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Abstract
A putative new limpet species (Patellogastropoda) from the Sea of Japan is revealed by molecular genetic analyses using the mitochondrial markers
16S rRNA and cytochrome c oxidase subunit I (CO1), as well as the DNA marker 18S rRNA. Our data indicate that the limpet, collected in the Peter
the Great Bay (Russian Federation), is not, as its morphology suggests, the Japanese species Lottia kogamogai Sasaki and Okutani, 1994, and might
also hint towards another putative species complex in the Sea of Japan. The different currents between the Far East Asian mainland (cold, subpolar jet
running southwards) and the Japanese archipelago (warm, subtropical jet running northwards) are likely to act as a barrier that has a substantial influ-
ence on species distribution in these waters. Accordingly, our results indicate that it is about time for a revision of patellogastropod species with a
reported distribution in Japanese and Far Eastern Russian waters by an integrative approach using molecular genetic and morphological characters.
The species investigated herein is referred to as Lottia cf. kogamogai until it is morphologically re-examined and compared with primary type speci-
mens of known species.
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Patellogastropods, also called ‘true limpets’, are well-known
members of intertidal rocky seashore communities throughout all
oceans (Underwood 2000; Range et al. 2008; Miloslavich et al.
2013). These animals exclusively exhibit a cap-like shell, range
in size from few millimetres to over 20 cm, and are grazers that
feed on algae, seagrass, wood or detritus (Lindberg 2008). In
general, species are identified and delineated from each other by
some external (shell shape, sculpture, colour, apex position, col-
our of the foot and tentacles) and internal (radular sac, radula)
morphological characters (Espoz et al. 2004; Chernyshev and
Chernova 2007; Hoffman et al. 2011). A sympatric distribution
of different patellogastropod species at the same locality is often
observed (Flores-Garza et al. 2011; Flores-Rodr�ıguez et al. 2014)
as well as a high phenotypic intraspecific variability in the same
species among different localities, which strongly depend on
environmental conditions (Jobe 1968; Lindberg 1979; Simpson
1985). This variability in important diagnostic characters such as
the shell or the radula complicates species recognition. Further-
more, hybridization between limpet species has been reported to
occur and thus, it is an another issue that has to be taken into
account (Weber and Hawkins 2002; De Aranzamendi et al.
2009). As a result, numerous superficially similar species have
been grouped together, leading to species complexes with numer-
ous subspecies and a wide or even cosmopolitan distribution.
Some of these species complexes in Patellogastropoda have been
revised by the use of multiple morphological and molecular

genetic characters (Sasaki and Okutani 1994; Simison and Lind-
berg 1999; Nakano and Ozawa 2005; Reisser et al. 2012).

At present, molecular genetic approaches are widely used in
order to complement morphological studies and to solve prob-
lems in species identification. Thereby, DNA sequence data are a
widely used molecular genetic tool for species identification and
classification that is based on standardised and relatively short
(400–800 bp) DNA sequences (Hebert et al. 2003). A gene frag-
ment of the mitochondrial cytochrome c oxidase subunit I (CO1)
has been established as the barcoding gene in animals (Kress and
Erickson 2008). The suitability of the CO1 gene for species iden-
tification in patellogastropods has been demonstrated in a number
of recent studies (Mauro et al. 2003; Lin et al. 2015). However,
species identification based on a single character – regardless
whether morphological or molecular – poses not only a risk for
misidentifications but might also lead to taxonomic inflation and
may even raise conservation issues (Wheeler 2005; Zachos
2015). By contrast, studies that include multiple genes have pro-
ven useful in solving identification issues, often revealing cryptic
species (Nakano and Ozawa 2005; Espinosa and Ozawa 2006;
De Aranzamendi et al. 2009; Yu et al. 2014; Harasewych 2015).

The aim of this study was to include widely used genetic mark-
ers (i.e. nuclear 18S rRNA, mitochondrial 16S rRNA and CO1)
that would not only supplement the morphological identification
made during field sampling but also provide reference sequences
that might be used in future studies on this limpet. So far, 17 dif-
ferent patellogastropod species are known from the Peter the
Great Bay (Sea of Japan, Russian Federation), of which up to four
different species [Lottia cf. kogamogai, Lottia versicolor (Moska-
lev in Golikov and Scarlato, 1967), Lottia tenuisculpta Sasaki and
Okutani 1994; Nipponacmea moskalevi Chernyshev and Cher-
nova, 2002] co-occur at the sampling site (Vostok Bay; Fig. 1; N
42°53035.5″, E 132°44000.8″) that are thought to be identified by
their shell morphology (Chernyshev and Chernova 2007; Gulbin
2010). For the purpose of developmental, morphological and
molecular gene-expression studies, adult specimens of L. cf. kog-
amogai were sampled from July until August 2011, and 2013
from intertidal rocks and stones in the vicinity of the marine bio-

Corresponding author: Alen Kristof (alen.kristof@univie.ac.at)
Contributing authors: Andr�e L. de Oliveira (andre.luiz.de.oliveira@univie.
ac.at); Konstantin G. Kolbin (konstantin.kolbin@gmail.com), Andreas
Wanninger (andreas.wanninger@univie.ac.at)

[The copyright line for this article was changed on 7 March 2016 after
original publication].

