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ABSTRACT

Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA

molecule. Identifying DNA sequence motifs that signal the addition of

poly(A) tails is essential to improved genome annotation and better

understanding of the regulatory mechanisms and stability of mRNA.

Existing poly(A) motif predictors demonstrate that information ex-

tracted from the surrounding nucleotide sequences of candidate

poly(A) motifs can differentiate true motifs from the false ones to a

great extent. A variety of sophisticated features has been explored,

including sequential, structural, statistical, thermodynamic and evolu-

tionary properties. However, most of these methods involve extensive

manual feature engineering, which can be time-consuming and can

require in-depth domain knowledge.

Results: We propose a novel machine-learning method for poly(A)

motif prediction by marrying generative learning (hidden Markov

models) and discriminative learning (support vector machines).

Generative learning provides a rich palette on which the uncer-

tainty and diversity of sequence information can be handled, while

discriminative learning allows the performance of the classification

task to be directly optimized. Here, we used hidden Markov

models for fitting the DNA sequence dynamics, and developed an

efficient spectral algorithm for extracting latent variable informa-

tion from these models. These spectral latent features were then fed

into support vector machines to fine-tune the classification

performance.

We evaluated our proposed method on a comprehensive human

poly(A) dataset that consists of 14 740 samples from 12 of the

most abundant variants of human poly(A) motifs. Compared with

one of the previous state-of-the-art methods in the literature

(the random forest model with expert-crafted features), our method

reduces the average error rate, false-negative rate and false-positive

rate by 26, 15 and 35%, respectively. Meanwhile, our method

makes �30% fewer error predictions relative to the other string

kernels. Furthermore, our method can be used to visualize the

importance of oligomers and positions in predicting poly(A) motifs,

from which we can observe a number of characteristics in the sur-

rounding regions of true and false motifs that have not been reported

before.
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1 INTRODUCTION

Roughly speaking, when DNA is transcribed to RNA, a string of

adenine (A) nucleotides, referred to as the polyadenylation tail or

the poly(A) tail, is added to the 30-end of the primary RNA

transcript. Such a process is called polyadenylation, which is a

step to protect RNA stability, nuclear export and translation

(Bernstein and Ross, 1989; Leung et al., 2011). A poly(A) tail

is �10–30nt downstream of a signaling site that consists of 6 nt,

which in human cells most commonly is AAUAAA (Beaudoing

et al., 2000). This signaling site is known as a poly(A) signal and

the corresponding 6 nt subsequences in DNA are called poly(A)

motifs. Mutations in poly(A) signals can be associated with dis-

eases, e.g. colorectal cancer (Kim et al., 2002; Pastrello et al.,

2006) and compromised immunodeficiency (Das et al., 1997;

Langemeier et al., 2012).
The poly(A) signal prediction problem has been studied for

decades (Proudfoot, 2011). There are two versions of the prob-

lem: predicting poly(A) signals in mRNA sequences and predict-

ing poly(A) motifs in DNA sequences. Intuitively, the former

version is much simpler than the latter one because once the

mRNA sequence is given, the poly(A) tail can be identified rela-

tively easily and we need only to search for the poly(A) signal(s)

in a window of at most 30 nt upstream the poly(A) tail. In DNA,

however, the presence of introns in eukaryotes and the absence

of poly(A) tails make the recognition much more challenging.

A number of studies have demonstrated that information from

relatively short upstream and downstream sequences of the can-

didate poly(A) motifs can specify the true poly(A) motifs to a

great extent (Ahmed et al., 2009; Akhtar et al., 2010; Chang

et al., 2011; Cheng et al., 2006; Graber et al., 1999; Ji et al.,

2010; Kalkatawi et al., 2012; Legendre and Gautheret, 2003;

Liu et al., 2005; Salamov and Solovyev, 1997; Tabaska and

Zhang, 1999). Statistical properties of the surrounding sequences

were explored in different species, such as yeast (van Helden

et al., 2000), fly (Retelska et al., 2006), Arabidopsis and rice (Ji

et al., 2010) and human (Chang et al., 2011; Retelska et al., 2006;

Tabaska and Zhang, 1999). Although significant progress has

been made to the accuracy of poly(A) motif predictors, especially

in human DNA sequences, such methods are all based on using

sophisticated features that require additional efforts to extract

and are highly dependent on domain knowledge. We therefore

ask the following question: can we use machine-learning tech-

niques to automatically extract useful features from human

DNA sequences and achieve state-of-the-art poly(A) motif clas-

sification results? If the answer to this question is yes, then we

can automate this genome annotation task to a great extent and*To whom all correspondence should be addressed.
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potentially speed up our understanding of the underlying

biology.
Automatic feature extraction techniques have been explored in

many other sequence classification problems. By far, the most

successful methods are hidden Markov models (HMMs), e.g. in

gene finding (Lukashin and Borodovsky, 1998; Stanke and

Waack, 2003), and string kernels with support vector machines

(SVM), e.g. in protein classification (Leslie et al., 2004), tran-

scription start-site recognition (Sonnenburg et al., 2006) and

splice-site prediction (Sonnenburg et al., 2007). The former

methods are generative models that capture the uncertainty in

data using probabilistic languages, while the latter are discrim-

inative methods that optimize specifically for the classification

results. The advantages of each class of methods have rarely

been combined systematically to yield even better feature

extractors.

