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Abstract

The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its
role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple
domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular
function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these
domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding
domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a
BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a
role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding
activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest
alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent
and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential
for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within
the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The
occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain
modulations.
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Introduction

Precise repair of DNA double-strand breaks (DSBs) in cells is

dependent on homologous recombination (HR), a mechanism that

allows the use of an intact, identical DNA molecule (usually the

sister chromatid) to restore the correct sequence at the site of the

DSB [1,2]. Central to HR reactions is DNA strand exchange

catalyzed by the RAD51 protein. RAD51 forms a nucleoprotein

filament with single-strand DNA (ssDNA) generated by DNA end

resection [3], which then invades a homologous duplex DNA to

initiate HR.

In the cellular context, RAD51 requires several cofactors for its

activity [1]. Proteins termed mediators are critical for RAD51 to

overcome the inhibition to filament formation posed by the high

affinity ssDNA binding protein RPA which otherwise obstructs

RAD51 access to DNA. In mammalian cells, the breast and

ovarian tumor suppressor BRCA2 is postulated to be a key

mediator protein. BRCA2-deficient rodent and human cells are

deficient in HR [4] and have defects in forming DNA damage-

induced RAD51 nuclear foci [5]. Recent studies have illuminated

the biochemical properties of BRCA2 [6–8]. BRCA2 promotes

RAD51 filament assembly specifically onto ssDNA, rather than

dsDNA, allowing it to displace RPA. Further, BRCA2 stabilizes

RAD51 filaments by preventing ATP hydrolysis.

Human BRCA2 is 3418 amino acids and consists of multiple

domains whose relative contributions to HR are somewhat

ambiguous [2] (Figure 1A). The central portion of the protein

contains eight diverged repeats of ,35 amino acids, termed

‘‘BRC’’, which bind RAD51 monomers [9]. When expressed in

cells either individually or as sets of repeats, the BRC repeats
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interfere with HR [10–12], presumably by acting as a mimic of

RAD51 self association [13]. In the context of the full-length

protein, however, the BRC repeats promote RAD51 filament

assembly on ssDNA [6–8]. An additional RAD51 interacting site is

found within the ,200 amino acid C terminus (Cter) of BRCA2

encoded by exon 27 [14]. Unlike the BRC repeats, the Cter does

not bind RAD51 monomers; instead, it interacts with two adjacent

RAD51 protomers in filaments on ssDNA to stabilize them

[15,16]. Isolated from the intact protein, a Cter peptide interferes

with HR in vivo [17], although in the context of otherwise intact

BRCA2, the Cter region promotes HR [4]. RAD51 binding to a

site within the Cter is regulated by CDK phosphorylation of

residue S3291 at G2/M phase [17], which destabilizes RAD51

filaments, and is crucial to at least two processes that are

independent of HR-mediated repair, i.e., maintaining the integrity

of nascent strands at stalled replication forks [18] and preventing

premature entry into mitosis [19].

A large segment of BRCA2 encompasses a DNA binding

domain (DBD) [20]. The DBD contains oligonucleotide/saccha-

ride (OB) folds found in ssDNA binding proteins like RPA, as well

as a long helical domain with a putative dsDNA binding domain at

its apex. Facing away from DNA, the 70 amino acid protein DSS1

also binds to the BRCA2 DBD. DSS1 promotes RAD51 focus

formation upon DNA damage in mammalian cells [21] and also

promotes HR in organisms that do not have a BRCA2 ortholog

[22]. At its N terminus, BRCA2 binds the PALB2 protein, which

also promotes HR [23]. PALB2, like BRCA2, is a breast cancer

suppressor and is also associated with Fanconi anemia, a

developmental and tumor predisposition syndrome [2,24–26].

Because significant portions of the identified activities of

BRCA2 are dedicated to binding RAD51 and ssDNA, we

previously constructed fusion proteins in which one or more

BRC repeats were fused directly to a subunit of RPA [12]. Such

fusion peptides, consisting of as little as 2% of BRCA2, are

functional in promoting HR, implying a primary function for

BRCA2 is to deliver RAD51 to ssDNA.

Given the complex domain structure of BRCA2 and the diverse

domain compositions of BRCA2 orthologs in other organisms

[27], we sought to comprehensively investigate the role of BRCA2

domains in HR. We find that mutations that disrupt DNA binding

in the DBD significantly reduce or abolish HR when PALB2

binding is absent, while deletion of the entire DBD has little

impact on HR when PALB2 binding is present. Moreover,

mutation of a DSS1-binding residue in the DBD abolishes HR

when the DBD is present, even though deletion of the DBD is well

tolerated. We found that the BRCA2 Cter contributes to HR

through both RAD51-dependent and independent activities,

suggesting additional functions for this domain to those identified

thus far. Lastly, a ‘‘micro-BRCA2’’ peptide ,20% the size of full-

length BRCA2 is functional in HR. Thus, our results highlight a

previously unappreciated plasticity within the BRCA2 protein to

promote optimal HR repair in cells.

Results

Mini-BRCA2 peptides proficient in HR in vivo
To determine whether subdomains of BRCA2 could be identified

which are active in HR in vivo, we first generated a series of peptides

consisting of BRC repeats (BRC3, BRC1–2, and BRC1–4) fused

with the BRCA2 DBD [20] (Figure 1B). This same set of BRC

repeats was previously fused to RPA70 to generate peptides active in

HR [12]. Because the Cter domain located downstream of the

BRCA2 DBD has proved to be important for HR [4], we created a

parallel set of fusion proteins containing the Cter. Collectively, we

termed these peptide fusions ‘‘mini-BRCA2s.’’

HR activity of the mini-BRCA2s was tested in a Brca2 mutant

V-C8 hamster cell line [28] containing an integrated copy of the

DR-GFP reporter [12]. This reporter measures HR repair of an I-

SceI endonuclease-generated DSB in the chromosome by the

restoration of an intact green fluorescent protein (GFP) gene [29]

(Figure 1C). V-C8 cells have a ,20-fold reduction in HR

compared with either wild-type cells [12] or V-C8 cells

complemented with full-length BRCA2 (Figure 1D). Mini-

BRCA2s were transiently expressed together with I-SceI endonu-

clease in V-C8 cells and found to be active in supporting HR

(Figure 1E). However, activity in the Brca2 mutant cells requires

the presence of the Cter. For example, BRC1–4-DBD-Cter

increases HR ,5-fold over background levels, whereas BRC1–4-

DBD is completely inactive. Similar results were obtained for

BRC1–2-DBD-Cter and BRC1–2-DBD, respectively. Although

the peptides can be expressed at somewhat different levels,

expression level does not noticeably affect HR activity (Figure 1F).

These results indicate that the BRCA2 DBD is not equivalent to

RPA in promoting HR. Further, these results demonstrate the

importance of the Cter in HR in vivo, contrasting with results

obtained in vitro where the Cter is not required for recombination

activity [30].

In addition to the Cter, we find that mini-BRCA2s differ from

BRC-RPAs in another important aspect: Mini-BRCA2s are less

active in HR if they contain only a single BRC repeat. Thus,

BRC3-DBD-Cter is marginally active, increasing HR levels only

1.5-fold above background (Figure 1E), while BRC3-RPA activity

is substantial [12]. The small increase in HR nevertheless depends

on the ability of the BRC repeat to bind RAD51, as BRC3D-

DBD-Cter, which contains a deletion of conserved BRC residues

[9,11], is completely inactive (Figure 1E). As the eight BRC

repeats share only limited conservation and bind RAD51 with

different affinities [31] and properties [32], we further tested other

single BRC repeat mini-BRCA2s. We found that both BRC2-

DBD-Cter and BRC4-DBD-Cter are more active than BRC1-

DBD-Cter and BRC3-DBD-Cter, but that neither is as active as

the multiple BRC repeat mini-BRCA2s (Figure 1G). These results

indicate that higher affinity or valency of RAD51 binding is more

critical for mini-BRCA2 function than for BRC-RPA function,

further distinguishing mini-BRCA2 and BRC-RPA function.

