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ABSTRACT “Candidatus Bathyarchaeia” is a phylogenetically diverse and widely dis-
tributed lineage often in high abundance in anoxic submarine sediments; however,
their evolution and ecological roles in terrestrial geothermal habitats are poorly
understood. In the present study, 35 Ca. Bathyarchaeia metagenome-assembled
genomes (MAGs) were recovered from hot spring sediments in Tibet and Yunnan,
China. Phylogenetic analysis revealed all MAGs of Ca. Bathyarchaeia can be classified
into 7 orders and 15 families. Among them, 4 families have been first discovered in
the present study, significantly expanding the known diversity of Ca. Bathyarchaeia.
Comparative genomics demonstrated Ca. Bathyarchaeia MAGs from thermal habitats
to encode a large variety of genes related to carbohydrate degradation, which are
likely a metabolic adaptation of these organisms to a lifestyle at high temperatures.
At least two families are potential methanogens/alkanotrophs, indicating a poten-
tial for the catalysis of short-chain hydrocarbons. Three MAGs from Family-7.3 are
identified as alkanotrophs due to the detection of an Mcr complex. Family-2 con-
tains the largest number of genes relevant to alkyl-CoM transformation, indicating
the potential for methylotrophic methanogenesis, although their evolutionary his-
tory suggests the ancestor of Ca. Bathyarchaeia was unable to metabolize alkanes.
Subsequent lineages have acquired the ability via horizontal gene transfer.
Overall, our study significantly expands our knowledge and understanding of the
metabolic capabilities, habitat adaptations, and evolution of Ca. Bathyarchaeia in
thermal environments.

IMPORTANCE Ca. Bathyarchaeia MAGs from terrestrial hot spring habitats are
poorly revealed, though they have been studied extensively in marine ecosys-
tems. In this study, we uncovered the metabolic capabilities and ecological role
of Ca. Bathyarchaeia in hot springs and give a comprehensive comparative analy-
sis between thermal and nonthermal habitats to reveal the thermal adaptability
of Ca. Bathyarchaeia. Also, we attempt to determine the evolutionary history of
methane/alkane metabolism in Ca. Bathyarchaeia, since it appears to be the first
archaea beyond Euryarchaeota which contains the mcrABG genes. The reclassifica-
tion of Ca. Bathyarchaeia and significant genomic differences among different lin-
eages largely expand our knowledge on these cosmopolitan archaea, which will
be beneficial in guiding the future studies.
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Candidatus Bathyarchaeia were originally named Miscellaneous Crenarchaeotal Group
(MCG) and first discovered in hot springs (1) and in coastal subseafloor sediments (2)

based on community 16S rRNA gene sequencing projects. In subsequent single-cell
genomic and metagenomic surveys, the group was designated as a new archaeal phylum
and named Ca. Bathyarchaeota (3, 4), which represents a phylogenetically diverse group
that is ubiquitously distributed among a wide variety of ecosystems, such as hypersaline
(5, 6), marine (3, 7), and freshwater (8) sediments, with particularly high abundance (up to
100% of total archaeal abundance) in marine sediments (3, 9–12). More recently, accord-
ing to the Genome Taxonomy Database (GTDB), this lineage may alternatively be con-
sidered a class, Ca. Bathyarchaeia, belonging to the phylum Thermoproteota (13).
Since first being named, the current Ca. Bathyarchaeia group has been divided into
up to 23 subgroups on the basis of 16S rRNA gene phylogenies (12, 14–16). Their
ubiquity and frequent predominance in natural anaerobic microbial communities is
likely due to their capacity to metabolize multiple types of organic substrates, such as
detrital proteins, aromatic compounds, lignin, and extracellular carbohydrates (3, 4,
17–22). Also, a recent study revealed genes for the methyl-coenzyme M reductase
(mcr) complex in this lineage, expanding its distribution beyond traditional methano-
genic/methanotrophic archaeal lineages (23). Nevertheless, it has since been deduced
that the mcr genes in Ca. Bathyarchaeia likely perform alkane oxidation rather than
methane metabolism (24–27). It remains unclear whether this capacity has been
acquired via horizontal gene transfer (HGT) or was inherited vertically. Also, knowledge
gaps regarding the evolutionary history of other genes relevant to methane/alkane me-
tabolism persist, obscuring the possible role of the Mcr complex in Ca. Bathyarchaeia.

Here, using genome-resolved metagenomics, we constructed 35 Ca. Bathyarchaeia
metagenome-assembled genomes (MAGs) from the hot spring sediments of Yunnan
and Tibet in China and aim to address the following: (i) their taxonomic status by using
the software GTDB (28) to reclassify the phylogeny at the order and family levels; (ii)
their metabolic characteristics in hot spring habitats; (iii) functional differences
between Ca. Bathyarchaeia from thermal and nonthermal environments, with 60 addi-
tional Ca. Bathyarchaeia MAGs from public databases to show adaptations to thermal
environments; and (iv) the evolutionary history and origin of the potential methane or
alkane metabolism of specific lineages.

RESULTS AND DISCUSSION
General genomic features, phylogenetic placement, and distribution of Ca.

