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Abstract

The Human Betaherpesviruses HHV-5 and HHV-6 are quite inimical in immunocompromised hosts individually. A co-
infection of both has been surmised to be far more disastrous. This can be attributed to a synergetic effect of their combined
pathologies. While there have been attempts to develop a vaccine against each virus, no efforts were made to contrive an
effective prophylaxis for the highly detrimental co-infection. In this study, an ensemble of viral envelope glycoproteins from
both the viruses was utilized to design a multi-epitope vaccine using immunoinformatics tools. A collection of bacterial
protein toll-like receptor agonists (BPTAs) was screened to identify a highly immunogenic adjuvant for the vaccine construct.
The constructed vaccine was analysed using an array of methodologies ranging from World population coverage analysis
to Immune simulation, whose results indicate high vaccine efficacy and stability. Furthermore, codon optimization and in
silico cloning analysis were performed to check for efficient expression in a bacterial system. Collectively, these findings
demonstrate the potential of the constructed vaccine to elicit an immune response against HHV-5 and HHV-6, thus support-
ing the viability of in vitro and in vivo studies.
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Abbreviations PDB Protein Data Bank
HHV-5 Human Herpesvirus 5 TLR4 Toll-like Receptor 4
HHV-6  Human Herpesvirus 6

HCMV  Human Cytomegalovirus

PDGFR Platelet-derived growth factor receptor Introduction

MHC Major Histocompatibility Complex

HLA Human Leukocyte Antigen Human herpesvirus 5 (HHV-5), also known as the Human
IEDB Immune Epitope Database Cytomegalovirus (HCMV), belonging to the betaherpesvirus

subfamily is the cause of one of the most prevalent diseases
affecting immunocompromised hosts [1]. Belonging to the
same subfamily, Human herpesvirus 6 (HHV-6) is an immu-
notropic virus that specifically attacks cells involved in both,
humoral and cell-mediated immune responses [2]. Among
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neurological issues, hearing loss, visual impairment, and
death. Among healthy adults, the primary infection may
cause fatigue, fever, muscle aches, and rarely mononucleo-
sis. The most common symptoms following primary infec-
tion in immunocompromised adults include pneumonia,
vision loss, encephalitis, and digestive system issue [5].
HHV-6 is usually prevalent among infants, and manifests in
the form of skin rashes known as roseola. Other symptoms
include high fever, encephalitis, meningitis, liver dysfunc-
tion, or abnormalities such as granulocytopenia, wherein a
very low white blood cell count is observed [6]. Co-infection
of HHV-5 and HHV-6 mostly occurs due to their reactivation
during immunosuppressive conditions such as chemotherapy
or organ transplantation. Studies show that higher activation
rates of HHV-5 can be observed in cases with preliminary
HHV-6 infection [3]. The immunomodulatory and immu-
nosuppressive effects of HHV-6 can induce a predisposition
to HHV-5 infection or its reactivation. With their patholo-
gies having a synergetic effect, it can be understood that
a co-infection would have worse clinical implications than
infection with either one of the viruses [3]. This synergetic
co-infection has also been shown to increase the risk of fun-
gal and bacterial infections [3, 7].