Author Summary

The breast tumor suppressor BRCA2 has a major role in
DNA repair by homologous recombination (HR). BRCA2 is a
large protein with multiple domains that interact with
several proteins as well as with DNA, complicating our
understanding of how the protein functions in cells. To
investigate the mechanism by which BRCA2 functions in
HR in cells, we created fusions consisting of various BRCA2
domains and also introduced mutations into these
domains to disrupt specific protein and DNA interactions.
We find that DNA binding by BRCA2 is critical when a
BRCA2 peptide is deficient in binding another breast
cancer suppressor, PALB2, but not when the peptide can
bind PALB2, suggesting alternative mechanisms of activity.
Binding the small peptide DSS1 is also essential for HR only
in some contexts, as are activities in the BRCA2 C terminus.
Our results reveal redundancy of BRCA2 domains and
emphasize plasticity within this large protein built for
optimal HR function in mammalian cells. The occurrence of
disease-causing mutations throughout BRCA2 suggests
sub-optimal HR from a variety of domain modulations.

Plasticity of BRCA2 Function in Recombination
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Mini-BRCA2 function in HR requires an intact DBD
Mini-BRCA2s active in HR are significantly smaller than full

length BRCA2 – about one third the size – yet they are still

comprised of a number of domains with multiple biochemical

activities and interacting partners. To determine whether mini-

BRCA2s could be further simplified, individual domain require-

ments were tested. Because BRC1–2-DBD-Cter is nearly as

efficient as BRC1–4-DBD-Cter in HR but is more easily detected

on Western blots, it was used to assess the importance of these

other domains. For simplicity, we refer to BRC1–2-DBD-Cter

below as ‘‘mini-BRCA2’’.

The BRCA2 DBD is suggested to be critical for function in HR

through its ssDNA binding activity [20]. The DBD contains three

OB folds [20], which are frequent in ssDNA binding proteins [33].

A co-crystal of the BRCA2 DBD with oligo(dT) demonstrates

binding primarily to OB2, including through interactions similar

to RPA bound to ssDNA [20]. For example, a tryptophan

(W2990) in BRCA2 OB2 is sandwiched between two bases

(Figure 2Ai), similar to a phenylalanine at the same position in

RPA, and a lysine (K2971) interacts with adjacent bases in the

structure through hydrogen bonding (Figure 2Aii). We mutated

these residues in mini-BRCA2 and tested the mutants for HR

proficiency in the V-C8 cells. Mutation of either residue, especially

W2990, significantly reduces HR compared with wild-type mini-

BRCA2 (Figure 2B), indicating that ssDNA binding is critical for

mini-BRCA2 function. HR is not completely abolished with either

Figure 1. HR proficiency of mini-BRCA2 peptides. A. Human BRCA2 domain structure. BRCA2 binds RAD51 at the eight BRC repeats in the
central region of the protein and at a distinct site in the C-terminus (Cter). In addition, BRCA2 binds PALB2 at the N terminus and has a conserved
DSS1 and DNA-binding domain (DBD). B. Mini-BRCA2 domain structures. Peptides contain the indicated BRCA2 domains as well as a nuclear
localization signal (nls) at the N terminus and a FLAG epitope tag at the C terminus. C. DR-GFP. The DR-GFP reporter consists of two defective GFP
genes [29]. Expression of I-SceI endonuclease results in a double-strand break (DSB) at the I-SceI site in the SceGFP gene which can be repaired using
the homologous sequence in the iGFP gene to generate GFP positive cells which are quantified by flow cytometry. D. BRCA2-complemented V-C8
cells have substantially higher DSB-induced HR than uncomplemented cells. P = 0.0002, two-tailed unpaired t test. A bacterial artificial chromosome
(BAC) (clone RP11-777I19; BACPAC Resource Center at the Children’s Hospital Oakland Research Institute in Oakland, California) which contains
human BRCA2 [53] was stably introduced into V-C8 DR-GFP cells [12] using a linked neomycin resistance gene for selection. BRCA2 expression was
verified by Western blot analysis (not shown). E. Mini-BRCA2s containing the Cter partially correct the HR defect of Brca2-deficient V-C8 hamster cells.
Mini-BRCA2s that have activity relative to no mini-BRCA2 are BRC3-DBD-Cter (P,0.05), and BRC1–2-DBD-Cter and BRC1–4-DBD-Cter (P#0.001;
unpaired t test). All peptides (red asterisks) are of the expected sizes. BRC1–4-DBD-Cter corrects the HR defect as well or better than BRC1–2-DBD-Cter
despite being poorly detected. F. Comparison of HR activity at different levels of BRCA2 peptide expression. The BRC1–2-DBD-Cter expression vector
was transfected at the usual amount (50 mg) or at a reduced amount (10 mg). HR levels were similar in both cases (P = 0.82). G. Mini-BRCA2s with
multiple BRC repeats are more active in HR than those with single BRC repeats. Relative to BRC1–2-DBD-Cter, P#0.0001 for single repeat mini-
BRCA2s, except for BRC2-DBD-Cter where P = 0.003. All mini-BRCA2s have significant activity relative to no mini-BRCA2 (P#0.005), except BRCD3-
DBD-Cter (P = 0.248).
doi:10.1371/journal.pgen.1002409.g001

Plasticity of BRCA2 Function in Recombination
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single mutant, consistent with multiple contacts between the DBD

and ssDNA. These results demonstrate the importance of ssDNA-

contact residues for BRCA2 DBD function.

In addition to OB folds, the BRCA2 DBD has a three-helix

bundle (3HB) located at the apex of an unusual ‘‘tower’’ domain

extending from OB2 (Figure 2C). The 3HB is similar to dsDNA-

binding folds and has been implicated in dsDNA binding in vitro

[20]. It has been proposed that nucleation of RAD51 filaments

occurs through BRCA2 bound to ssDNA:dsDNA junctions, which

would explain a role for dsDNA binding in HR reactions [34]. To

test the requirement for the putative dsDNA binding domain, a

mini-BRCA2 was constructed that is deleted for a portion of the

tower (Tdel; Figure 2C, 2D). The Tdel deletion is based on the

same BRCA2 tower deletion previously used for crystallization

[20]; a flexible peptide linker was added to span the distance found

in the crystal structure between the deleted amino acids to attempt

to maintain the overall structural integrity of the DBD. We found

that Tdel is unable to correct the HR defect of the V-C8 cells

(Figure 2E). To more precisely explore the requirement for the

BRCA2 tower domain in HR, the Adel mutation was created in

which only the 3HB at the apex of the tower was deleted

(Figure 2D). A flexible peptide linker was added when constructing

Adel to span the distance between the deleted amino acids. As with

Tdel, Adel is not able to correct the HR defect of V-C8 cells

(Figure 2E). Although we cannot formally rule out the possibility

that the deletions perturb the integrity of the OB2 domain, these

results support a role for the BRCA2 3HB in HR, possibly through

interaction with dsDNA.