Bathyarchaeia. A total of 35 Ca. Bathyarchaeia MAGs were successfully reconstructed
from 12 metagenomic sequence data sets that were generated from sediments of hot
springs in Tibet and Tengchong, China (Table 1; see also Table S1 and Fig. S1a in the
supplemental material), which span a wide range of temperatures from 56.9 to 83.0°C
and pH values ranging from 6.0 to 7.6. Large variations in the relative abundance of
these Ca. Bathyarchaeia (from 0.05% to 10%) were observed in the 12 metagenomic
data sets from these sediments (Fig. S1b). A total of 19 and 16 MAGs were obtained
from the Tengchong and Tibet hot spring metagenomes, respectively (Fig. S1a). The
genomic sizes of these MAGs are approximately 1.08 to 1.98 Mbp (average 1.48 Mbp)
with an average of 1,640 genes encoded (Table S1). Of these 35 genomes, 17 are con-
sidered “high” and 18 considered “medium” quality, ranging from 62.6 to 99.1% com-
pleteness, with nearly undetectable contamination at an average level of 1.13%
according to Bowers et al. (29) (Table S1). Along with the MAGs from hot spring ecosys-
tems generated in this study, 60 MAGs with medium and high quality (completeness of
$50.34%) available in the NCBI and IMG databases were coinvestigated. These 60
MAGs are widely distributed among many habitat types, including bioreactor, estuary
(18, 21), freshwater (23, 30–32), hydrothermal vent (17, 22, 33, 34), ocean (32, 35–37),
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and soil (32, 37) environments (Data Set S1). The wide distribution and broad phyloge-
netic diversity of these Ca. Bathyarchaeia MAGs suggest a high level of genomic and/
or phenotypic plasticity, which may allow them to occupy a wide range of habitats.

Studies of Ca. Bathyarchaeia diversity relying on the 16S rRNA gene identified up to
23 subgroups (16) (Fig. 1a). In our study, 12 of these 23 subgroups were identified as
having representative genomes (Fig. 1a and b), while 13 of the 95 Ca. Bathyarchaeia
genomes (14%) could not be categorized within the existing subgroups due to the
lack of 16S rRNA genes. This is not surprising, as MAGs commonly lack 16S rRNA gene
sequences due to assembly technique biases or poor genome completeness (33).
While traditionally 16S rRNA-based classification has been useful to classify taxonomic
groups such as the Ca. Bathyarchaeia, limited metabolic information can be inferred
from analysis of this single gene. Therefore, reclassification of this group based on
MAGs is necessary. To do this, we used the GTDB genome classification software as an
objective measure of taxonomic assignment (38). GTDB is a genome-based taxonomy
with phylogenetic consistency that provides rank-normalized classifications for
genomes from domain to genus (28), which has previously been missing in the classifi-
cation of the phylogenetically diverse Ca. Bathyarchaeia. By applying this strategy, all
95 Ca. Bathyarchaeia MAGs were assigned to seven orders and 15 families (Fig. 1b).
Order-1, -2, -3, -4, and -5 were found to correspond to Subgroup-21, -22, -17, -18, and
-15, previously utilized by Zhou et al. (16) (Fig. 1a), which had the lowest amino acid
identity (AAI) (40% to 51%) between each of the order groupings. The MAG
ex4484_135 was found to be the sole representative of the sixth order. The remaining
subgroups form the seventh order had the lowest intra-order AAI, at 44%. Of the 35
MAGs newly assembled in this study, they organized into five orders covering nine
families (Family-1.1, -1.2, -1.3, -3.1, -4.1, -4.3, -5, -7.2 and -7.4). Six MAGs were assigned
to Subgroup-7 and represent the first genomes in this group (Fig. 1b). Likewise, four
families, Family-1.1, -1.2, -3.1 and -4.1, represent novel lineages solely represented by
MAGs from the Tibet and Tengchong hot springs. An obvious outcome of this compar-
ative analysis was the high level of congruence between the 16S rRNA and GTDB trees
(Fig. 1a and b). Apart from the inversion of Order-3 and -4, along with MAGs within
Family-7.3, there were little differences between these taxonomies. These results also
suggest further work needs to be done to link existing 16S rRNA and MAGs and iden-
tify more Ca. Bathyarchaeia MAGs and 16S rRNA genes from environmental samples.

Potential metabolic capabilities of hot spring Ca. Bathyarchaeia. Analysis of
open reading frames for central metabolic pathways in the hot spring-associated Ca.
Bathyarchaeia MAGs Family-3.1, -4.1, and -4.3 revealed the presence of a complete
Embden-Meyerhof-Parnas (EMP) glycolysis pathway, whereas other Ca. Bathyarchaeia
families only contain a partial EMP pathway (Fig. 2, Data Set S2). Genomes in Order-2,
-5, and -7 and Family-1.2, -1.3, -4.1, and -4.3 harbor genes for the gluconeogenesis
pathway for synthesizing glucose-6-phosphate (or fructose-6-phosphate) from the
non-carbohydrate-precursor oxaloacetate (Fig. 3). All the Ca. Bathyarchaeia lineages
appear to utilize the pentose phosphate pathway (PPP) to generate pentoses and
ribose 5-phosphate (R5P), a precursor for the biosynthesis of nucleotides and aromatic
amino acids, such as histidine. The MAGs from Family-4.2 and -7.2 have the potential
to further convert the R5P into phosphoribosyl pyrophosphate (PRPP) after entering
the nonoxidative phase of PPP. However, most other lineages, including Order-1 and
-2 and Family-3.1, -4.1, -4.3, -7.3, and -7.4 lack genes for the nonoxidative phase and
would likely employ a reverse ribulose monophosphate pathway to perform this same
function (39) (Fig. 2 and 3, Data Set S2). Interestingly, Order-5 contains both gene sets,
indicating flexibility in the conversion of PRPP and further promoting the synthesis of
amino acids and nucleotides (Fig. 3). Consequently, the core metabolic capabilities
associated with central carbon processing appear to be similar between these thermo-
philic Ca. Bathyarchaeia MAGs.