The current strategy to treat an HHV-5 infection is a 6-month
prescription of the antiviral drugs Valganciclovir and Cidofovir
[1]. This strategy is limited due to not being cost-effective and
the safety concerns associated with drugs [1, 8]. For HHV-6,
antiviral drugs Foscarnet and Valganciclovir or combinations of
them are used [9]. This too is limited by their toxicity, antiviral
resistance and drug-drug interactions [10]. Another major disad-
vantage is the fact that antiviral drugs only target lytic infections
and not latent ones [11]. Vaccination, on the other hand, can
lead to the complete eradication of the viruses on a geographi-
cal level. While vaccination does not prevent the reactivation
of latent infections, it would significantly decrease the rates of
primary infections [12]. Various approaches for HHV-5 vaccine
development were considered in previous studies, ranging from
live attenuated vaccines to DNA, RNA or protein subunit-based
vaccines [11]. While live attenuated vaccines such as the Towne
attenuated strain [12] or the Towne-Toledo recombinant strain
[13] showed significant immunogenicities, they are limited
by their inherent risk of causing the disease they are supposed
to provide immunity from [14]. DNA vaccines based on the
pp65 and gB [15, 16] induced immune responses in 47.5-68%
of the seronegative subjects and an RNA vaccine based on gB
and pp65/IE1 fusion protein [17] showed antibody and T-cell
responses in almost 97% of the subjects after the second dose.
A recombinant protein vaccine derived from the envelope gB
showed only 50% efficacy against a primary HHV-5 infection
[18]. Though vaccine development for HHV-6 did not receive
the same scrutiny that HHV-5 immunization endeavours did,
efforts were put in to identify potential vaccine candidates based
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on viral protein complexes. A tetramer complex of envelope
glycoproteins gH, gL, gQ1 and gQ2 was observed to induce
immunization in mice against HHV-6 [19]. This tetramer targets
the human CD134 host receptor, which is expressed on activated
T lymphocytes. This interaction determines the HHV-6B cell
tropism and is necessary for HHV-6B entry into the vulnerable
cells.

Till date, there have been no attempts to develop a vaccine
against a co-infection of HHV-5 and HHV-6. In this scenario,
immunoinformatics tools were used to construct a multi-epitope
vaccine candidate in order to provide immunity against a syner-
getic co-infection of the two betaherpesviruses. In essence, the
present computational vaccine design study with aid of unique
glycoprotein is expressed on the virus envelope of human her-
pesvirus is indeed an important supplement in the scientific
literature of glycoprotein based therapeutics. The strain such
as AD169 for HHV-5 and U-1102 for HHV-6 were chosen
based on their quality, completeness and validity. We hope that
present study employing immunoinformatics pipeline would
provide a safer platform for vaccine development and provide
clue for the experimental biologist working in this field.

Methodology
Amino acid sequence retrieval

In this study, an ensemble of computational tools was adopted
to predict ideal vaccine candidates for the HHV-5 and HHV-6
using viral envelope glycoproteins. For the epitope prediction,
a total of 9 envelope glycoproteins from HHV-5 and 7 envelope
glycoproteins from HHV-6 were chosen. Each of these glyco-
proteins was selected due to their roles in viral attachment to the
host cells and the fusion of viral and host plasma membranes
[20-23, 25, 26]. The protein sequences were retrieved from the
UniProt database (https://www.uniprot.org/uniprot/P06473). Of
note, the strains AD169 (HHV-5) and U-1102 (HHV-6) enve-
lope glycoprotein sequences were chosen because they were
longest and experimentally verified sequence with highest
annotation scores.

Linear B-cell epitope prediction

B-cell epitope prediction was done using the ABCpred tool
(http://crdd.osdd.net/raghava/abepred/). The tool with a pre-
diction accuracy of 65.93% utilizes a Recurrent Neural Net-
work trained using a dataset consisting of 700 B-cell epitopes
and 700 non-B-cell epitopes retrieved from the SwissProt
database [28]. For the current study, a score threshold of 0.7
and an epitope length window of 10 were chosen for the pre-
dicted epitopes.
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T-cell epitope prediction
Cytotoxic T-cell epitope prediction

Cytotoxic T lymphocyte (CTL) epitope prediction from the
viral glycoprotein sequences was done using the NetMHC-
pan 4.1 tool (https://services.healthtech.dtu.dk/service.php?
NetMHCpan-4.1). NetMHCpan 4.1 employs an Artificial
Neural Networks (ANNs) to predict the peptide binding
to any MHC molecule whose sequence is known. For the
current analysis, 12 MHC I Allele subgroup belonging to
the 2 major HLA (A and B) super types were selected. The
predicted peptide length set to 9mer (Table S1). An epitope
identification threshold of 0.5% was set for strong binders
and 2% for weak binders [29].