In this article, we propose a novel method for poly(A) motif

prediction by marrying generative learning (HMMs) and dis-

criminative learning (SVMs). Generative learning provides us

with a rich palette for handling the uncertainty and diversity of

sequence information, while discriminative learning allows us to

directly optimize performance for the classification task. Here,

diversity means that for the same position in the surrounding

sequence of a candidate poly(A) motif, there may be multiple

subsequences indicating the class label (a true motif or a false

one), and uncertaintymeans that each of these subsequences does

not give deterministic information about the class label. In par-

ticular, we use HMMs as a probabilistic generative model for

DNA sequences, and develop an efficient spectral algorithm for

extracting latent variable information from these models. The

HMMs model not only the diversity and uncertainty of sequence

information, but also long-range dependencies between subse-

quences at different positions, which cannot be simultaneously

captured by string kernels as is discussed in Section 2.2. The

spectral latent features are then fed into support vector machines

to fine-tune the classification performance.

2 RELATED WORKS

We will first review the two classes of methods, expert-crafted

features and string kernels, for addressing the poly(A) motif clas-

sification problem.

2.1 Features based on domain knowledge

Bioinformatics experts can craft highly informative features

based on prior knowledge of the biology and physics of DNA

sequences. The drawback of using these features is that they re-

quire extensive expert domain knowledge for their design as well

as additional efforts to extract them.
Salamov and Solovyev developed POLYAH (Salamov and

Solovyev, 1997), a tool that used a linear discriminant func-

tion-based classifier to extract features from 100nt upstream

and 200nt downstream of a candidate poly(A) motif. Later on,

polyadq was developed based on quadratic discriminant func-

tions by encoding features from 100nt downstream only

(Tabaska and Zhang, 1999). Several support vector machine-

based predictors were then proposed and they performed well

on recognizing true poly(A) motifs. Such methods include

DNAFSMiner, which was based on both 100nt upstream and

downstream (Liu et al., 2005), Polya_svm, which encoded cis-

regulatory element features (Cheng et al., 2006), and polyApred,

which extracted features from 100nt upstream and downstream

of the candidate poly(A) motifs (Ahmed et al., 2009). In 2010,

Akhtar et al. proposed POLYAR (Akhtar et al., 2010), a linear

discriminant analysis-based method that used features from

300nt upstream and downstream of the candidate poly(A)

motifs.
Recently, Kalkatawi et al. developed an artificial neural net-

work (ANN)-based method and a random forest (RF)-based

method to predict poly(A) motifs in human DNA sequences

(Kalkatawi et al., 2012). Their methods were based on a variety

of expert-crafted features, such as thermodynamic and structural

features of dinucleotides, electron–ion interaction potentials and

position-weight matrices of upstream and downstream regions

relative to the candidate poly(A) motifs. In total, they extracted

274 features. They compiled a large-scale benchmark set that

contained 14 740 sequences for the 12 main variants of human

poly(A) motifs. The ANN and RF models significantly outper-

formed all previously reported studies.

2.2 String kernels

String kernels are positive definite functions to compute similar-

ity between two sequences, which is then used in support vector

machines to learn classifiers. These kernels essentially map se-

quences into high-dimensional feature spaces corresponding to

subsequences and then compute inner products between two fea-

ture vectors. The drawback of string kernels is that they simply

count raw sequence matches and do not explicitly take into ac-

count the uncertainty and diversity of sequence information.

Many string kernels have been designed over the years, but so

far few have effectively made use of generative models to deal

with data uncertainty.