Beyond carbon flow in central metabolic pathways, the hot springs Ca. Bathyarchaeia
also appear to metabolize a wide range of carbohydrates. The annotation of
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carbohydrate-active enzymes (CAZymes) in these MAGs suggested two distinct patterns
that correspond to the phylogeny of these organisms (Fig. 4). Family-1.2, -1.3, and -7.2
each contained an unusually high number of CAZymes, ranging from 36 to 74 CAZymes
in Family-1.2 and -1.3 MAGs and 10 to 49 CAZymes in Family-7.2 MAGs. In contrast,
MAGs in the other families contained 11 or fewer CAZymes, except for the MAG
QZM_A2_bin_28 from Family-1.1, which contained 24 CAZymes. This pattern suggests
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the possible catabolic use of a variety of polysaccharides by members of Family-1.2, -1.3,
and -7.2, including alpha-glucan, cellulose, hemicellulose, chitin, lignin, pectin, aromatic
compounds, glycoproteins, and glycolipids. The other thermophilic Ca. Bathyarchaeia
likely consume few, if any, polysaccharides. The ubiquity and abundance of CAZymes in
Family-1.2, -1.3, and -7.2 of Ca. Bathyarchaeia, and their wide distribution in terrestrial
geothermal environments, suggest they may be important primary degraders of complex
organic carbon in thermophilic microbial communities. As typical heterotrophs, members
of Ca. Bathyarchaeia likely generate low-molecular-weight organic compounds to pro-
mote the growth of other microorganisms. This would not only facilitate the conversion
of biomass to more usable forms, but also would expand ecological niches within their
community and allow them persist in these extreme environments (40).

It appears that the Ca. Bathyarchaeia MAGs are able to metabolize acetate via two
distinct pathways. Specifically, the archaeal-type acetate-forming gene encoded by
ADP-forming acetyl-CoA synthetase (acd) is found in many lineages, including Order-2,
-3, and -5 and Family-4.1, -4.3, -7.2, -7.3, and -7.4 (Fig. 2 and 3). Alternatively, the bacte-
rial-type acetate-forming genes phosphate acetyltransferase (pta) and acetate kinase
(ack) were detected in Family-1.3, -2, and -7.2 MAGs, which are exclusively distributed
in hydrothermal vent environments. This result indicates the ability to produce acetate
by Ca. Bathyarchaeia can be lineage, or at least environment, specific. Also, Family-4.3
from hot springs may have the potential to form acetate, since all four MAGs in this lin-
eage contain the ack gene (Data Set S2). Ca. Bathyarchaeia utilization of acetate has
been demonstrated previously in 13C-labeled acetate incubations of estuarine sedi-
ments (41–43). Furthermore, the presence of alcohol dehydrogenases among MAGs
from Family-1.2, -1.3, -4.1, -4.3, and -5 and Order-7 suggests they may have the ability
to ferment other small organic compounds (18) (Fig. 3).

Previously, it has been suggested that Ca. Bathyarchaeia perform carbon fixation
via bacterial and archaeal type Wood–Ljungdahl (WL) pathways (22). In the 35 Ca.
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Bathyarchaeia MAGs from hot springs, all families contain the key enzyme involved in
carbon fixation via the WL pathway, the carbon monoxide dehydrogenase/acetyl-CoA
synthase complex (cdh/acs), which catalyzes the reversible reduction of acetyl-CoA
from methyl-tetrahydromethanopterin (Fig. 2, Data Set S2). Seven of nine families
(Family-1.1, 1.2, -1.3, -4.1, -4.3, -5, and -7.2) from hot springs possess the complete arch-
aeal-type WL pathway with tetrahydromethanopterin (H4MPT) as C1-carrier (Fig. 2). The
ability to fix carbon dioxide via the WL pathway and form acetate has been predicted
previously in Ca. Bathyarchaeia and supported by the activity of heterologously
expressed Ca. Bathyarchaeia acetate kinase in vitro (17). The nearly complete archaeal-
type of WL pathway in Family-3.1 and -7.4 suggests they may also have the capacity to
fix carbon dioxide. However, the 5,10-methylenetetrahydromethanopterin reductase
(mer) was not recovered in MAGs from these two families. This suggests they may uti-
lize an alternative and unknown complex to perform this same function. Also, by using
tetrahydrofolate as C1-carrier, some Ca. Bathyarchaeia can fix carbon dioxide via the
bacterial type of WL pathway (44). In particular, Family-5 harbors all genes necessary
for the bacteria-type WL pathway, including the key enzyme formate dehydrogenase
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(fdhA), which converts CO2 to formate, with the exception of methylenetetrahydrofo-
late reductase (metF), which is absent (44). Ca. Bathyarchaeia are presumably able to
take advantage of both WL pathway types to conserve energy, promoting their adapt-
ability to thrive across several environments.

Neither an ATP-citrate lyase nor citrate synthase were detected in any of the 35 hot
spring-derived MAGs, suggesting the inability of the tricarboxylic acid cycle (TCA cycle)
and reductive tricarboxylic acid cycle (rTCA cycle) to function in Ca. Bathyarchaeia. The
ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene, an important com-
ponent of the Calvin-Benson-Bassham (CBB) cycle, was observed in Order-1, Family-3.1,
-4.1, -4.3, and -5, but not Family-7.2 and -7.4 (Data Set S2). Phylogenetic analysis
showed that most RuBisCO gene sequences affiliated with the form-III type enzymes
(Fig. S2), which may be involved in the pathway for AMP metabolism. We rule out the
possibility of a carbon fixation pathway using the CBB cycle due to the lack of phos-
phoribulokinase in all Ca. Bathyarchaeia genomes (45) (Data Set S2). The wide detec-
tion of genes involved in the AMP metabolism pathway, including adenine phosphori-
bosyltransferase, AMP phosphorylase, and ribose 1,5-bisphosphate isomerase, gives
further supporting evidence for the role of Ca. Bathyarchaeia RuBisCO enzymes in the
metabolism of AMP. The end product of this AMP pathway, glycerate-3-phosphate
(G3P), would then enter the previously mentioned EMP glycolysis pathway.