Helper T-cell epitope prediction

Epitopes specific to Helper T lymphocytes (HTL) were predicted
from the viral protein sequences using NetMHClIpan 4.0 tool
(https://services.healthtech.dtu.dk/service.php?NetMHClIpan-
4.0). A total of 27 MHCII alleles subgroup belonging to the 3
HLA (DR, DP and DQ) super types were considered (Table S1),
as the binding efficacy of HTL epitopes to HLA-DR is a key fac-
tor in the immunogenicity of T-cell epitopes [30]. 15mer epitopes
were predicted with the selection threshold at 1% for strong bind-
ers and 5% for weak binders [29].

Epitope characterization
Toxicity evaluation

ToxinPred tool (http://crdd.osdd.net/raghava/toxinpred/)
which utilizes a Support Vector Machine trained using a
dataset of toxic and non-toxic peptides was used to evaluate
the toxicity of each predicted BCL, CTL and HTL epitopes
along with important physicochemical properties like charge,
isoelectric point (pI), hydrophobicity, etc. [31]. The under-
standing of vaccine’s physicochemical qualities is of useful
to gain insight into the vaccine construct interaction with the
environment. For instance, theoretical pl of a protein would
be helpful in order to choose and improve the protein purifi-
cation techniques.

Allergenicity prediction

The allergenicity of the epitopes was checked using the Aller-
Top 2.0 server (https://www.ddg-pharmfac.net/AllerTOP/)
which uses a k-nearest neighbor (kNN) classifier trained on
2427 allergens and an equal number of non-allergens [32].

Antigenicity prediction

Antigenicity gives a measure of an antigen’s abilty to bind
to B-cell and T-cell receptors, thereby eliciting an immune
response. To identify probable antigenic epitopes, Vaxijen
2.0 server was used with a threshold of 0.4 (http://www.
ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html). Vaxijen
utilizes alignment independent prediction (89% accuracy)
based solely on the physicochemical properties of the pro-
teins [33].

CTL Immunogenicity prediction

Immunogenicity evaluation for the predicted epitopes was
done using IEDB class-I immunogenicity tool (http://tools.
iedb.org/immunogenicity/) run with default parameters. The
tool utilizes amino acid properties and their position within
the peptide to make the immunogenicity prediction for a
peptide-MHC complex [34].

Vaccine construction

To elicit an immune response, protein subunit vaccines must
consist of an antigenic component from the pathogen. To
accomplish this, the screened CTL, HTL and BCL epitopes
along with an adjuvant were combined in a sequence using
appropriate linkers. An adjuvant is any component that
induces humoral or cellular immune response against an
antigen [35]. Bacterial proteins with potential TLR agonist
activity were considered as the adjuvants for the vaccine
candidate [36]. The vaccine construct sequence begins with
the adjuvant followed by BCL epitopes, with the first BCL
epitoped joined to the adjuvant via an EAAAK linker. The
BCL epitopes were attached to each other using KK linkers,
and AAY linkers were used to attach CTL epitopes to the
sequence, followed by HTL epitopes attached using GPGPG
linkers.

Population coverage

Due to ethnic and geographic variations in the Human leu-
kocyte Antigen (HLA) alleles, estimating the percentage of
individuals covered by the respective HLA alleles is essen-
tial for ensuring vaccine efficacy. To determine the global
population coverage, the IEDB population coverage analy-
sis tool (http://tools.iedb.org/population/) was utilized with
HLA class I and class II combined [37]. The analysis was
carried out for T-cell epitopes along with their correspond-
ing HLA alleles.
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Physicochemical feature prediction

ProtParam tool (https://web.expasy.org/protparam/) was used
to predict the physicochemical properties including atomic
composition, amino acid composition, aliphatic index, molecu-
lar weight (kDa), extinction coefficient, theoretical pl, grand
average of hydrophobicity (GRAVY), estimated half-life, and
instability index of the constructed vaccine [38]. For perform-
ing a comparative evaluation of the physicochemical properties
of the construct, postive controls C1 (Human Cytomegalovi-
rus peptide vaccine) [39], C2 (typhoidal Salmonella serovars)
[40], C3 (SARS-Cov-2 glycoprotein) [41] were chosen.