Mini-BRCA2 function in HR requires intact DSS1 and
RAD51 Cter binding sites

The BRCA2 DBD binds several proteins, including the small

peptide DSS1 [35], which is reported to promote RAD51 focus

formation after DNA damage [21]. In the co-crystal structure,

DSS1 interacts with the DBD at several residues, in part through a

series of charge interactions [20]. We chose to disrupt one of the

charge interactions, mutating residue K2630 which interacts with

DSS1 residue D17 (Figure 3A). Mutation of this DSS1-interacting

residue in mini-BRCA2 to a neutral amino acid (K2630A) or to an

amino acid of opposing charge (K2630D) results in markedly

reduced or undetectable co-immunoprecipitation with DSS1,

respectively (Figure 3B). Further, both mutations abolish HR

proficiency in vivo (Figure 3C), providing evidence that interaction

with DSS1 is important for mini-BRCA2 function.

Figure 2. Mini-BRCA2 activity requires an intact DBD. A. BRCA2-ssDNA interface in the DBD. BRCA2 OB2 (red) and OB3 (teal) folds interact with
oligo(dT) (green) [20]. i) A key interaction in OB2 is at a tryptophan residue (gold) (W2990 human/W2909 mouse) which stacks with the first two
oligo(dT) bases, in parallel with the first base and at an angle with the second. ii) A lysine (gold) (K2971 human/K2891 mouse), also in OB2, interacts
with the edges of the second and third bases. For the relevant interacting nucleotides and lysine, the nitrogens and oxygens are blue and red,
respectively. Dotted white lines indicate the interaction. Detail of the mouse BRCA2 DBDDTower-DSS1-oligo(dT) ternary complex [20] extracted from
the RCSB Protein Data Bank, accession code 1MJE. B. Mutations of ssDNA binding residues in mini-BRCA2 impair HR. The mini-BRCA2 in these assays
is BRC1–2-DBD-Cter. For values relative to wild-type mini-BRCA2, P#0.0001; for values relative to no mini-BRCA2, P#0.002; for W2990A compared
with K2971A, P = 0.0061. Western blots of the transiently expressed mini-BRCA2s are shown beneath the graph. C. BRCA2 DBD crystal structure
showing the tower domain arising from OB2, with a three-helix bundle (3HB) at the apex of the tower which is proposed to bind dsDNA [20].
Deletions which remove a large part of the tower (Tdel) or only the 3HB (Adel) are indicated on the structure. The structure of the DBD was solved in
a co-crystal with the 70 amino acid protein DSS1 (orange). DSS1 binds in an extended conformation to the helical domain (HD, magenta) and OB1
(green), at the opposite side of the structure from oligo(dT) (not shown). Mouse BRCA2 DBD-DSS1 structure extracted from the RCSB Protein Data
Bank, accession code 1MIU. D. Domain structures of mini-BRCA2s modified within the tower. For Tdel, the seven amino acid linker provides flexibility
for the first tower helix and the disordered region to fold back and reconnect with OB2. For Adel, the three amino acid linker at the site of the
deletion is predicted to connect the ends of the tower without distorting the structure. Boundaries of BRCA2 amino acids deleted are indicated. E.
Deletion of the tower domain or just the 3HB in mini-BRCA2 abrogates HR. For values relative to wild-type mini-BRCA2, P#0.001; relative to no mini-
BRCA2, neither Tdel nor Adel is statistically significant (P = 0.53 and 0.58, respectively).
doi:10.1371/journal.pgen.1002409.g002

Plasticity of BRCA2 Function in Recombination
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The BRCA2 Cter binds RAD51 at a site which is not

homologous to the BRC repeats and which appears to bind

RAD51 differently, having a preference for RAD51 nucleoprotein

filaments as opposed to RAD51 monomers [15,16]. Moreover,

this site is subject to regulated phosphorylation which blocks

interaction with RAD51 [17]. We created two mutations at the

interaction site which abrogate RAD51 binding, S3291A and the

phosphorylation mimic S3291E [17], and found that both

substantially reduce the HR activity of the mini-BRCA2

(Figure 3D). These results suggest that two modes of RAD51

binding – at the BRC repeats and at the Cter – are important for

mini-BRCA2 activity in HR.

In summary, this series of mutations within the various domains

of mini-BRCA2 provides evidence that binding to ssDNA,

dsDNA, DSS1, and RAD51 (in two modes) are all required for

mini-BRCA2 function in HR in vivo.

PALB2-binding increases the HR proficiency of BRCA2
fusion peptides

Mini-BRCA2s are functional for HR but they only partially

restore HR levels to BRCA2-deficient V-C8 cells. Mini-BRCA2s

are missing the N-terminal ,30% of BRCA2, including the

interaction site for the PALB2 protein found in the first ,50 amino

acids of BRCA2 [23]. Given that mutations that impair PALB2

binding impair the ability of full-length BRCA2 to function in HR

[23], we added the PALB2 interaction site to mini-BRCA2, forming

what we termed midi-BRCA2-1 (Figure 4A). We also added a

longer segment so that the N-terminal region of BRCA2 was largely

restored (midi-BRCA2-2). Midi-BRCA2s are expressed at the

expected sizes, although the level of midi-BRCA2-2 detected on

Western blots is low compared with either midi-BRCA2-1 or mini-

BRCA2 (Figure 4B). Both midi-BRCA2-1 and midi-BRCA2-2

complement the HR defect of V-C8 cells to a greater extent than

mini-BRCA2, leading to a 3 to 4-fold higher level of HR (Figure 4C)

and approaching that of full-length BRCA2 (Figure 1D).

To determine if the higher level of HR is due to interaction with

PALB2, we disrupted the PALB2 binding site of the midi-

BRCA2s. BRCA2 W31 is a key contact residue with PALB2,

projecting into a hydrophobic pocket of the PALB2 ß-propeller

(Figure 4D, [36]). W31C mutation, which is annotated in the

Breast Cancer Information Core (BIC) database, impairs the

interaction of full-length BRCA2 with PALB2 and impairs HR

function [23]. By contrast, mutation of BRCA2 residue I27 does not

impact binding to PALB2 or HR. Similarly, we find that W31C

mutation of either midi-BRCA2-1 or midi-BRCA2-2 reduces

binding to PALB2 whereas I27C mutation does not (Figure 4D;

data not shown), while neither mutation affects the expression of the

midi-BRCA2s (Figure 4E, 4F). Importantly, W31C mutation

markedly reduces the ability of the midi-BRCA2s to function in

HR, whereas I27C mutation does not (Figure 4E, 4F). These results

indicate that interaction of the midi-BRCA2s with PALB2 promotes

HR. HR is not completely abolished by W31C mutation, however,

as HR activity for either of the midi-BRCA2 mutants is similar to

that of mini-BRCA2 (Figure 4E, 4F). Combined mutation of the

Cter RAD51 binding site (S3291A) and W31C, however, severely

compromises midi-BRCA2-2 function in HR (Figure 4F), indicating

that when the PALB2 binding site is disrupted, the residual activity

in the midi-BRCA2-2 requires the Cter RAD51 binding site for

activity, as does mini-BRCA2 (Figure 2I).

Interaction with PALB2 partially compensates for
mutations in domains essential for mini-BRCA2 HR
activity

Given that the PALB2 binding site has a strong effect on HR

activity, we asked how this effect is modulated by activities from

the DBD. In the context of PALB2 binding, substitution mutations

in ssDNA binding residues in DBD OB2 in midi-BRCA2s

decrease HR ,50% (Figure 5A), whereas these same mutations

in mini-BRCA2 reduce HR close to background levels (note

especially W2990A; Figure 2B). Likewise, the Tdel and Adel

mutations in the DBD tower domain modulating dsDNA

interaction only mildly affect HR activity of midi-BRCA2s

(,50% HR reduction, Figure 5B) but completely abolish HR

activity of mini-BRCA2 (Figure 2E). These results indicate that the

ability of the midi-BRCA2s to interact with PALB2 partially

compensates for disruption of ssDNA and dsDNA binding, both of

which otherwise become essential for HR activity.