Comparative genomics of Ca. Bathyarchaeia from thermal and nonthermal
environments. Although Ca. Bathyarchaeia have been reported to have an evolution-
ary origin in hot environments (22), attributes specific to thermophilic Ca.
Bathyarchaeia remain unknown. Comparative genomics was leveraged to reveal
genomic features that are specific to the thermophilic lineages. The similar complete-
ness of the Ca. Bathyarchaeia MAGs from thermal and nonthermal environments,
88.40% and 86.70% mean estimated completeness, respectively, ensures the validity of
the comparison between these groups (Fig. 5a). The average genome size of the ther-
mophilic MAGs was 1.42 Mbp and was significantly less than nonthermophilic MAGs at
1.65 Mbp (Mann-Whitney U test, P=0.004362; Fig. 5b). Consequently, the thermophilic
MAGs on average contained fewer putative open reading frames at 1,578, compared
to the nonthermophilic MAGs at 1,918 open reading frames (Mann-Whitney U test,
P=2.51� 1024; Fig. 5c). However, this decreased number of open reading frames was
slightly offset by a higher coding density in the thermophilic MAGs, of 88.54% com-
pared to 85.55% in the nonthermophilic MAGs (Mann-Whitney U test, P= 6.68� 1025;
Fig. 5d). A possible explanation for these differences is that thermophilic microorgan-
isms favor small genomes from reduced noncoding regions driven by the so-called ge-
nome streamlining process (46–48). A whole-genome comparison of all the 77 MAGs
based on KEGG Orthology (KO) showed them clustering into four distinct groups (the
ANOSIM test, R=0.57, P=0.001; Fig. 5e). It appears the taxonomic lineage and the hab-
itat type work in concert to shape the clustering pattern of these MAGs (Fig. 5e).
Notably, only one of the four KO clusters is solely constituted by MAGs from thermal
environments and comprises Family-1.1, -1.2, -1.3, -7.1, and -7.2. While the thermal and
nonthermal clusters for the three families of Order-4 were well distinguished based on
their phylogenetic relationships (Fig. 5f), thermal and nonthermal MAGs in Family-7.4
were not well separated (Fig. 5g). KEGG Orthology (KO) functional gene profiling
revealed significant differences between thermal- and non-thermal-derived MAGs
(Fig. 5h), with genes related to cell growth and death, signal transduction, replication
and repair, energy metabolism, and metabolism of terpenoids and polyketides being
more enriched in nonthermal MAGs (Fig. 5h). In contrast, genes relevant to carbohy-
drate metabolism are more abundant in the thermal MAGs, which appears to be
mainly driven by the previously discussed CAZymes in Family-1.2, -1.3, and -7.2 (Fig. 4).

To further explore the distribution of carbohydrate metabolism capabilities in the Ca.
Bathyarchaeia MAGs, CAZy-based annotation of these genes was conducted. Consistent
with the above results (Fig. 4), the thermal-derived MAGs from Family-1.2, -1.3, and -7.2
harbor a significantly higher number of CAZymes related to carbohydrate degradation
compared to nonthermal lineages (least significance difference test, all P values, 0.05;
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Fig. 5i). Specifically, genes associated with the degradation of cellulose (b-glucosidase,
endoglucanase), hemicellulose (a-L-fucosidase), pectin (a-L-rhamnosidases), oligosaccha-
rides, and other polysaccharides are more enriched in these three families (Fig. 5j; Data
Set S3). Family-1.1 and -7.1, both exclusively from thermal habitats, do show a higher
number of CAZymes than most nonthermal lineages, although this result was not signifi-
cant. The likely ability to utilize a wide range of carbohydrates by Family-1.2, -1.3, and -7.2
is a likely driver for the evolutionary differentiation and may be a vital strategy for survival
in thermal environments. Hence, we propose a plausible evolutionary scenario where
these thermophilic Ca. Bathyarchaeia utilize a variety of polysaccharides as part of a gen-
eralized heterotrophic metabolism in nutrient-poor and extreme geothermal environ-
ments, as previously suggested for other saccharolytic thermophiles (40).

While carbohydrate utilization is one mechanism associated with some thermo-
philic Ca. Bathyarchaeia, other thermophilic MAGs also included diverse molecular
chaperones, including heat shock proteins (HtpX and Hsp20) and DNA repair enzymes
(RadAB) (Fig. S3). These mechanisms are similar to those commonly utilized by other
thermophilic microbes to deal with heat stress (49). However, these genes were found
across all Ca. Bathyarchaeia MAGs, suggesting they were retained from the thermo-
philic ancestor of the Ca. Bathyarchaeia. One key determinant of thermophily is reverse
gyrase (rgy), which was detected only in thermal-derived bathyarchaeial families,
including Family-1.2, -1.3, -2, -4.1, -6, -7.2, and -7.4. Further phylogenetic analysis
reveals a complicated evolutionary history of the rgy gene, with frequent HGTs
detected (Fig. 6). It is likely that Ca. Bathyarchaeia MAGs containing the rgy genes are
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obligate thermophilic organisms. This result is further supported by the absence of the
DnaK-DnaJ-GrpE chaperone system in the thermal Ca. Bathyarchaeia, as this system is
considered to be important to mesophiles (50). The widespread presence of the
DnaK-DnaJ-GrpE genes in mesophilic MAGs and in those thermophilic MAGs without
rgy suggests this may be the case. Interestingly, two genomes (M10_bin185 and
DRTY-6_2_bin_141) contain both the rgy gene and DnaK-DnaJ-GrpE chaperone sys-
tem, suggesting they may have the ability to grow and/or survive in a wider range
of temperatures.