Secondary structure prediction

The secondary structure prediction for the vaccine construct was
done using PSTPRED 4.0 (http://bioinf.cs.ucl.ac.uk/psipred/)
which utilizes PSI-BLAST (Position-Specific Iterated-BLAST)
to predict the secondary structure and an artificial neural net-
work to predict the alpha helices, beta sheets and coils of the
construct [42].

Tertiary structure prediction and its validation

Robetta server (https://robetta.bakerlab.org/) was utilized for
predicting the tertiary structure of the constructed vaccine
[43]. Validation for the predicted structure was done using
PROCHECK, Verify 3D and ERRAT tools from the SAVES
6.0 server (https://saves.mbi.ucla.edu/). PROCHECK tool
enables the construction of Ramachandran plots to evaluate
the generated structure models [44]. The overall quality fac-
tor was determined using ERRAT [45]. Verify 3D utilizes
DSSP- a hydrogen bond estimation algorithm for further
validation that works by calculating the most likely second-
ary structure assignment for a given 3D structure [46].

Conformational B-cell epitope prediction

Conformational/Discontinuous B-cell epitopes arise due to
conformational changes brought about by the physicochemi-
cal folding in the tertiary structure. Conformational epitope
prediction was done using the ElliPro tool (http://tools.iedb.
org/ellipro/) run with default parameters. Based on the geo-
metrical properties of the construct, Ellipro utilizes Thornton’s
method along with a residue clustering algorithm to make the
predictions, and a Protrusion Index (PI) score is assigned to
each predicted epitope [47].

Vaccine candidate-Immune receptor molecular docking
analysis

In silico evaluation of the binding correlation between the
vaccine candidate and an immune receptor was performed
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using the ClusPro server (https://cluspro.bu.edu/login.php)
[32]. TLR4 was the receptor chosen, its PDB structure was
retrieved from the PDB database and prepared for docking
using PyMol visualization software. The interaction between
the vaccine and the TLR4 was analysed to gain insight into
the binding pattern.

Immune simulation

Immune simulation was performed for the vaccine candidate
using the C-ImmSim server (https://kraken.iac.rm.cnr.it/C-
IMMSIM/). C-ImmSim is an agent-based model implementa-
tion, which utilizes position-specific scoring matrices (PSSM)
and machine learning models for epitope and immune response
predictions defining both humoral and cellular responses of
the immune system [48]. Three injections were given at 1, 84
and 168 simulation time steps (each 4 weeks apart), and the
simulation was run for a total of 1050 time steps. Each injec-
tion contained 1000 vaccine proteins with no LPS.

Codon optimization and in-silico cloning

The amino acid sequence of the vaccine construct was con-
verted to its nucleotide sequence and the resulting codons
were adapted for efficient expression in E.coli K12, using
the Java Codon adaptation tool (Jcat) (http://www.jcat.de/).
Using SnapGene the optimized codon sequence was cloned
into a common expression vector pET-28a (+).

Result and discussion
Viral protein selection

The sequence of the viral envelope glycoproteins gB, gH,
gL, gM, gN, g0, UL128, UL130, UL131A of HHV-5 (strain
AD169) and gB, gH, gL, gM, gN, g¢Q1, gQ2 of HHV-6 (strain
U-1102) were retrieved from the Uniprot database. Glycopro-
tein B (gB) present in both the viruses, plays a major role in
virus entry into the host cell and intercellular spread [20, 21].
HHV-5 glycoproteins gH and gL form two alternative com-
plexes, a trimer of gH/gL/gO which binds to the PDGFR-o on
fibroblast surfaces [22] and a pentamer of gH/gL/gO/UL128/
UL130/UL131A which is involved in the virion internaliza-
tion into monocytes [23]. In HHV-6, a tetramer complex of
gH/gl/gQ1/gQ2 along with gB is required for the fusion
of viral and host cell membranes [21]. In both HHV-5 and
HHV-6, gM and gN form a complex that is essential for mem-
brane fusion and intracellular transport [24, 25]. The gM/gN
complex has also been observed to induce the production of
HHV-5 neutralizing antibodies in vitro [26] while gN alone
has implications in protecting the virus from antibodies [27].
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Table 1 List of screened
BCL epitopes and their
corresponding immunogenic
characteristics