We also investigated the importance of DSS1 binding for midi-

BRCA2 function. Although the interaction between BRCA2 and

DSS1 occurs within the DBD, it likely does not affect DNA

binding as it occurs at a distance from the DNA binding residues

(Figure 2C). The DSS1-binding mutation K2630D completely

Figure 3. Mutation of a DSS1-interacting residue or the Cter RAD51-interacting residue S3291 significantly reduces the HR activity
of mini-BRCA2. A. Detail of the BRCA2-DSS1 interface. BRCA2 and DSS1 interact through both charged and hydrophobic residues [20]. For the
former, basic residues in BRCA2 interact with acidic residues in DSS1 (e.g., K2630 human/K2551 mouse interacts with DSS1 D17; white). Detail of the
mouse BRCA2 DBD-DSS1 structure [20] extracted from the RCSB Protein Data Bank, accession code 1MIU. B. Mutation of BRCA2 K2630 in mini-BRCA2
reduces DSS1 interaction. Immunoprecipitation of myc-tagged DSS1 brings down FLAG-tagged wild-type mini-BRCA2 but K2630A or K2630D-
mutated mini-BRCA2 to a much lower or undetectable level, respectively. C. Mutation of a DSS1 interacting residue in mini-BRCA2 abrogates HR. For
values relative to wild-type mini-BRCA2, P#0.001; relative to no mini-BRCA2, neither K2630A nor K2630D is statistically significant. D. Mutation of the
Cter RAD51 binding site in mini-BRCA2 impairs HR. For values relative to wild-type mini-BRCA2, P#0.0001; relative to no mini-BRCA2, P#0.0001.
doi:10.1371/journal.pgen.1002409.g003

Plasticity of BRCA2 Function in Recombination
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abrogates HR activity of midi-BRCA2-2 (Figure 6A), implicating

DSS1 binding as an important activity of the BRCA2 peptides

whether or not the peptides can bind PALB2. The K2630A

mutation (Figure 2G), which does not completely abolish DSS1

binding, also substantially reduces HR activity of midi-BRCA2-2

(Figure 6A). Thus, loss of DSS1 binding and loss of DNA binding

are not equivalent.

Finally, we investigated the role of the Cter RAD51-binding site

in midi-BRCA2 function. Mutations at S3291 in midi-BRCA2

only partially reduce HR (#50%, Figure 6B), similar to the two

DNA binding mutations, and in contrast to the DSS1-binding

mutation. Thus, the midi-BRCA2s are not strictly dependent on

three of the four activities we identified to be important for mini-

BRCA2 function, indicating that the ability to bind PALB2 can

override the requirement for other activities. However, the

requirement for DSS1 binding is maintained in the midi-BRCA2s.

HR in the absence of the BRCA2 DBD
The substantial HR activity remaining for midi-BRCA2s

mutated in the DBD or Cter domain led us to ask whether

proteins deleted for these domains could be functional in HR.

Gene disruption alleles with the potential to express peptides

truncated after BRC3 or BRC7 permit survival of mice [37,38],

whereas those truncated before the BRC repeats do not [39],

suggesting that N-terminal BRCA2 peptides retaining BRC

repeats retain partial function. Further, a PARP-inhibitor

insensitive BRCA2 revertant deleted for BRC6 through the

DBD (PIR2) has been identified which is active in HR [40].

To address this, we created a series of truncated and internally

deleted BRCA2 peptides (Figure 7A). Peptides truncated after

BRC3 and BRC5 (i.e., TrBRC3 and TrBRC5, respectively) do

not increase HR activity (Figure 7B), indicating that the PALB2

interacting site and BRC repeats are not sufficient to restore HR

activity to V-C8 cells. By contrast, the addition of the Cter,

creating TrBRC3-Cter, leads to substantial HR activity, demon-

strating the importance of the Cter domain for HR activity of the

truncations. Similarly, TrBRC5-Cter, corresponding to the

previously described PIR2 revertant [40], is also active in HR.

These results demonstrate that the DBD is not essential for HR

and that as few as three BRC repeats can suffice for HR activity in

Figure 4. Midi-BRCA2s containing an intact PALB2 binding site restore HR levels. A. Midi-BRCA2 domain structures. Midi-BRCA2s contain
the PALB2-interacting domain at the N terminus. Midi-BRCA2-2 differs from full-length BRCA2 primarily in being deleted for the last 6 BRC repeats; it
also contains a small deletion N-terminal to BRC1. B. Western blot analysis showing expression of the transiently expressed mini and midi-BRCA2s. C.
Midi-BRCA2s are more proficient at HR than mini-BRCA2. Relative to mini-BRCA2, P#0.0001 for midi-BRCA2s. D. BRCA2 W31 is a key PALB2 binding
residue. Mutation of midi-BRCA2 W31 disrupts binding to PALB2. Immunoprecipitation of FLAG-tagged wild-type or I27C midi-BRCA2 efficiently
brings down PALB2 while FLAG-tagged W31C midi-BRCA2 precipitation of PALB2 is significantly impaired. BRCA2 W31 extends from a short helix into
a hydrophobic pocket of the PALB2 ß-propeller; the indole nitrogen (light blue) also supports a polar interaction with a water bridge to PALB2 S1065
in the PALB2 pocket (dotted line) [36] (accession code 3EU7). Only a portion of the PALB2 ß-propeller is shown. E. Mutation of the PALB2 binding site
(W31C) in midi-BRCA2-1 reduces but does not abolish HR activity. For values relative to wild-type midi-BRCA2-1, P#0.0001 except for midi-BRCA2
I27C, which is not significant; for mini-BRCA2 relative to midi-BRCA2-1 W31C, P = 0.13. Western blot analysis shows expression of the transiently
expressed mini and midi-BRCA2s. F. Mutation of the PALB2 binding site (W31C) in midi-BRCA2-2 reduces but does not abolish HR activity. Relative to
wild-type midi-BRCA2-2, P#0.005 for the W31C and/or S2391A mutants; for midi-BRCA2-2 W31C relative to no midi-BRCA2-2, P#0.0001 whereas
W31C+S3291A is not significantly different from no midi-BRCA2-2 (P = 0.13). Western blot analysis shows expression of the transiently expressed
peptides.
doi:10.1371/journal.pgen.1002409.g004
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this context. Both TrBRC3-Cter and TrBRC5-Cter show

intermediate activity between that of mini-BRCA2 and midi-

BRCA2-2, but similar activity to the apex deletion in midi-

BRCA2-2, consistent with the DBD contributing to, but not being

required for, HR.

The importance of the Cter for the function of the BRCA2

truncations led us to test the effect of mutations at the RAD51

interaction site. Both S3291A and S3291E reduce HR activity for

the TrBRC-Cter peptides, but do not eliminate it (Figure 7B).

These results suggest that the Cter has additional functions to

RAD51 binding which enhance the activity of the truncations.

Given the absence of a DBD in the BRCA2 truncations, we

speculated that PALB2 binding would be essential for their activity.

To test this, we introduced the W31C mutation into TrBRC5-Cter,

which substantially reduces its binding to PALB2 (Figure 7C). This

mutant protein demonstrates no HR activity (Figure 7C), indicating

that in the absence of DNA binding, HR activity is entirely

dependent on the ability of this peptide to interact with PALB2.