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

J Zoolog Syst Evol Res (2016) 54(3), 177--181

Accepted on 4 November 2015© 2016 The Authors. Journal of Zoological Systematics and Evolutionary Research
Published by Blackwell Verlag GmbH. J Zoolog Syst Evol Res doi: 10.1111/jzs.12120

http://bioinf.comav.upv.es/seq_crumbs/
http://bioinf.comav.upv.es/seq_crumbs/


logical station ‘Vostok’, cultured and fixed in different solutions
(see Kristof et al. 2015, for details).

Adult voucher specimens and additional material are deposited
at the Natural History Museum in Vienna (NHMW; accession
number Mollusca NHMW 110180) and at the Department of
Integrative Zoology, University of Vienna (UV).

The three above mentioned genetic markers (18S, 16S and
CO1) have been retrieved from an existing transcriptome library
that was generated from L. cf. kogamogai mRNA mainly for
molecular gene-expression studies on this species with a 454
FLX sequencer (Eurofins, MWG, Ebersberg, Germany).

Several hundred L. cf. kogamogai embryos, larvae and juve-
niles of key developmental stages (i.e. trochophore, veliger, pedi-
veliger, metamorphic competent, first juvenile stages), as well as
15 adult specimens, were separately stored in RNAlater (Sigma,
St. Louis, MO, USA). Total RNA was extracted from each devel-
opmental stage as well as different adult tissues using TRIZOL
(Sigma) and miRCURY RNA isolation kit (Exiqon, Vedbaek,
Denmark). A mixed mRNA sample was used for cDNA library
preparation, whereby two-thirds derived from the different devel-
opmental stages and one-third from adult tissues. This sequencing
produced 402.814 raw reads with an average length of 639 bases.

The raw reads were trimmed (removal of adaptor sequences)
with the program sff_extract present in the seq_crumbs package
(http://bioinf.comav.upv.es/seq_crumbs/), a collection of small
sequence processing utilities. The filtered transcriptomic dataset
was then reconstructed into contiguous cDNA sequences using the
MIRA ASSEMBLER v4.0 (Chevreux et al. 2004). The assembly process
reconstructed 27 737 707 bp, located in a total of 34 794 contigs,
with N50 value of 817 bp. In order to perform the DNA sequence
analysis, similarity searches were carried out between the assem-

bled dataset and classical genetic markers (18S rRNA, 16S rRNA
and CO1). Sequences of these three genes were identified within
the transcriptome library of L. cf. kogamogai (GenBank accession
numbers: KU053948, KU053949 and KU053950), and additional
patellogastropod gene sequences were downloaded from GenBank
as well as sequences of L. kogamogai Sasaki and Okutani 1994;
and two other molluscs (Table S1). Each L. cf. kogamogai gene
was independently aligned together with their respective homo-
logues using the programme MAFFT v7.123b (Katoh and Standley
2013). The multiple sequence alignments were individually anal-
ysed and manually edited with the program aliview (Larsson
2014). The phylogenetic analyses were conducted using BEAST2
(Bouckaert et al. 2014) with different datasets consisting of the
nuclear 18S rRNA gene, and the mitochondrial genes 16S rRNA
and CO1 individually (Figure S1) as well as in combination
(Fig. 2). The best substitution model was determined using AIC as
implemented in JMODETEST2 (Darriba et al. 2012), and two inde-
pendent Bayesian phylogenetic analyses were performed with each
dataset under strict molecular clock, 100 000 000 generations,
gamma substitution rates and rate heterogeneity among sites. After
the removal of the initial 10% generations as burn-in, the quality
of the runs were assessed using TRACER (http://beast.bio.ed.ac.uk/
Tracer), regarding the convergence of likelihood values. Finally,
the results of the independent runs (mitochondrial and nuclear
datasets) were combined using logcombiner (BEAST2 package), and
the 16S + CO1 and 18S rRNA maximum clade credibility (MCC)
trees were generated with treeannotator (BEAST2 package). The
final trees were then produced and edited with FIGTREE (http://
tree.bio.ed.ac.uk/software/figtree/).