Epitope Score Antigenicity Allergenicity Toxicity

RHRDVQHGRR 0.75  1.9308 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
RRRDVGDVKS 0.77  1.6667 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
LTFSDRETLF 0.72  1.6462 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
VKDQWHSRGS 0.73  1.5739 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
ALLLKFNNLG 0.74  1.5227 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
VTALSFRLVA 0.71 1.4441 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
VKSTPPPEDK  0.71  1.3431 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin

Linear B-cell epitope prediction

B-cell epitopes are parts of the antigen that bind to the anti-
bodies, allowing B-cells to neutralize pathogens contributing
to humoral immunity [49]. Using the ABCPred tool, epitope
prediction was carried out with default threshold and epitope
length set to 10mer, resulting in predicted 577 BCL epitopes.
Out of these, 166 epitopes with a prediction score greater
than 0.7 were selected. These were subjected to screening
by checking toxicity and allergenicity via ToxinPred and
AllerTop, respectively. This yielded 49 non-toxic and non-
allergenic epitopes. The final 7 BCL epitopes were selected
based on antigenicity scores predicted using Vaxijen. These
include RHRDVQHGRR, RRRDVGDVKS, LTFSDRETLF,
VKDQWHSRGS, ALLLKFNNLG, VTALSFRLVA and
VKSTPPPEDK. The details of the BCL epitopes are illus-
trated in Table 1.

T-cell epitope prediction
Cytotoxic T-cell epitope mapping

Cytotoxic T lymphocytes (CTLs) play a vital role in cell-
mediated immunity destroying infected cells via antigen rec-
ognition. T-cell epitopes are the peptides that activate CTLs
by binding to MHC-I proteins, thereby enabling recognition.
NetMHCpan 4.1 server was used to predict CTL epitopes
from the viral protein sequence, yielding 5505 CTL epitopes.

Out of these 1241 epitopes were classified as strong bind-
ers. Here 286 epitopes with %Rank-EL less than 0.5 were
selected for further analysis. These epitopes were screened
based on their predicted toxicity, allergenicity, and antigenic-
ity scores yielding 91 epitopes. Further screening was per-
formed, to select epitopes with antigenicity scores greater
than 1.0 and immunogenicity scores greater than 0.30, yield-
ing the following 7 epitopes DVIDVQYRF, ALSFRLVAL,
QLVDLTLNY, YSNIGFLLY, ALSFINVTYV, LLRHHFHCL
and HMFFTNLTF for further analysis (Table 2).

Helper T-cell epitope mapping

Helper T lymphocytes (HTLs) play an indispensable role
in giving rise to the adaptive immune response, by utilizing
signalling molecules to activate B-cells, cytotoxic T-cells
and macrophages [50]. HTL epitopes were predicted using
the NetMHClIpan 4.0 server, yielding 6329 epitopes. Out
of these 689 were classified as strong binders. A total of 327
epitopes with a %Rank-EL less than 1.0 were selected for
further characterization. 67 Non-toxic and non-allergenic
epitopes were further screened, to select epitopes with anti-
genicity scores greater than 1.0, yielding the following 7
epitopes LDFNYLDLSALLRNS, YFEINDLKAVNLSAN,
SFFAFQKIHPNLKGT, IVHFSYSTKNTGPMP, ALSFRL-
VALGAFAYC, VEALLLKFNNLGIQT and IDPLENTD-
FRVLELY for further analysis (Table 3).