Figure 5. Interaction with PALB2 partially compensates for mutations in the DNA binding domain. A. Midi-BRCA2s with mutations in
ssDNA contact residues retain substantial HR activity. P#0.0001 compared with no BRCA2 peptide. i) Compared with wild-type midi-BRCA2-1, P
values are 0.002 (W2990A), 0.05 (K2971A), and 0.01 (K2971E). ii) Compared with wild-type midi-BRCA2-2, P values are 0.0004 (W2990A), 0.15 (K2971A),
and 0.0002 (K2971E). Western blot analysis shows expression of the transiently expressed peptides. B. Midi-BRCA2s with deletion of the tower domain
or just the three-helix bundle retain partial HR activity. P#0.0002 compared with no BRCA2 peptide. Compared with the respective wild-type
proteins, P values for mini-BRCA2 mutations are 0.003 (Tdel) and 0.0008 (Adel) (Figure 2E), for midi-BRCA2-1 are 0.002 (Tdel) and 0.02 (Adel), and for
midi-BRCA2-2 are 0.0001 (Tdel, Adel). Western blot analysis shows expression of the transiently expressed peptides.
doi:10.1371/journal.pgen.1002409.g005

Figure 6. Interaction with PALB2 partially compensates for point mutations in the Cter that interfere with RAD51 binding, but
cannot compensate for mutations that interfere with DSS1 binding. A. Mutation of a DSS1 interacting residue in midi-BRCA2 abrogates HR.
For midi-BRCA2-2, K2630A and K2630D mutations in comparison with no BRCA2 peptide are not significantly different (P = 0.08 and 0.52,
respectively), while compared with the respective wild-type proteins, they are (mini-BRCA2, P#0.001, as in Figure 2H; midi-BRCA2-2, P,0.0001). B.
Midi-BRCA2s with mutation of the Cter RAD51 binding site retain partial HR activity. P#0.0001 compared with no BRCA2 peptide or with the
respective wild-type proteins. Western blot analysis shows expression of the transiently expressed peptides.
doi:10.1371/journal.pgen.1002409.g006
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Micro-BRCA2: a minimal BRCA2
Our results with the truncated peptides suggest functional

redundancy within BRCA2 and raise the possibility that BRCA2

could be pared down further yet retain HR activity. To test this,

we fused the PALB2-interaction domain to two BRC repeats and

the Cter, creating a micro-BRCA2 which is ,20% the size of full-

length BRCA2 (Figure 8A). The micro-BRCA2 is expressed

(Figure 8B) and is active in HR (Figure 8C); indeed, correction of

HR by the micro-BRCA2 was higher than by the mini-BRCA2

(Figure 8C). Given that the PALB2 interaction domain and the

Cter are required for activity of the truncations (Figure 7B, 7C), we

asked whether these two domains are sufficient to promote HR by

creating another derivative peptide without BRC repeats, zippo-

BRCA2 (Figure 8A). Zippo-BRCA2 is expressed (Figure 8B) but is

completely inactive (Figure 8C). Thus, as with mini-BRCA2, the

Cter RAD51 interaction site is not sufficient to promote HR, such

that micro-BRCA2 likely has a minimal domain set required for

an active BRCA2 peptide.

Discussion

Using domain fusions, we investigated here which elements of

BRCA2 are critical for HR in vivo. From our results, we can

conclude that significant portions of BRCA2 are not essential for

HR activity and, further, that functional redundancy exists within

this large protein. Two types of active BRCA2 peptides can be

distinguished in V-C8 cells based on the absence or presence of the

BRCA2 DBD – micro-BRCA2 and mini-BRCA2, respectively

(Figure 8D). In the absence of the DBD, the ability to interact with

PALB2 becomes essential for detectable HR activity. Common to

both forms is the requirement to bind RAD51 through the BRC

repeats as well as the contribution of the Cter, which exhibits

RAD51-dependent as well as independent activities.

DNA binding in the DBD is required only for mini-BRCA2
activity

The correction of the HR defect of BRCA2-deficient cells with

BRC-RPA fusions implied that the major activity of BRCA2 in

HR is to deliver RAD51 to ssDNA [12] (Figure 8E). Biochemical

studies support this interpretation, as full-length BRCA2

promotes RAD51 filament formation specifically on ssDNA [6–

8]. We established that ssDNA binding is indeed required for the

activity of BRCA2 peptides that lack the PALB2 interaction site:

mini-BRCA2s mutated at ssDNA-binding residues in OB2 of the

DBD show little HR activity. By contrast, midi-BRCA2s mutated

for ssDNA binding retain substantial HR activity, as do micro/

Tr-BRCA2s deleted for the DBD. Thus, ssDNA binding in the

DBD becomes essential for activity in the absence of PALB2

binding. Binding to PALB2 may allow BRCA2 to interact

indirectly with DNA, bypassing the need for the DBD itself (see

below).

In addition to ssDNA, BRCA2 has been postulated to bind

dsDNA through the tower domain 3HB, given the structural

similarity of the 3HB to dsDNA binding domains in other

proteins and biochemical studies with a DBD deleted for the

tower [20]. Through deletion analysis, we provide evidence that

the 3HB of the DBD is required for mini-BRCA2 function. Dual

binding to ssDNA and dsDNA is proposed to support the

recruitment of BRCA2 to ssDNA-dsDNA junctions (Figure 8E),

HR intermediates arising from DNA end resection, to nucleate

Figure 7. BRCA2 DBD is not required for HR in peptides that bind PALB2. A. Tr-BRCA2 domain structures. All Tr-BRCA2 peptides are deleted
for C-terminal BRC repeats and the BRCA2 DBD at the indicated residues. TrBRC3 and TrBRC5 are additionally deleted for the Cter. TrBRC5-Cter
corresponds to a BRCA2 peptide expressed in a PARP inhibitor-resistant revertant of Capan-1 cells (PIR2; [40]). B. TrBRC-Cter peptides are functional
for HR whereas TrBRC peptides are not. The RAD51 binding site at S3291 contributes to HR activity but is not the sole determinant. P#0.0001 for
TrBRC-Cter compared with the respective no Cter or S3291-mutated Cter. C. Disruption of PALB2-binding by W31C mutation (right) is associated with
impaired TrBRC5-Cter HR activity (left). P = #0.0001 for TrBRC5-Cter compared with the W31C mutation.
doi:10.1371/journal.pgen.1002409.g007
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RAD51 filaments [6,20], as has been shown for the BRCA2

ortholog from Ustilago, Brh2 [34]. Binding to ssDNA-dsDNA

junctions would appear to differentiate BRCA2 from the BRC-

RPA fusion, which does not have a dsDNA binding domain; the

high affinity of RPA to ssDNA may allow the BRC-RPA fusion to

bypass junctional binding. Unlike BRCA2 and Brh2, the BRCA2

ortholog from C. elegans, BRC-2, does not have a tower domain,

and the single OB fold in BRC-2 is more related to OB folds in

RPA than in BRCA2 [41]. Thus, it seems possible that BRC-2

may act more akin to BRC-RPA fusions, delivering RAD51

directly to ssDNA.