Evolution of methane and alkane metabolism in Ca. Bathyarchaeia.While many
Ca. Bathyarchaeia appear to be heterotrophs, two Ca. Bathyarchaeia MAGs were
recently shown to possess genes for the methyl-coenzyme M reductase (mcrABG) com-
plex, a key enzyme involved in methane/alkane metabolism. These two MAGs were the
first archaea outside of the classic methanogen/methanotroph lineages to be identi-
fied with these genes (23). Their Mcr complexes fall into a cluster that also contains
mcr genes from the Halobacteriota (per GTDB), including Ca. Syntrophoarchaeum (25),
Archaeoglobi (51), Ca. Methanoliparia (52), and Ca. Hadarchaeota (27, 53), along with
members from the Ca. Helarchaeales (54). Phylogenetic analysis places all of these
mcrABG sequences into a lineage distant from traditional archaeal methanogens and
methanotrophs (Fig. S4) and suggests they are involved in the oxidation of short chain
alkanes such as butane/propane, rather than methane metabolism (25). While it has
been suggested that these Ca. Bathyarchaeia may conduct alkane oxidation, the detec-
tion of genes for b-oxidation and acetyl-CoA oxidation pathways suggest these mcr-
containing Ca. Bathyarchaeia may have metabolic capabilities similar to those pro-
posed for the alkane-oxidizing Ca. Syntrophoarchaeum (25). Given the multiple copies
of Mcr genes in Ca. Syntrophoarchaeum, and phylogenetically diverse taxa containing
related Mcr complexes, we speculate that the Mcr complexes in Ca. Bathyarchaeia, Ca.
Hadarchaeota, and Ca. Helarchaeales are likely to have been derived from Ca.
Syntrophoarchaeum via HGT events (Fig. S4). This result would be consistent with
other suggestions that HGT is a driver of the transfer of this gene complex (54).

Along with the Mcr complex, a variety of other methanogenesis-related genes were
detected in the Ca. Bathyarchaeia MAGs. Most methanogens encode the membrane-
bound tetrahydromethanopterin S-methyltransferase (mtrABCDEFGH) complex, catalyz-
ing the energy-conserving (Na1-translocating) methyl transfer from methyltetrahydro-
methanopterin (H4MPT) to coenzyme M (CoM-SH). For the Ca. Bathyarchaeia, Family-2
appears to be the only lineage that possesses genes that would encode a nearly com-
plete MTR complex (Data Set S4), and the reason for their presence in these MAGs
remains unclear. While mtrAH genes were detected in 6 of 35 terrestrial thermophilic
Ca. Bathyarchaeia, it has been reported previously that mtrAH genes in Nitrososphaeria
would likely encode for corrinoid and methyltransferase proteins that would allow for
the assimilation of unknown methylated compounds (23, 27, 55). Given the wide-
spread nature of these mtrAH genes in the Ca. Bathyarchaeia, phylogenetic trees of
mtrA genes were generated to better understand their evolution (Fig. 7a). This analysis
showed that mtrA genes from nonthermophilic Ca. Bathyarchaeia clustered into a sin-
gle group, suggesting an ancient HGT event with the bacterial phylum Actinobacteriota
as the potential donor (Fig. 7b). Alternatively, the thermophilic Ca. Bathyarchaeia mtrA
sequences form two separate clusters and appear to have two independent evolution-
ary histories (Fig. 7). Likewise, cluster 3 from the thermophilic lineages is relatively con-
served, though their ancestor may have been transferred from Halobacteriota or
Methanobacteriota (Fig. 7d). While this result appears clear, the presence of
Asgardarchaeota mtrA genes with low bootstrap values suggests the placements of
these Ca. Bathyarchaeia mtrA sequences may change as additional sequences are dis-
covered. No obvious HGTs are detected for the ancestor of the mtrA genes derived
from terrestrial thermal habitats in cluster 2, given that Thermoproteia sequences form
a sister lineage (Fig. 7c). It also needs to be mentioned that the Ca. Bathyarchaeia from
Family-2 are exclusively from hydrothermal habitats and again suggests thermophilic
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mtrA genes from terrestrial (cluster 2) and marine (cluster 3) ecosystems have different
evolutionary histories.

Amalgamated likelihood estimation (ALE) analyses consolidate the inference that a
speciation event, rather than other gene acquisition, occurred for mtrA genes in
Family-4.2 (Fig. 8). These results suggest the mtrA gene homologs in Order-4 have a
thermal origin in the ancestor of Order-4 and may have acquired this gene horizontally,
while it is preserved in Family-4.1 and -4.3 but lost in Family-4.2. Furthermore, to sus-
tain the ability to metabolize unknown methylated substrates, Family-4.2 mtrA genes
evolved to function in nonthermal habitats. While the Ca. Bathyarchaeia in nonthermal
environments and terrestrial hot springs contain genes for a partial Mtr complex
(mtrAH), the Ca. Bathyarchaeia in submarine hydrothermal vents harbor genes that
would generate a nearly complete Mtr complex. Furthermore, sequence identities
among all mtrA genes confirm the independent evolutionary trajectories among the
three groups (Fig. 7e). In contrast to the clear evolutionary pattern for mtrA genes, the
mtrH subunit shows a much more complicated evolutionary history, where HGT signals
are frequently observed among different lineages (Fig. S5).