Table 2 List of screened CTL epitopes and their corresponding immunogenic characteristics

Epitope %Rank-EL Antigenicity Allergenicity Toxicity Immunogenicity
DVIDVQYRF 0.007 2.0410 (Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.0238
ALSFRLVAL 0.085 1.9382 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.16176
QLVDLTLNY 0.065 1.6826 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.04832
YSNIGFLLY 0.016 1.6602 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.25918
ALSFINVTV 0.083 1.5864 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.24513
LLRHHFHCL 0.032 1.3251 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.18685
HMFFTNLTF 0.06 1.2899 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin 0.20083
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Table 3 List of screened HTL epitopes and their corresponding immunogenic characteristics

Epitope %Rank-EL Antigenicity Allergenicity Toxicity

LDENYLDLSALLRNS 0.39 1.5819 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
YFEINDLKAVNLSAN 0.47 1.4195 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
SFFAFQKIHPNLKGT 0.36 1.3404 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
IVHFSYSTKNTGPMP 0.36 1.2861 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
ALSFRLVALGAFAYC 0.3 1.2813 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
VEALLLKFNNLGIQT 0.41 1.1081 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin
IDPLENTDFRVLELY 0.42 1.0990 ( Probable ANTIGEN) PROBABLE NON-ALLERGEN Non-Toxin

Vaccine construction

A total of 21 epitopes (7 BCL, 7 CTL and 7 HTL) were used
to make the final vaccine construct (Fig. 1). Appropriate
linkers were used to connect the epitopes sequentially. For
instance, an EAAAK linker is used to connect the adjuvant
and BCL epitopes, a KK linker to connect BCL epitopes, an
AAY linker to connect CTL epitopes and finally, a GPGPG
linker to connect HTL epitopes. Out of the candidate bacte-
rial protein adjuvants considered, CobT protein from Myco-
bacterium paratuberculosis, imparted the highest immuno-
genicity and hence it is chosen as the adjuvant for the final
vaccine construct (Table 4).

Population coverage analysis

The frequency of different HLA alleles varies with ethnici-
ties and geographic regions. This necessitates determining
the percentage of the global population covered by HLA
alleles of the predicted epitopes. The results predict 99.95%
global population coverage for the constructed vaccine
(Table S2, S3 and Figure S1).

Physicochemical features and secondary structure
prediction

ProtParam tool was used to determine the physicochemi-
cal properties of the final vaccine construct and the posi-
tive controls C1, C2 and C3. The predicted features for
the final construct (Vaccine + CobT) include a length of
660aa, a molecular weight of 69.52 kDa indicating good
antigenicity and a theoretical PI of 8.96 (basic behaviour).
The instability index of the protein was calculated to be
23.70, classifying the protein as stable. The half-life of
the protein was estimated to be 30 h in mammalian retic-
ulocytes (in vitro),> 20 h in yeast (in vivo), and> 10 h
in Escherichia coli (in vivo). An aliphatic index of 92.12
indicates moderate stability of the protein in vivo. The
grand average of hydropathicity (GRAVY) score of -0.073
indicates a slightly hydrophilic nature of the protein. These
properties are similar to those predicted for the controls
C1, C2, and C3 (Table 4). The secondary structure predic-
tion for the vaccine was performed using the PSIPRED
tool, which indicated the construct to be 16.89% alpha-
helices, 37.08% strands and 46.01% coils (Fig. 2).

MEFATVSPPDPGTAAAARARQDTLTKPRGALGRLEDLSVWIAACQGQCPPRQFERARVVVFAGDHGVARCGVSAYPPEVTAQMVANFDAGGAAINALAGVAGASVRVADLAVDADPPDDRIGAHK ]

VRRGSGDITVQDALTAEETERALSAGAAIADEEVDAGADLLIAGDMGIGNTTAAAVLVAALTNVEPVVAVGFGTGIDDAGWARKTAAVRDALFRARRVLPDPVALLRCAGGADLAALAGFCAQAAV ]