DSS1 binding is required in BRCA2 peptides containing a
DBD

DSS1 is known to promote HR [21,42], even in budding yeast

which does not have a BRCA2 homolog [22], raising the question

as to whether the interaction with DSS1 is important for BRCA2

function. We found that interaction with DSS1 is required for HR

activity of both mini and midi-BRCA2s, but not for micro/Tr-

BRCA2s in which the DBD – and hence DSS1 contact residues –

were deleted. Notably, the only mutation in midi-BRCA2 found to

render it completely inactive for HR was one that abrogates DSS1

binding (K2630D). Thus, if the DBD is present, interaction with

DSS1 is critical for BRCA2 function; however, if the DBD is

absent, DSS1 binding is not required for activity, similar to what

has been observed with Ustilago Brh2 [43].

PALB2 interaction overrides the requirement for the DBD
An intact PALB2 interaction site in midi-BRCA2s results in

substantially higher HR activity than that found with mini-

BRCA2s, and partially overrides mutations that inactivate the

mini-BRCA2s (i.e., in OB2, the 3HB, or the Cter). PALB2 was

initially identified as an interacting protein with BRCA2 [23], but

it has also been found to interact with other HR proteins,

including BRCA1, with which it may form a bridge to BRCA2

[44,45], and the RAD51 interacting protein, RAD51AP1 [46].

More recently, PALB2 has also been shown to bind DNA and

RAD51 and stimulate D-loop formation in vitro; although this

activity can function independently of BRCA2 [46], it can also

synergize with a BRCA2 peptide fusion that is similar to our midi-

BRCA2s [47].

That the interaction with PALB2 has such a great impact on

HR suggests that BRCA2 typically functions in a complex with

PALB2 and provides insight into how BRCA2 peptides lacking

most of the protein, in particular micro-BRCA2, remain

proficient for DSB repair (Figure 8E). Possibly, three different

modes of RAD51 binding within the BRCA2/PALB2 complex

participate in HR, two from BRCA2 and one from PALB2. Our

results also show, however, that the absence of BRC repeats

(zippo-BRCA2) cannot be compensated for by interaction with

PALB2, implying that activities carried by PALB2, notably

binding to RAD51, are not sufficient to restore BRCA2 peptide

function.

Figure 8. BRCA2 peptides functional in HR. A. Micro-BRCA2 domain structure. Micro-BRCA2 contains three domains – the PALB2 interaction site,
BRC1–2, and the Cter, whereas zippo-BRCA2 is deleted for the BRC repeats. B. Western blot analysis showing expression of the indicated BRCA2
peptides. C. Comparison of HR activity of various BRCA2 peptides. Micro-BRCA2 is more active than mini-BRCA2 (P = 0.0024), whereas zippo-BRCA2 is
not active. D. Summary of BRCA2 peptides and their relative HR activity. E. Schematic of peptides active in HR. While full-length BRCA2 has optimal HR
activity, BRCA2 peptides can be derived which have substantial activity. Those that bind PALB2, such as micro-BRCA2, are active even with a deleted
DNA binding domain (DBD). In the absence of PALB2 binding, an intact DBD is critical for HR activity. BRC fusion to RPA, however, can bypass the
requirement for the DBD.
doi:10.1371/journal.pgen.1002409.g008

Plasticity of BRCA2 Function in Recombination

PLoS Genetics | www.plosgenetics.org 9 December 2011 | Volume 7 | Issue 12 | e1002409



RAD51-dependent and -independent activities within the
BRCA2 Cter

The first link between BRCA2 and RAD51 came about

through the identification of an interaction between the BRCA2

Cter and RAD51 [14], with subsequent studies localizing RAD51

binding to a peptide in the middle of the Cter, specifically

involving residue S3291 [17]. Importantly, this Cter peptide

binds to and stabilizes RAD51 filaments, but does not bind

RAD51 monomers [15–17]. The importance of RAD51 binding

in the Cter is clear, as S3291 mutation either has a severe effect

on HR activity (mini-BRCA2, midi-BRCA-2 W31C) or reduces it

by ,40% (midi-BRCA2s, TrBRC-Cter). We recently found that

the S3291A mutation introduced into full-length BRCA2 by BAC

mutagenesis restores HR in V-C8 cells to the same extent as wild-

type BRCA2 [18], similar to results obtained in human and

chicken cells [19,48]. Thus, Cter S3291A mutation leads to a

gradient of HR defects, from severe to undetectable, depending

on the context.

The inability of zippo-BRCA2, which does not contain BRC

repeats, to restore HR in V-C8 cells implies that the Cter is not

able to deliver RAD51 to DNA. However, once RAD51 filament

assembly is initiated by the BRC repeats, the Cter may stabilize

filaments that otherwise would not mature sufficiently in partially

HR compromised fusion-peptide backgrounds, providing an

explanation for the gradient of HR activity.

Unlike the S3291A point mutation, deletion of the Cter

in otherwise full-length BRCA2 leads to a moderate HR defect

[4]. S3291 mutation and Cter deletion also have differential

effects on HR in BRCA2 peptides (e.g., compare TrBRC with

TrBRC-Cter S3291A; Figure 7B). More severe HR phenotypes

with deletion of the Cter suggest that the Cter has a function in

HR beyond simply binding RAD51. The only other function

attributed thus far to the Cter is to promote nuclear localization

of the protein [49], but given that all peptides contain an nuclear

localization signal at the N terminus, the function of the Cter is

unlikely to simply be to direct the protein to the nucleus. It is

notable that although Ustilago Brh2 contains a DBD related to the

BRCA2 DBD, a second DNA binding domain is present in Brh2

which is the primary determinant for DNA binding for this

protein [50]. However, as yet there is no evidence that BRCA2,

in particular the Cter, harbors an additional DNA binding

domain.

Functional BRCA2 peptides with reduced BRC repeat
number

While BRC repeats promote the nucleation of RAD51 filaments

on ssDNA [51], one and two BRC repeats are sufficient to

promote HR activity of the BRC-RPA and BRCA2 peptide

fusions, respectively, and adding more BRC repeats does not

substantially increase HR activity. Secondary mutations in

BRCA2 that reverse cisplatin and PARP inhibitor sensitivity of

BRCA2 mutant cells have been identified which delete up to six

BRC repeats, yet retain HR proficiency [40,52], consistent with a

lack of requirement for all eight repeats for BRCA2 function.

The BRCA2 peptide analysis presented here suggests a plausible

explanation for why BRCA2 evolved to contain multiple BRC

repeats: The compelling difference between midi-BRCA2-2 and

full-length BRCA2 is the number of BRC repeats (two and eight

BRC repeats, respectively), but only midi-BRCA2-2 shows an HR

defect with Cter mutation. A larger number of BRC repeats in the

full-length protein could increase the frequency of nucleation of

RAD51 nucleoprotein filaments [51], allowing it to circumvent the

requirement for filament stabilization by the Cter.

Plasticity of BRCA2 structure: implications for
tumorigenesis

Taken together, our results point to the plasticity of BRCA2 for

HR function in vivo. While full-length BRCA2 is built to ensure

efficient RAD51 filament formation and stabilization for optimal

HR, multiple domain deletions and point mutations which

compromise interactions only partially reduce HR, such that in

the extreme, a peptide ,20% the size of BRCA2 (micro-BRCA2)

provides substantial HR activity.

This remarkable intragenic redundancy, however, may have a

downside. Reduced HR efficiencies may not elicit cell death, yet

may also not be sufficient to maintain genomic stability, especially

when extensive repair is required. This could have profound

implications for tumorigenesis. Indeed, mutations are found

throughout the BRCA2 gene in breast cancer patients (BIC

database) suggesting an involvement of all functional domains in

maintaining genomic stability. A large number of BRCA2 variants

have been identified in the population, the significance of which to

BRCA2 function and tumorigenesis are unknown. By exploiting

BRCA2’s functional plasticity, our system with partially compro-

mised fusion peptides provides a fast and sensitive means to detect

mutations affecting HR, many of which may be phenotypically

overlooked in assays utilizing full-length BRCA2.