To better understand the origin and evolution of the suggested alkane metabolism
in Ca. Bathyarchaeia, all related genes were recruited into an ALE analysis. Results sug-
gest that the Ca. Bathyarchaeia ancestor may have synthesized acetyl-CoA from ace-
tate, fixed carbon dioxide via the WL pathway, and harbored many genes for electron
transport and energy conservation, including etfAB, hdrABC, hdrD, glcD, frhB, fpo-like
complex genes, and V/A-type ATPase genes (Fig. 8). This analysis also suggests the
ancestor did not have the ability to oxidize alkanes due to the lack of the Mcr complex,
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which is consistent with the inference that it was a HGT event from a Ca.
Syntrophoarchaeum or similar alkane-oxidizing archaeon into the Family-7.3 MAGs
(Fig. 8). Not surprisingly, this Ca. Bathyarchaeia lineage contains 24 of the 38 methano-
genesis marker proteins that have been reported previously (52). Likewise, there is a
clear pattern from the ALE analysis that shows the ancestor of all Ca. Bathyarchaeia
was unable to metabolize methylated compounds, such as those for methanol and (di/
tri)-methylamine utilization via mtaA, mtbB, mtmB, and mttBC genes in Family-2 (Data
Set S4), and have only been picked up by certain lineages. Also, it is likely that gene
duplication of these methyl group utilization genes is another driver of metabolic diver-
sity. For the acyl-CoA oxidation module, b-oxidation and acetate production via the acd
gene or pta-ack pathway have been acquired via HGT, with the pta-ack pathway appear-
ing to have only been acquired by MAGs from hydrothermal vent environments (Fig. 8).
b-Oxidation appears in many lineages, including Family-7.3, which is consistent with the
function of Family-7.3 predicted to perform butane/propane oxidation using a similar
mechanism to that suggest in Ca. Syntrophoarchaeum (25). However, this remains unpro-
ven due to the lack of experimental confirmation. Taken together, these results suggest
that the ability of Family-7.3 MAGs to potentially oxidize alkanes is the result of HGT
rather than vertical decent from a common ancestor. However, we still cannot rule out
the possibility that the common ancestor of Family-7.3 and Family-2 may have had this
ability, due to the prevalence of genes for alkyl-CoA transformation described previously
(53) and several methanogenesis marker genes (Fig. 8) in Family-2.

Regarding the coenzyme recycling and energy conservation module, most genes
undergo frequent HGT, accompanied by substantial gene duplication events. For
example, both ech and mrp complexes in Family-2 are acquired horizontally, providing
sufficient energy for the conversion of methylated compounds (Fig. 8). Similar to
Methanomethylicia (24) (formerly Ca. Verstraetearchaeota phylum) and Korarchaeia (52)
(formerly Ca. Korarchaeota phylum), Ca. Bathyarchaeia harbor F420H2:phenazine oxidor-
eductase (fpo), but lack the fpoFO subunits (Data Set S4), suggesting the inability to

Coenzyme 
recycling 

and 
energy 

conservation

mcrABGCD
mtrA
mtrH
mtaA
mttBC
mtbB
mtbC
mtmB
pta-ack
acd
ACSS
Beta-oxidation
etfAB

mvhADG
hdrABC
hdrD
glcD
frhB
echA-F

Wood-Ljungdahl pathway

Alkane
activation

Acyl-CoA
oxidation

1
2
3

5

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

No. of methanogenesis markers

4

6
7

Speciation

HGT

Duplication

Loss
1

2

2

2

2

4

7

9

9

9

14

21 24

25

Alkyl-CoM
transformation

7.2

4.1

4.2

1.2

4.3

1.1

5

6

7.1

2

7.4

3.1

7.3

3.2

1.3

8

8

16

20

20

23

16

16

14

15
2

10

15

16

25

6 8

24

2

9

84 6

18

8

16

16

16
18

Family

Frequent HGT events

MAGs BA1/2 and UBA589 contain mcrABG genes

14 14

14

14

14

14

14

14

14

10

10

10

10

10

10

10

12

12

12

12

12

12

12

11

15

15
15

15

15

18 18

18

18

18

18

18

18

19

19

19

19

19
19

19

19

19

21

25 25

25 25

25 25

25

25

hyaAB

23
fpo-like A-N

24
mrpA-G

25
F-type ATPase
V/A-type ATPase

13

17 18

19 22 25

Ancestral state

1

2

2

7

1

2

2

1

1

1

1

2

15

3

Family-2 acquires near complete Mtr complex horizontally 

4

FIG 8 Evolutionary history reconstruction of methane/alkane metabolism in Ca. Bathyarchaeia. The cladogram shows the phylogenetic position of all
genomes from Ca. Bathyarchaeia, which is the same as in Fig. 1. Families with more than one genome are collapsed. Different shapes on each node depict
different evolutionary events, including speciation, duplication, HGT, and loss; colors represent genes from different functional modules. The numbers of
methanogenesis marker genes in each family are shown in left-facing triangles adjacent to family numbers.

Qi et al.