RRTPLLLDGMAVTAAALVAEHLAPGARLWWQAGHRSTEPGHALALTALDLEPILDLRMRLGEGTGAALALPIVRAAVAALSSMATFAQAGVSDPSAHP

[/

(

(

(

( RHRDVQHGRR ) 8 B ( RRRDVGDVKS {
( ALLLKFNNLG VTALSFRLVA

( ALSFRLVAL QLVDLTLNY

( LLRHHFHCL HMFFTNLTE

( SFFAFQKIHPNLKGT IVHESYSTKNTGPMP

[ IDPLENTDFRVLELY

Fig. 1 Schematic representation of the multi-epitope vaccine construct
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Table 4 Physicochemical properties of the vaccine construct

Physicochemical Vaccine construct with and without adjuvants and controls
properties Vaccine Vaccine + MymA Vaccine +Pepo Vaccine + CobT C1 C2 (Salmonella C3
(without (Mycobacterium (Streptococcus (Mycobacterium (HHVS) typhi+ Salmonella (SARS-
adjuvant) tuberculosis) pneumoniae) paratuberculosis) paratyphi) Cov-2)
Length 311 806 941 660 283 601 542
Immunogenicity -0.2428 5.38993 5.17916 7.16945 -1.7666  5.74552 5.08779
Antigenicity 0.9489 0.6387 0.5266 0.7486 04721  0.5289 0.4320
Allergenicity PNA PNA PNA PNA PNA PNA PNA
Instability index 21.14 32.95 34.67 23.7 39.72 14.17 39.95
Theoretical pI 9.8 9.18 5.53 8.96 9.45 6.55 8.57
Molecular weight  34,148.4 89,612.7 106,045 69,527.7 29,837  65,264.8 58,064.2
Estimated half-life 1 h?* 30 h* 30 h* 30 h* 30 h? 30 h? 30h*
30 min® >20h® >20h°, >20h° >20h° >20h° >20 hP
>10h° >10h° >10h° >10h° >10h® >10h° >10h°
Aliphatic index 86.01 84.52 83.1 92.12 89.08 88.97 78.63
GRAVY score -0.136 -0.194 -0.305 -0.073 -0.324  -0.035 -0.492
Extinction coef- 29,465 128,870 159,185 53,205 9970 98,100 34,380
ficient

(inM~!em™)

PNA-Probable non-allergen
mammalian reticulocytes in vitro
"yeast, in vivo

CEscherichia coli in vivo

Tertiary structure prediction and its validation followed by its validation PROCHECK, ERRAT and Verify

3D tools from SAVES 6.0 server. Of the 5 models predicted
The tertiary structure of a protein provides different struc- by ROBETTA, Model-2 was the ideal choice (Figure S2).
tural insights and is predicted via homology modelling. ~ The Ramachandran plots from PROCHECK showed 92.40%
ROBETTA server was used for the 3D structure prediction,  of residues in the most favoured regions and only 0.40% of
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Fig.2 Secondary structure of the final vaccine construct (a) Sequence plot (b) PSIPRED cartoon
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Fig.3 Modeled 3D structure of the final vaccine construct

residues in disallowed regions. ERRAT predicted an over-
all quality factor of 97.8528 and Verify 3D demonstrated
the overall structure accuracy to be 84.85% (Table S4). The
3D structure of the vaccine construct was visualized using
PyMol (Fig. 3).

Conformational B-cell epitope prediction

Conformational/Discontinuous epitopes mimic the proper-
ties of a linear epitope and can be used as a replacement for
antibody production. Potential conformational epitopes were
predicted using the ElliPro tool, yielding 5 conformational
B-cell epitopes (Table S5). The predicted epitopes were
ranked based on their Protrusion Index (PI) scores. The 3D
structure of the top-ranking epitope consisting of 76 residues
was visualized using jmol — a molecular viewer integrated
within ElliPro (Fig. 4).