Materials and Methods

HR assays
The BRCA2 mutant V-C8 hamster cell line [28] contains a

single integrated copy of DR-GFP reporter [12]. For HR assays,

56106 exponentially growing cells were collected and resuspended

in 650 ml Opti-MEM media (Invitrogen) in a 0.4-cm cuvette

(Biorad) with 50 mg each of the I-SceI expression vector pCBASce

(or the empty pCAGGS vector) and the expression vector for a

BRCA2 peptide (see below). Cells were transfected by electropo-

ration (280 V and 1000 mF) with a Biorad Gene Pulser II. HR was

measured by counting the number of GFP-positive cells using a

Becton Dickinson FACSscan 48 h after electroporation. Most HR

results were derived from 5 to 9 transfections from at least 3

independent experiments, except results in Figure 3C and

Figure 6A which were derived from 3 transfections. P values were

calculated using an unpaired t test through Graphpad software

(http://www.graphpad.com/quickcalcs/ttest1.cfm).

Plasmids
Vectors expressing BRCA2 peptides have a pCAGGS back-

bone. All peptides contain an N-terminal nuclear localization

signal and a C-terminal FLAG epitope tag [12]. Mini-BRCA2

vectors were derived by modifying vectors encoding BRC-RPA

fusions [12], such that individual BRC motifs correspond to amino

acids 996–1064 (BRC1), 1206–1274 (BRC2), 1415–1483 (BRC3),

and 1511–1575 (BRC4) of human BRCA2 and multiple BRC

motifs correspond to amino acids 923–1252 (BRC1–2) and 923–

1563 (BRC1–4) of mouse BRCA2. To generate the mini-BRCA2s,

the vector fragment encoding RPA70 in the BRC-RPA fusion was

swapped with a fragment encoding the BRCA2 DBD (residues

2451–3210) or the DBD through the Cter (residues 2451–3418).

BRCA2 fragments were amplified by PCR using a human BRCA2

full-length cDNA as a template and a C-terminal primer designed

to maintain the FLAG epitope.

Midi-BRCA2 vectors were generated by introducing a fragment

encoding human BRCA2 residues 1 to 200 (midi-BRCA2-1) or 1

to 950 (midi-BRCA2-2) at a site located between the nuclear

localization signal sequence and BRC1–2 in mini-BRCA2.

TrBRC peptides encode human BRCA2 until residue 1510

Plasticity of BRCA2 Function in Recombination
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(TrBRC3) or 1757 (TrBRC5), while the TrBRC-Cter peptides

additionally encode residues 3226–3418 of human BRCA2.

Adel and Tdel were generated by PCR to delete BRCA2

residues 2889–2959 (Tdel) and 2889–2919 (Adel) and insert short

peptide linkers SGSGSGS (Tdel) and SGS (Adel). Tdel is based on

the BRCA2 peptide, DTower, used for biochemical studies in

which much of the tower was cleaved from the mouse BRCA2

DBD using TEV protease [20]. In DTower, tower alpha helix 1

(Ta1) is maintained but the other tower helices (Ta2–Ta5) are

removed [20]. In Tdel, the approximately 20 amino acids after

Ta1 that are disordered in the structure are maintained and

followed by the 7 amino acid peptide linker, which then connects

with the base of the tower prior to OB2 at the same position of

TEV protease cleavage. In Adel, only the 3HB helices (Ta2–Ta4)

are deleted.

The DSS1 expression vector was generated by inserting the

human DSS1 cDNA into pCAGGS with an N-terminal c-myc tag.

The PALB2 expression vector was generated by inserting human

PALB2 into a modified pEGFP-N3 (Clontech) vector with an

added N-terminal c-myc tag. The resulting construct expresses

PALB2 with a myc tag at the N terminus and a GFP tag fused at

the C terminus.

Protein analysis
BRCA2 peptide expression was examined 48 h after electropo-

ration by Western blotting using 40–100 mg of total lysate

separated by 10% Tris-Glycine or 4–12% Bis-Tris polyacrylamide

gel electrophoresis (Invitrogen). Membranes were probed with

anti-FLAG-M2 antibody (A8592, Sigma) or anti-alpha-tubulin

antibody (T6074, Sigma) to assess protein loading. For co-

immunoprecipitations, V-C8 cells were electroporated as above

with 50 mg each of the expression vectors for the BRCA2 peptide

and PALB2 or DSS1. Cells were collected ,40 h after

electroporation and resuspended in NETN buffer (150 mM NaCl,

1 mM EDTA, 50 mM Tris-HCl, pH 8.0, 0.5% NP40) containing

protease inhibitor (Complete Mini Roche). Cell lysates were

obtained by repeated cycles of freezing (dry ice/ethanol) and

thawing (warm water). For PALB2, protein extracts from cells

expressing midi-BRCA2-1 and TrBRC5-Cter (600 mg) and midi-

BRCA2-2 (450 mg) were incubated with 40 ml EZview Red ANTI-

FLAG M2 Affinity Gel (Sigma F2426) for 5–6 h at 4uC. Proteins

were eluted with SDS-PAGE sample buffer and loaded on a

BIORAD ready gel 7.5% Tris-HCl (100–150 V, ,2 h) and then

transferred to a nitrocellulose membrane overnight at 4uC.

Membranes were blocked using TBS-Tween 20–5% BioRad

Non-Fat Dry Milk and probed with anti-PALB2 antibody M11

raised against amino acids 601 to 880 of human PALB2 and

monoclonal anti-FLAG M2-Peroxidase (HRP) antibodies. For

Western blotting, 50 mg of protein were loaded on a BIORAD

ready gel 7.5% Tris-HCl. For DSS1, co-immunoprecipitations

were performed with 100–500 mg whole cell extract and 20 ml of

anti–c-myc Agarose Affinity Gel (A7470, Sigma) for 4 h to

overnight at 4uC. Immune complexes were washed with lysis

buffer and separated by 4–12% Bis-Tris polyacrylamide gel

electrophoresis. Membranes were probed with anti-FLAG-M2

antibody.

Acknowledgments

We thank Haijuan Yang (MSKCC) for assistance in designing the tower

mutations and Jianglin Ma (CINJ) for providing the PALB2 expression

vector.

Author Contributions

Conceived and designed the experiments: NS MAB AE IL NC MJ.

Performed the experiments: NS MAB AE IL NC. Analyzed the data: NS

MAB AE IL NC MJ. Contributed reagents/materials/analysis tools: NS

AE IL NC BX MJ. Wrote the paper: NS KS MJ.

References

1. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous

recombination. Annu Rev Biochem 77: 229–257.

2. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains

genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:

196–207.

3. Mimitou EP, Symington LS (2009) Nucleases and helicases take center stage in
homologous recombination. Trends Biochem Sci 34: 264–272.

4. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 Is required for homology-
directed repair of chromosomal breaks. Mol Cell 7: 263–272.

5. Chen CF, Chen PL, Zhong Q, Sharp ZD, Lee WH (1999) Expression of BRC
repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to

radiation hypersensitivity and loss of G(2)/M checkpoint control. J Biol Chem

274: 32931–32935.

6. Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2

stimulates RAD51-mediated recombination. Nature 467: 678–683.

7. Liu J, Doty T, Gibson B, Heyer WD (2010) Human BRCA2 protein promotes

RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct
Mol Biol 17: 1260–1262.

8. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, et al.
(2010) The breast cancer tumor suppressor BRCA2 promotes the specific

targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17:
1263–1265.

9. Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, et al. (2001) Role
of BRCA2 in control of the RAD51 recombination and DNA repair protein.

Mol Cell 7: 273–282.

10. Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombina-

tion from the RecA-ssDNA/dsDNA structures. Nature 453: 489–484.

11. Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, et al. (2002) ATP hydrolysis

by mammalian RAD51 has a key role during homology- directed DNA repair.
J Biol Chem 277: 20185–20194.

12. Saeki H, Siaud N, Christ N, Wiegant WW, van Buul PP, et al. (2006)
Suppression of the DNA repair defects of BRCA2-deficient cells with

heterologous protein fusions. Proc Natl Acad Sci U S A 103: 8768–8773.

13. Pellegrini L, Yu DS, Lo T, Anand S, Lee M, et al. (2002) Insights into DNA

recombination from the structure of a RAD51-BRCA2 complex. Nature 420:

287–293.

14. Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, et al. (1997)

Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice

lacking Brca2. Nature 386: 804–810.

15. Davies OR, Pellegrini L (2007) Interaction with the BRCA2 C terminus protects

RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol
14: 475–483.

16. Esashi F, Galkin VE, Yu X, Egelman EH, West SC (2007) Stabilization of

RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct

Mol Biol 14: 468–474.

17. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, et al. (2005) CDK-dependent

phosphorylation of BRCA2 as a regulatory mechanism for recombinational
repair. Nature 434: 598–604.

18. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, et al. (2011) Double-Strand
Break Repair-Independent Role for BRCA2 in Blocking Stalled Replication

Fork Degradation by MRE11. Cell 145: 529–542.

19. Ayoub N, Rajendra E, Su X, Jeyasekharan AD, Mahen R, et al. (2009) The

carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic
entry. Curr Biol 19: 1075–1085.

20. Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, et al. (2002) BRCA2 Function
in DNA Binding and Recombination from a BRCA2-DSS1-ssDNA Structure.

Science 297: 1837–1848.

21. Gudmundsdottir K, Lord CJ, Witt E, Tutt AN, Ashworth A (2004) DSS1 is

required for RAD51 focus formation and genomic stability in mammalian cells.
EMBO Rep 5: 989–993.

22. Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, et al. (2004)
Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell

16: 1027–1034.

23. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, et al. (2006) Control of BRCA2

cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22:

719–729.

24. Tischkowitz M, Xia B (2010) PALB2/FANCN: recombining cancer and

Fanconi anemia. Cancer Res 70: 7353–7359.

25. Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, et al. (2011)

Contribution of inherited mutations in the BRCA2-interacting protein PALB2
to familial breast cancer. Cancer Res 71: 2222–2229.

26. Auerbach AD (2009) Fanconi anemia and its diagnosis. Mutat Res 668: 4–10.

Plasticity of BRCA2 Function in Recombination

PLoS Genetics | www.plosgenetics.org 11 December 2011 | Volume 7 | Issue 12 | e1002409



27. Christ N, Moynahan ME, Jasin M (2007) BRCA2: safeguarding the genome

through homologous recombination. In: Rothstein R, ed. Molecular Genetics of
Recombination. Berlin: Springer. pp 363–380.

28. Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-

Goedhart A, et al. (2002) Brca2 (XRCC11) deficiency results in radioresistant
DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol

22: 669–679.
29. Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes

homology-directed repair of DNA damage in mammalian cells. Genes and

Development 13: 2633–2638.
30. San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, et al. (2006)

Recombination mediator and Rad51 targeting activities of a human BRCA2
polypeptide. J Biol Chem 281: 11649–11657.

31. Wong AKC, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51
interacts with the evolutionarily conserved BRC motifs in the human breast

cancer susceptibility gene brca2. J Biol Chem 272: 31941–31944.

32. Galkin VE, Esashi F, Yu X, Yang S, West SC, et al. (2005) BRCA2 BRC motifs
bind RAD51-DNA filaments. Proc Natl Acad Sci U S A 102: 8537–8542.

33. Bochkarev A, Bochkareva E (2004) From RPA to BRCA2: lessons from single-
stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14: 36–42.

34. Yang H, Li Q, Fan J, Holloman WK, Pavletich NP (2005) The BRCA2

homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA
junction. Nature 433: 653–657.

35. Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, et al. (1999)
Interaction between the product of the breast cancer susceptibility gene BRCA2

and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell
Biol 19: 4633–4642.

36. Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH (2009) Structural basis for

recruitment of BRCA2 by PALB2. EMBO Rep 10: 990–996.
37. Friedman LS, Thistlethwaite FC, Patel KJ, Yu VP, Lee H, et al. (1998) Thymic

lymphomas in mice with a truncating mutation in Brca2. Cancer Res 58:
1338–1343.

38. Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, et al. (1997) Tumorigenesis

and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet
17: 423–430.

39. Moynahan ME (2002) The cancer connection: BRCA1 and BRCA2 tumor
suppression in mice and humans. Oncogene 21: 8994–9007.

40. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, et al. (2008)
Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:

1111–1115.

41. Martin JS, Winkelmann N, Petalcorin MI, McIlwraith MJ, Boulton SJ (2005)

RAD-51-dependent and -independent roles of a Caenorhabditis elegans

BRCA2-related protein during DNA double-strand break repair. Mol Cell Biol

25: 3127–3139.

42. Kristensen CN, Bystol KM, Li B, Serrano L, Brenneman MA (2010) Depletion

of DSS1 protein disables homologous recombinational repair in human cells.

Mutat Res 694: 60–64.

43. Kojic M, Zhou Q, Lisby M, Holloman WK (2005) Brh2-Dss1 Interplay Enables

Properly Controlled Recombination in Ustilago maydis. Mol Cell Biol 25:

2547–2557.

44. Sy SM, Huen MS, Chen J (2009) PALB2 is an integral component of the BRCA

complex required for homologous recombination repair. Proc Natl Acad

Sci U S A 106: 7155–7160.

45. Zhang F, Ma J, Wu J, Ye L, Cai H, et al. (2009) PALB2 links BRCA1 and

BRCA2 in the DNA-damage response. Curr Biol 19: 524–529.

46. Dray E, Etchin J, Wiese C, Saro D, Williams GJ, et al. (2010) Enhancement of

RAD51 recombinase activity by the tumor suppressor PALB2. Nat Struct Mol

Biol 17: 1255–1259.

47. Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, et al. (2010)

Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in

stimulating homologous recombination. Nat Struct Mol Biol 17: 1247–1254.

48. Hucl T, Rago C, Gallmeier E, Brody JR, Gorospe M, et al. (2008) A syngeneic

variance library for functional annotation of human variation: application to

BRCA2. Cancer Res 68: 5023–5030.

49. Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM (1999) Truncated

BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad

Sci USA 96: 13920–13925.

50. Zhou Q, Kojic M, Holloman WK (2009) DNA-binding Domain within the Brh2

N Terminus Is the Primary Interaction Site for Association with DNA. J Biol

Chem 284: 8265–8273.

51. Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MK, et al. (2009) The BRC

repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136:

1032–1043.

52. Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, et al. (2008)

Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated

cancers. Nature 451: 1116–1120.

53. Sharan SK, Pyle A, Coppola V, Babus J, Swaminathan S, et al. (2004) BRCA2

deficiency in mice leads to meiotic impairment and infertility. Development 131:

131–142.

Plasticity of BRCA2 Function in Recombination

PLoS Genetics | www.plosgenetics.org 12 December 2011 | Volume 7 | Issue 12 | e1002409