July/August 2021 Volume 6 Issue 4 e00252-21 msystems.asm.org 14

https://msystems.asm.org


reoxidize reduced F420 for energy conservation seen in some methanogens (56).
Instead, they may employ the membrane-bound heterodisulfide reductase subunit D
(hdrD) to form an energy-converting ferredoxin:heterodisulfide oxidoreductase, and
concomitantly to generate a proton motive force across the cytoplasmic membrane;
this mechanism has been predicted previously in H2-dependent methylotrophic
methanogens (57). A total of 22 MAGs within nine families among the 35 MAGs from
hot spring sediments harbor the fpo-like complex and different families show quite di-
vergent cluster topologies (Fig. 9). Family-4.3 and -5 show similar fpo operon structures
as predicted methanogens from the Methanomethylicia and Korarchaeia, except for the
insertion of a fpoM copy in the operon from Family-5 (#1 and #5 in Fig. 9). Family-1.3,
-3.1, and -4.1 contain all subunits but with rearranged operon structures (#2 to #4).
Also, genome reduction in the thermophilic MAGs described previously (Fig. 5c) may
play a role in some fpo operons, as Family-1.1, -1.2, -4.3, -5, -7.2, and -7.4 appear to
have lost at least one subunit from this operon (#6 to #10). Conversely, subunits
fpoBDHL may likely be indispensable (58), as they were always present (Fig. 9). Non-fpo
genes were also identified within this operon, where hdrB2 was found in Family-4.3
and suggests alternative sources of electron transfer, such as the reoxidation of coen-
zyme M-coenzyme B heterodisulfide bonds (CoM-S-S-CoB) (#8) (59). Also, we observed
the nuoEFG genes in only one (JZ_bin_32) of the 35 thermal MAGs, which may allow
this complex to bind and oxidize NADH to NAD1 rather than electron carriers such as
F420, ferredoxin, or CoM-S-S-CoB predicted in other operons (Fig. 10a). While phyloge-
netic analyses of these nuoEFG genes place them within the phylum Chloroflexota and
suggest these genes may have been obtained via HGT (Fig. 10b), these subunits are frag-
mented and contain several termination codons, suggesting that these genes may not be
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functional. Interestingly, the sequence coverage depth of the nuoEFG-containing scaffold
is high at;80� across the assembled scaffold (Fig. 10c).

In conclusion, the present study taken as a whole largely expands the current diver-
sity of Ca. Bathyarchaeia MAGs and shows that many of the hot spring-associated line-
ages are able to fix carbon dioxide and heterotrophically degrade a variety of carbohy-
drates. Also, it appears that these thermophilic Ca. Bathyarchaeia MAGs have evolved a
greater number of genes related to carbohydrate degradation and their genomes have
undergone genome streamlining consistent with these environments. Furthermore,
we show that two lineages may have the ability to metabolize methane/alkane due to
the wide detection of genes related to methanogenesis and/or alkane oxidation.
Evidence also shows that the acquisition of these metabolic capabilities is likely the result
of HGT rather than vertical inheritance. Overall, this study largely expands the
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understanding of metabolic capacities and evolution of Ca. Bathyarchaeia lineages, pro-
viding clues for the further discovery of lineages and future isolation of this widespread
archaea, while shedding light on the metabolic capabilities of early life on earth.

MATERIALS ANDMETHODS
Sample site, DNA extraction, and metagenomic sequencing. One hot spring sediment sample JZ

was obtained in 2016 and three hot spring sediment samples, including JZ-2_2, DRTY-6_2, and DRTY-
8_2 were obtained in 2017 from Tengchong, Yunnan, China. Eight hot spring sediment samples, includ-
ing DGJ8, DGJ10, QZM_A1, QZM_A2, QZM_A2_3, QZM_A3, QZM_B1, and QZM_B4 were obtained in
2016 from Tibet, China. Sample JZ and JZ-2_2 came from the same place, JinZe Hot Spring Resort in
DianTan county (25°26 N, 98°28 E); samples DRTY-6_2 and DRTY-8_2 came from two different pools of
DiReTiYan Zone in Rehai Geothermal National Park (24°57 N, 98°26 E); sample DGJ8 and DGJ10 came
from two different pools of DaGeJia ChangMaQu east coast in AngDa county (29°36 N, 85°45 E); samples
QZM_A1, QZM_A2, QZM_A2_3, QZM_A3, QZM_B1, and QZM_B4 came from six different pools of
QuZhuoMu village in CuoNa county (28°15 N, 91°49 E). These samples span a wide range of temperature
from 56.9 to 83.0°C and pH values ranging from 6.0 to 7.6. The sample collection, DNA extraction, and
metagenomic sequencing are described in a previous study (60).

Metagenomic assembly and genome binning. Raw metagenomic reads were generated on an
Illumina Hiseq 4000 sequencer were quality filtered to obtain quality reads as described previously (61).
Clean reads from each sample were assembled independently using SPAdes v3.9.0 (62) with the follow-
ing parameters: -k 21,33,55,77,99,127 –meta. The assembled scaffolds with lengths of .2,500bp were
kept for further analysis. Genome binning was conducted using Metabat v2.12.1 (63) and ESOM
(Emergent Self-Organizing map) v1.1 (64). Specifically, sequence depth was calculated by mapping qual-
ity reads from each sample to the assembled scaffolds separately using BBMap v38.85 (http://
sourceforge.net/projects/bbmap/) with parameters as follows: k = 15 minid = 0.9 build = 1. MAGs were
generated using Metabat by considering both the sequence depth and tetranucleotide frequency (TNF)
information. The genome completeness, contamination, and strain heterogeneity of each MAG were
evaluated using CheckM v1.0.5 (65). Scaffolds from all MAGs were sheared into short fragments (5 to
10 kb) and were visualized using ESOM based on their TNF. Low-quality MAGs were manually investi-
gated and scaffolds with abnormal coverage information and discordant positions in the ESOM map
were removed, as previously described (27). Finally, cleaned reads for each MAG were recruited using
BBMap (the same parameters as mentioned above) and were reassembled using SPAdes with the follow-
ing parameters: –careful -k 21,33,55,77,99,127. A total of 35 genome bins belonging to Ca. Bathyarchaeia
were obtained from this process for further analysis.