Both maximum clade credibility trees, using the genes
16S + CO1 and 18S, show that L. cf. kogamogai clusters

(a) (b)

Fig. 1. Adult specimen of the patellogastropod investigated herein (a) and map of the sampling site (b). (a) Lottia cf. kogamogai, shell length approxi-
mately 5 cm, dorsal view with anterior facing upwards. (b) Geographical distribution of L. kogamogai Sasaki and Okutani 1994 along the Japanese
Archipelago (grey cloud) with its type locality (Banda, Tateyama, Boso Peninsula, Japan; red asterisk). The sampling site of L. cf. kogamogai is indi-
cated by the blue X. Arrows represent widely recognized relatively warm (red), temperate (cyan) and cold (blue) ocean currents. Map and currents
were redrawn and modified after Sasaki and Okutani (1994) and Moors et al. (2006).
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together with other members of Lottiidae (Figs 2 and 3), despite
the low support values in the deeper nodes of the 18S phylogeny
(Fig. 3). The combined mitochondrial (16S + CO1) analysis
shows with high support values of posterior probability that
L. cf. kogamogai is not most closely related to L. kogamogai
(formerly a member of Collisella heroldi complex; Fig. 2).
Instead, L. kogamogai shows a sister group relationship with
Lottia digitalis (Rathke, 1833), whereas L. cf. kogamogai is
located outside that clade of lottiids, which is also corroborated
by the genetic distance (number and proportion of base substitu-
tions per site) between these sequences (Fig. 2; Tables S2 and
S3). A close sister group relationship of L. cf. kogamogai to
L. digitalis is also not recovered in the nuclear (18S) single gene
analyses (Fig. 3). Our DNA sequence data suggest a different
and maybe new limpet species in the Sea of Japan.

Populations of L. kogamogai are reported to inhabit predomi-
nantly intertidal rocky shores from the eastern coast of the Japa-
nese islands to Taiwan (Sasaki and Okutani 1994; Niu et al.
1998; Suzuki et al. 2010). The same patellogastropod species is
reported to commonly inhabit also the Russian coasts of the Sea
of Japan (Chernyshev and Chernova 2007; Gulbin 2010). The
mitochondrial sequences of the patellogastropod species Lottia
cf. kogamogai collected in the Vostok Bay (Sea of Japan, Rus-
sian Federation) and investigated herein are different from that
published for L. kogamogai (Nakano and Ozawa 2004, 2007).
Although the outer morphology of that Russian limpet appears
very similar to the description of the Japanese L. kogamogai, the
phylogenetic analyses provided herein indicate that these two
limpets are different species (Figs 2 and 3). This discrepancy
between the morphological (e.g. shell shape, colour, ornamenta-
tion) and molecular data highlights the intraspecific variation in
patellogastropods, a phenomenon more common than previously

thought (Simison and Lindberg 1999; Nakano and Ozawa 2005).
The results also show that the phylogeny based on the nuclear
ribosomal 18S gene is not robust (posterior probability < 0.9) for
a number of nodes within the patellogastropods. This is possibly
due to the widely different substitution rates among these spe-
cies, as suggested by Harasewych and McArthur (2000) and
Nakano and Ozawa (2007), and difficulties in the alignment of
the 18S gene (long insertions and deletions). By contrast, the use
of two different genes (16S + CO1) with a more uniform
evolutionary rate proved to be more informative concerning
patellogastropod inter-relationships.

Nakano and Sasaki (2011) noted in their review about Japanese
limpets that several species including L. kogamogai are geographi-
cally and/or ecologically isolated, rendering them true biological
species. Regional hydrographic conditions such as water currents,
circulation, salinity and temperature are known factors that might
act as geographical barriers that separate species (Yu et al. 2014).
In general, the Sea of Japan contains cold water currents coming
from the northern subpolar zones that run southwards along the
Russian and Korean coasts, and relatively warm currents that come
from the southern subtropical zones and run northwards along the
Japanese archipelago (Fig. 1b; Moors et al. 2006). Although a
water flow (circulation) among these cold and warm currents is
present, regional hydrographic conditions are known from a num-
ber of areas, including the Peter the Great Bay, which might act as
barrier for species distribution.

It remains to be shown by further molecular genetic and mor-
phological studies whether all patellogastropod limpets that
appear as L. kogamogai along the Russian east coast are one (or
even more) different species as shown herein or if this is only
true for the population in the Vostok Bay. Whether or not
L. kogamogai represents a species complex in these waters as

Fig. 2. Maximum clade credibility (MCC) tree based on the two mitochondrial genes 16S rRNA and cytochrome c oxidase subunit 1 (CO1) resulting
from BEAST2 Bayesian analysis. Support values are posterior probabilities. Posterior probabilities < 0.9 are not shown. The species investigated in this
study, and for which novel sequence data were generated, is indicated in red letters. Outgroup: Antalis entalis (Linnaeus, 1758), Antalis inaequicostata
(Dautzenberg, 1891)
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indicated by these molecular genetic results remains to be shown
in future studies. However, our study provides sequences of three
genes with which these limpets (i.e. L. cf. kogamogai) from
Vostok Bay can now easily be identified. Furthermore, this dis-
crepancy between the morphological and molecular genetic char-
acters might also be true for numerous other patellogastropods
such as Limalepeta lima (Dall, 1918), Niveotectura pallida
(Gould, 1859) and Lottia tenuisculpta that are reported to be dis-
tributed in Japanese and Russian Far East waters as well (Sasaki
1998; Chernyshev and Chernova 2007; Gulbin 2010). Thus, it
appears about time for a revision of these species by an integra-
tive approach using molecular genetics as well as morphological
characters.
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