increase in image complexity. These features 
may reflect the aggressive tendency of tumors breaking 
through the envelope and invading peritumoral nontumor 
tissues, resulting in increased intra- and peritumoral 
heterogeneity, which may potentially reflect tumor biology 
and heterogeneity. Compared to a single intratumor, 
intratumoral features combined with peritumoral radiomic 
features were more advantageous, indicating the importance 
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of the fusion of intratumoral and peritumoral features. 
There were significant differences in texture, intensity, 
and grayness between normal liver and intratumoral and 
peritumoral tissues, and the intratumoral combined with 
peritumoral ROI had a synergistic enhancement effect 
in predicting ER. The TME consisting of peritumor 
parenchyma contains rich biological information (33), 
and radiomics can assess subtle alterations in tumor 
pathophysiology as well as the TME that we cannot identify 
with the naked eye. We speculate that this is an important 
reason for the improved predictive efficacy of the ROI 3 
compared to the intratumoral OROI. When peritumoral 
liver tissue extending 4–5 mm outward along the tumor 
border formed ROI 4 and ROI 5, the number of features 
used for model construction decreased, and the predictive 
performance of the model decreased, suggesting that a 
larger peritumoral range does not necessarily have better 
predictive performance. This is because some features with 
predictive value may be interfered with by normal liver 
tissue and become redundant features, which ultimately 
leads to a decrease in predictive model performance.

Finally, we constructed a combined clinical-radiomics 
model that included MVI, AFP, and ROI 3. In this study, 
the combined model was the best in terms of AUC, 
accuracy, and discrimination in predicting ER compared 
with a single radiomics or clinical model. Our study is one 
of the very few to explore and compare the heterogeneity 
of multiple different ranges of radiomics ROIs around 
the tumor perimeter (1–5 mm) in the same study to 
determine the optimal ROI range for predicting ER after 
HCC resection as well as effective risk stratification for all 
patients. 

However, there are several limitations in this study. (I) 
This study was a single-center retrospective study with 
a small number of included patients and a small sample 
size, and a multicenter study is needed to validate our 
findings. (II) We did not combine specific indicators of 
the TME (immune cell) with radiomics features to further 
explore the link between radiomics and the peritumor 
microenvironment, and the combination of both may 
explain the specificity and importance of the peritumor 
region more rationally.

Conclusions

In summary, peritumoral ROI radiomics can improve the 
predictive efficacy of the model, the range of peritumoral  
3 mm was determined to be the optimal ROI. The 

combined clinical-radiomics model has the optimal 
predictive efficacy, and can achieve effective stratification of 
patients with high- and low-risk for timely clinical guidance 
and decision making.

Acknowledgments

Funding: None.

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://qims.
amegroups.com/article/view/10.21037/qims-23-226/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-226/coif). 
The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. This retrospective 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved 
by Ethics Committee of the Third Xiangya Hospital, 
waiving the need for written informed consent due to the 
retrospective nature of this study.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. 
Hepatocellular carcinoma. Lancet 2022;400:1345-62.

2. Sapisochin G, Bruix J. Liver transplantation for 
hepatocellular carcinoma: outcomes and novel 
surgical approaches. Nat Rev Gastroenterol Hepatol 
2017;14:203-17.

https://qims.amegroups.com/article/view/10.21037/qims-23-226/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-226/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-226/coif
https://qims.amegroups.com/article/view/10.21037/qims-23-226/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6681

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6668-6682 | https://dx.doi.org/10.21037/qims-23-226

3. Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang 
L, Zhou J, Qiu SJ, Li Y, Ji XN, Liu H, Xia JL, Wu ZQ, 
Fan J, Ma ZC, Zhou XD, Lin ZY, Liu KD. A decade's 
studies on metastasis of hepatocellular carcinoma. J Cancer 
Res Clin Oncol 2004;130:187-96.

4. Yang Y, Nagano H, Ota H, Morimoto O, Nakamura 
M, Wada H, Noda T, Damdinsuren B, Marubashi S, 
Miyamoto A, Takeda Y, Dono K, Umeshita K, Nakamori 
S, Wakasa K, Sakon M, Monden M. Patterns and 
clinicopathologic features of extrahepatic recurrence of 
hepatocellular carcinoma after curative resection. Surgery 
2007;141:196-202.