Functional annotation of genome bins. Gene calling for each MAG was conducted using Prodigal
v2.6.3 (66) with the “-p single” option. Functional annotation was determined by comparing predicted
genes against the National Center for Biotechnology Information (NCBI) nonredundant (nr), Kyoto
Encyclopedia of Genes and Genomes (KEGG) (67), Archaeal Clusters of Orthologous Genes (arCOG) (68), and
the Pfam protein families (Pfam) databases (69) using DIAMOND v0.8.22.84 (70) with E valueof ,1e25. All
predicted open reading frames were searched against the dbCAN2 (71) meta server v9 online to find homo-
logs associated with the degradation of carbohydrates. The carbohydrate-degrading enzymes were further
classified using the carbohydrate-active enzymes database (72) and CAZypedia (73). The utilized substrates
linked with specific CAZY genes were reported in previous published literature (74–81).

Phylogenetic analysis. In total, 95 Ca. Bathyarchaeia MAGs including 35 from this study and 60
from currently available public databases (NCBI refSeq and IMG databases, downloaded 7 June 2019)
with more than 50% genomic completeness and less than 10% genomic contamination were collected
for the phylogenomic tree reconstruction. The 95 Ca. Bathyarchaeia MAGs were incorporated into the
GTDB-tk v0.2.2 (82), an open-source toolkit for the taxonomic classification of genome and MAG assem-
blies with 122 concatenated archaeal single-copy marker protein sequences. The concatenated align-
ment was used to generate phylogeny by applying IQ-TREE v1.6.10 (83) with the mixture model of
LG1F1R8 and with 1,000 ultrafast bootstrapping. The best model was determined by ModelFinder (84),
which is well supported by Bayesian information criterion (BIC).

A phylogenetic tree based on 16S rRNA gene was generated using RNAmmer v1.2 (85) to identify nearly
complete 16S rRNA genes in the 95 Ca. Bathyarchaeia genomes, with the parameters as following: -S arc
-multi -m ssu. MAG DNA sequences were searched using the BLASTn program (86) against RDP database
(87) (downloaded 18 October 2018) to detect partial 16S rRNA genes not detected by RNAmmer. Only
sequences with lengths.300 bp were taken into consideration. The 16S rRNA gene sequences of 23 Ca.
Bathyarchaeia subgroups classified by Zhou et al. (16) and Feng et al. (22) were used as phylogenetic
anchors. All sequences were aligned together using the MAFFT v6.864b (88) online server with the strategy
as follows: iterative refinement method “FFT -NS –I.” The poorly aligned regions were trimmed by TrimAl
v1.4.rev22 (89) with the parameters as follows: -gt 0.05 -cons 50. The 16S rRNA gene phylogeny was gener-
ated using IQ-TREE by iterating 1,000 times and the best-fit model was SYM1R10.

For the gene taxonomies of mtrA, rgy, mtrH, and nuoEFG, amino acid sequences were downloaded
from NCBI by applying BLAST searches with the corresponding sequences from present Ca.
Bathyarchaeia MAGs as inputs. Gene sequences of mcrABG from previous studies were used for analyses
(27). Individual genes were aligned using MUSCLE v3.8.31 (90) by iterating 100 times. Gene complexes,
such as nuoEFG and mcrABG, were concatenated. Poorly aligned regions were eliminated using TrimAl
with the same parameters as above. Phylogenies were reconstructed using IQ-TREE with ultrafast
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bootstrapping (-bb 1000), as well as Shimodaira-Hasegawa-like approximate likelihood-ratio test (SH-
aLRT, -alrt 1000). The best models are reported in the corresponding figure legends.

All phylogenetic trees were visualized using iTOL v3 (91).
Comparative genomics between thermal environments and nonthermal environments. Genomes

with completeness of $70% were picked for comparative genomics analysis, resulting in 77 of the 95 Ca.
Bathyarchaeia MAGs being selected, and were further classified into thermal and nonthermal groups based
on their habitat temperature. PCA clustering analyses based on Euclidean distances were performed for
selected genomes annotated with the KEGG database using vegan package v2.5-6 (92). Significant differen-
ces among groups were examined using the analysis of similarities (ANOSIM). The differences of relative
abundances of KEGG categories were examined between two groups using the Wilcoxon rank-sum test. All
P values were adjusted using the “BH” correction in R. The comparisons of CAZyme number in each Ca.
Bathyarchaeia family pair was analyzed by the least significant difference (LSD) test.

Evolutionary history reconstruction of alkane and methane metabolism. Genes related to alkane
activation, alkyl-CoM transformation, acyl-CoA oxidation, carbon fixation via Wood-Ljungdahl pathway,
and coenzyme cycling and energy conservation were selected for the present analysis. Putative protein-
coding sequences were picked from all 95 Ca. Bathyarchaeia genomes and aligned using MUSCLE.
Poorly aligned regions were eliminated using TrimAl and phylogenies of selected genes were generated
using IQ-TREE. To infer the potential evolution scenarios of gene gain, duplication, transfer, and loss
(DTL), amalgamated likelihood estimation (ALE) was used to calculate the likelihood for each of the 98
gene families encoded by 95 Ca. Bathyarchaeia genomes. The species tree was constructed on a concat-
enation of 122 conserved single-copy genes, as described above. The rates of DTL were inferred from
the data using maximum likelihood optimization and reconciliations between gene trees and species
tree were conducted using the ALEml_undated algorithm in the ALE package (93).

Data availability. Metagenome-assembled genomes described in this study have been deposited to
NCBI under the BioProject PRJNA544494: BioSample id SAMN18244059, SAMN18244060, SAMN18253264,
SAMN18253267, SAMN18253270, SAMN18838809 to SAMN18838815, and the accession numbers are
JAGTQA000000000 to JAGTQZ000000000, JAGTRA000000000 to JAGTRI000000000. The data sets generated
during and/or analyzed during the current study are available from the corresponding author upon reasona-
ble request.
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