Vaccine construct-TLR4 docking studies

The envelope glycoproteins of HHVS and HHV6 have been
shown to effectively be recognized by TLR4 [51]. To deter-
mine this interaction, protein—protein docking between the
vaccine construct and TLR4 (PDB ID: 3FXI) was performed
using ClusPro 2.0 server. From among the resulting mod-
els, the one with the largest cluster (52) and least energy
(-1084.8) was selected. The larger the cluster size, the greater
the certainty of the cluster’s centre representing a putative
model of the complex. Figure 5 illustrates the 3D structure
of the docked complex. Further, the molecular interactions
was visualized using the PDBSum. From Fig. 6, it can be
observed that chains A and B from TLR4 interacted with
the designed vaccine. There were 2 hydrogen bonds between
chain B and the vaccine and a total of 13 hydrogen bonds
between the residues of chain A and the vaccine. These

Fig.4 Predicted Discontinuous B-cell epitope with the best score

interactions suggest that our proposed vaccine has the abil-
ity to be recognized by the T cell receptors.

Immune Simulation

The effectiveness of the vaccine construct to elicit an appre-
ciable response from the adaptive immune system was deter-
mined using the C-Immsim server. Graphs of antibody,
cytokine and lymphocyte concentrations were generated
(Fig. 7). The antibody titre (IgG +IgM) rises after every

~
>

)

Fig.5 3D visualisation of the vaccine-TLR4 docked complex
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Fig.6 Molecular interactions between chains A, B of TLR-4 and the vaccine construct
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Fig.7 Immune simulation
analysis (a) The antigen,

the immunoglobulins and

the immuno-complexes (b)
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decrease in the antigen concentration was also observed after
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T-cell concentrations were also evident. Higher IgM con-
centrations ensure B-cell activation and the subsequent pro-
duction of antibodies required for the secondary and tertiary
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Fig.8 In silico cloning of the designed vaccine construct

immune responses. The vaccine has also been observed to
induce high levels of IL-2 which has an immunoregulatory
role and INF-g which is involved in APC activation.

Codon optimization and in-silico cloning

The Java Codon adaptation tool (JCat) yielded an improved
codon sequence for the vaccine construct sequence, for
ensuring efficacious expression in E.coli K12. The improved
sequence showed a GC content of 56.46% and a Codon
Adaptation Index (CAI) of 0.9975 signifying sequence sta-
bility and optimized expression in the host, respectively. The
improved codon sequence was cloned between Hpal (1629)
and Smal (4300) of pET-28a (+) which is a well-known
expression vector resulting in a cloned vector of 4331 bp
(Fig. 8).
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4331 bp

BpuEl (21)
i Blpl (80)

|6xHis

Aval - BsoBI - PaeR7I - PspXI - Xhol (158)
" Eagl - Notl (166)
Hindlll (173)
_sall (179)
_ Accl (180)
- Eco53kl (188)
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Conclusion

In the current investigation, a multi-epitope vaccine con-
struct was generated using highly antigenic and immuno-
genic B-cell and T-cell epitopes predicted from the envelope
glycoproteins of HHV-5 and HHV-6. Linkers such as KK,
AAY and GPGPG were utilized to join the epitopes and
an adjuvant was attached to boost its immunogenicity. The
secondary and tertiary structures of the vaccine construct
were predicted along with their physicochemical properties.
The helix-rich nature of the construct along with metrics
such as the instability index and aliphatic index reflects the
stability of the constructed vaccine. Taking into account the
global polymorphism of the MHC class I and class II mol-
ecules, a world population coverage analysis was conducted,
and the results indicated that our proposed vaccine would
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induce an immunological response in 99.95% of the world's
population. Similarly, molecular docking with the immune
receptor TLR4 was performed and the results signifies the
high binding affinity and stability of the vaccine-receptor
complex. The immune simulation study showed a signifi-
cant production of antibodies and cytokines after injecting
vaccine. Finally, the nucleotide sequence for the vaccine
construct was determined and the codons were adapted to
be efficiently expressed in a bacterial host. In conclusion,
the constructed vaccine has the potential to be translated
into clinical practice to overcome the burden of HHV-5 and
HHV-6 co-infection. The experimental studies on vaccine's
efficacy in animal models is an interesting future direction
and of very much importance to validate this findings.
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