5. Papaconstantinou D, Tsilimigras DI, Pawlik TM. 
Recurrent Hepatocellular Carcinoma: Patterns, Detection, 
Staging and Treatment. J Hepatocell Carcinoma 
2022;9:947-57.

6. Kulik L, El-Serag HB. Epidemiology and Management 
of Hepatocellular Carcinoma. Gastroenterology 
2019;156:477-491.e1.

7. Bruix J, Reig M, Sherman M. Evidence-Based Diagnosis, 
Staging, and Treatment of Patients With Hepatocellular 
Carcinoma. Gastroenterology 2016;150:835-53.

8. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi 
A. Predicting cancer outcomes with radiomics and 
artificial intelligence in radiology. Nat Rev Clin Oncol 
2022;19:132-46.

9. Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. 
Precision Medicine and Radiogenomics in Breast Cancer: 
New Approaches toward Diagnosis and Treatment. 
Radiology 2018;287:732-47.

10. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong 
EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even 
AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, 
Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy 
FM, Wildberger JE, Walsh S. Radiomics: the bridge 
between medical imaging and personalized medicine. Nat 
Rev Clin Oncol 2017;14:749-62.

11. Ji GW, Zhu FP, Xu Q, Wang K, Wu MY, Tang WW, 
Li XC, Wang XH. Machine-learning analysis of 
contrast-enhanced CT radiomics predicts recurrence 
of hepatocellular carcinoma after resection: A multi-
institutional study. EBioMedicine 2019;50:156-65.

12. Dai H, Lu M, Huang B, Tang M, Pang T, Liao B, 
Cai H, Huang M, Zhou Y, Chen X, Ding H, Feng 
ST. Considerable effects of imaging sequences, 
feature extraction, feature selection, and classifiers on 
radiomics-based prediction of microvascular invasion 
in hepatocellular carcinoma using magnetic resonance 

imaging. Quant Imaging Med Surg 2021;11:1836-53.
13. Yuan C, Wang Z, Gu D, Tian J, Zhao P, Wei J, Yang X, 

Hao X, Dong D, He N, Sun Y, Gao W, Feng J. Prediction 
early recurrence of hepatocellular carcinoma eligible for 
curative ablation using a Radiomics nomogram. Cancer 
Imaging 2019;19:21.

14. Ji GW, Zhu FP, Xu Q, Wang K, Wu MY, Tang WW, Li 
XC, Wang XH. Radiomic Features at Contrast-enhanced 
CT Predict Recurrence in Early Stage Hepatocellular 
Carcinoma: A Multi-Institutional Study. Radiology 
2020;294:568-79.

15. Franzén AS, Raftery MJ, Pecher G. Implications for 
Immunotherapy of Breast Cancer by Understanding the 
Microenvironment of a Solid Tumor. Cancers (Basel) 2022.

16. Ding GY, Ma JQ, Yun JP, Chen X, Ling Y, Zhang S, Shi 
JY, Chang YQ, Ji Y, Wang XY, Tan WM, Yuan KF, Yan 
B, Zhang XM, Liang F, Zhou J, Fan J, Zeng Y, Cai MY, 
Gao Q. Distribution and density of tertiary lymphoid 
structures predict clinical outcome in intrahepatic 
cholangiocarcinoma. J Hepatol 2022;76:608-18.

17. Chong HH, Yang L, Sheng RF, Yu YL, Wu DJ, Rao SX, 
Yang C, Zeng MS. Multi-scale and multi-parametric 
radiomics of gadoxetate disodium-enhanced MRI predicts 
microvascular invasion and outcome in patients with 
solitary hepatocellular carcinoma ≤ 5 cm. Eur Radiol 
2021;31:4824-38.

18. Wu L, Gao C, Ye J, Tao J, Wang N, Pang P, Xiang P, Xu 
M. The value of various peritumoral radiomic features 
in differentiating the invasiveness of adenocarcinoma 
manifesting as ground-glass nodules. Eur Radiol 
2021;31:9030-7.

19. Chen Q, Shao J, Xue T, Peng H, Li M, Duan S, Feng F. 
Intratumoral and peritumoral radiomics nomograms for 
the preoperative prediction of lymphovascular invasion 
and overall survival in non-small cell lung cancer. Eur 
Radiol 2023;33:947-58.

20. Shan QY, Hu HT, Feng ST, Peng ZP, Chen SL, Zhou 
Q, Li X, Xie XY, Lu MD, Wang W, Kuang M. CT-
based peritumoral radiomics signatures to predict early 
recurrence in hepatocellular carcinoma after curative 
tumor resection or ablation. Cancer Imaging 2019;19:11.

21. Wang F, Cheng M, Du B, Li LM, Huang WP, 
Gao JB. Use of radiomics containing an effective 
peritumoral area to predict early recurrence of solitary 
hepatocellular carcinoma ≤5 cm in diameter. Front Oncol 
2022;12:1032115.

22. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, 
Andrearczyk V, Apte A, et al. The Image Biomarker 



Kang et al. HCC peritumoral radiomics6682

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6668-6682 | https://dx.doi.org/10.21037/qims-23-226

Standardization Initiative: Standardized Quantitative 
Radiomics for High-Throughput Image-based 
Phenotyping. Radiology 2020;295:328-38.

23. Zhang Z, Jiang H, Chen J, Wei Y, Cao L, Ye Z, Li X, 
Ma L, Song B. Hepatocellular carcinoma: radiomics 
nomogram on gadoxetic acid-enhanced MR imaging for 
early postoperative recurrence prediction. Cancer Imaging 
2019;19:22.

24. Zhu HB, Zheng ZY, Zhao H, Zhang J, Zhu H, Li 
YH, Dong ZY, Xiao LS, Kuang JJ, Zhang XL, Liu L. 
Radiomics-based nomogram using CT imaging for 
noninvasive preoperative prediction of early recurrence 
in patients with hepatocellular carcinoma. Diagn Interv 
Radiol 2020;26:411-9.

25. Jiang C, Zhao L, Xin B, Ma G, Wang X, Song S. (18)
F-FDG PET/CT radiomic analysis for classifying and 
predicting microvascular invasion in hepatocellular 
carcinoma and intrahepatic cholangiocarcinoma. Quant 
Imaging Med Surg 2022;12:4135-50.

26. Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, 
Yang G, Yan X, Zhang YD, Liu XS. Radiomic analysis of 
contrast-enhanced CT predicts microvascular invasion 
and outcome in hepatocellular carcinoma. J Hepatol 
2019;70:1133-44.

27. Lee S, Kang TW, Song KD, Lee MW, Rhim H, Lim 
HK, Kim SY, Sinn DH, Kim JM, Kim K, Ha SY. Effect 
of Microvascular Invasion Risk on Early Recurrence 
of Hepatocellular Carcinoma After Surgery and 

Radiofrequency Ablation. Ann Surg 2021;273:564-71.
28. Zhang L, Hu J, Hou J, Jiang X, Guo L, Tian L. Radiomics-

based model using gadoxetic acid disodium-enhanced MR 
images: associations with recurrence-free survival of patients 
with hepatocellular carcinoma treated by surgical resection. 
Abdom Radiol (NY) 2021;46:3845-54.

29. Xu H, Liu J, Chen Z, Wang C, Liu Y, Wang M, Zhou P, 
Luo H, Ren J. Intratumoral and peritumoral radiomics 
based on dynamic contrast-enhanced MRI for preoperative 
prediction of intraductal component in invasive breast 
cancer. Eur Radiol 2022;32:4845-56.

30. Kim S, Shin J, Kim DY, Choi GH, Kim MJ, Choi JY. 
Radiomics on Gadoxetic Acid-Enhanced Magnetic 
Resonance Imaging for Prediction of Postoperative Early 
and Late Recurrence of Single Hepatocellular Carcinoma. 
Clin Cancer Res 2019;25:3847-55.

31. Li N, Wan X, Zhang H, Zhang Z, Guo Y, Hong D. Tumor 
and peritumor radiomics analysis based on contrast-
enhanced CT for predicting early and late recurrence 
of hepatocellular carcinoma after liver resection. BMC 
Cancer 2022;22:664.

32. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato 
S, Villanueva A. Tumour evolution in hepatocellular 
carcinoma. Nat Rev Gastroenterol Hepatol 2020;17:139-52.

33. Galon J, Bruni D. Approaches to treat immune hot, altered 
and cold tumours with combination immunotherapies. Nat 
Rev Drug Discov 2019;18:197-218.

Cite this article as: Kang W, Cao X, Luo J. Effect of multiple 
peritumoral regions of interest ranges based on computed 
tomography radiomics for the prediction of early recurrence of 
hepatocellular carcinoma after resection. Quant Imaging Med 
Surg 2023;13(10):6668-6682. doi: 10.21037/qims-23-226