More specifically, given an alphabet �, here the DNA nucleo-

tides � ¼ A,G,C,Tf g, let x 2 �k be a sequence of length k

(or k-mer). The k-spectrum (SPE) kernel �ðx, yÞ counts pairs of
identical k-mers between two sequences x and y (of length L and

L0, respectively) independently of their position (Leslie et al.,

2002): �ðx, yÞ ¼
PL�kþ1

t¼1

PL0�kþ1
t0¼1 I xt:tþk�1 ¼ yt0:t0þk�1

� �
, where

xt:tþk�1 :¼ xtxtþ1 . . . xtþk�1 denotes a subsequence of x that

starts at position t and has length k, and I �f g returns 1 if the

two k-mers are the same and otherwise 0. This kernel effectively

maps each sequence into a feature space where each dimension

counts the number of occurrences of a particular k-mer and uses

the inner product as the similarity between two sequences. To

take uncertainty and diversity in k-mer features into account, one

can also heuristically include counts on the mismatch of k-mers

(Leslie et al., 2002).
In contrast to the SPE kernel, the weighted degree (WD)

kernel explicitly takes into account the absolute positions of

the k-mers in the sequence (Rätsch and Sonnenburg, 2004):

�ðx, yÞ ¼
Pk

l¼1 �l
PL�lþ1

t¼1 I xt:tþl�1 ¼ yt:tþl�1
� �

: Analogously, one

can also heuristically incorporate the counts for mismatches in

the WD kernel to account for a certain degree of sequence un-

certainty and diversity.
However, heuristic ways of handling mismatches may result in

underutilization of the sequence information. A principle way to
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deal with such uncertainty is to model mismatches as random
variables. Along this direction, the probability product kernel

(PPK; Jebara et al., 2004) has been proposed for sequence ana-

lysis. This kernel also compares sequences of equal length and

assumes that the absolute position in the sequence carries dis-

criminative information. The key idea is to fit a probabilistic

generative model (e.g. HMMs) to each sequence separately,

and then use an inner product between these generative models
to define the kernel. As a result, the PPK allows us to combine

discriminative learning of support vector machines with genera-

tive modeling of data.
The seminal work on PPKs has several limitations. First, a

different HMM is fitted to each sequence, which can lead to

poorly estimated model parameters and bury the useful signals.

Second, training HMMs with a traditional expectation maxi-

mization (EM) algorithm (Dempster et al., 1977) can be time-

consuming. Third, while the hidden variables model the ‘clean’
signals, they are summed out and not directly used for sequence

comparison. Fourth, the label information for the training se-

quences is not used for defining the kernel. Owing to these limi-

tations, the PPK does not perform as well as the SPE kernel or

the WD kernel as we show in later experiments. In the following,

we first describe our method, which also combines generative

and discriminative learning, but overcomes the above four
limitations.

3 METHODS

The key contribution of our article is a new way of extracting and using

sequence features for classification problems. Our method fits only two

HMMs for the entire training set, one for sequences in the positive class

and another one for those in the negative class. Then, we use the posterior

distributions of the hidden states from each sequence as our features.

When learning the parameters of the HMMs, we use an efficient spectral

algorithm recently proposed in machine learning (Hsu et al., 2012). The

novel combination of the extracted spectral latent features and support

vector machines leads to state-of-the-art results in poly(A) motif

prediction.

3.1 Sequence latent features

We use HMMs to take into account the uncertainty and diversity of the

sequence information and hypothesize that there is a ‘clean’ poly(A)

signal hidden in the observed sequences. The fact that each hidden vari-

able is related to the previously observed positions allows us to accom-

modate long-range dependencies. We use capital letters to denote random

variables and lower case letters for their instantiations.

We combine multiple adjacent nucleotides in a DNA sequence into a

‘mega-observation’. For example, we treat the k-mer AAT as a single

observation. Thus, each mega-observation has n ¼ 4k possible states.

Essentially, we transform a DNA sequence into a sequence of mega-ob-

servations using an overlapping sliding window of size k, and then asso-

ciate each mega-observation with a variable Xt. For example, a DNA

sequence of length L0 is transformed to a sequence of L ¼ L0 � kþ 1

mega-observations, with each mega-observation being a k-mer. We esti-

mate the HMM for these transformed sequences.

Specifically, an HMM contains a Markov chain of hidden variables

Q1:L :¼ Q1 . . .Qt . . .QL that generates the observed sequence of variables

X1:L ¼ X1 . . .Xt . . .XL. Let m and n denote the number of states for the

hidden and observed variables, respectively. We can fully specify an

HMM by an m�m transition probability matrix of the hidden variables,

with the ði, jÞ-th entry Tij ¼ PrðQtþ1 ¼ ijQt ¼ jÞ, an n�m emission

probability matrix Oij ¼ PrðXt ¼ ijQt ¼ jÞ and an m dimension prior dis-

tribution vector over the hidden states �i ¼ PrðQ1 ¼ iÞ. With these model

parameters, we can compute the joint distribution of the hidden and

observed variables as PrðX1:L,Q1:LÞ ¼ PrðQ1Þ
QL

t¼2 PrðQtþ1jQtÞ
QL

t¼1

PrðXtjQtÞ and the distribution of the observed variables as

PrðX1:LÞ ¼
P

q1:L
PrðX1:L,Q1:LÞ.

We define the latent feature at position t of the sequence as the pos-

terior distribution of the hidden variable Qt, given the sequence up to

position t:

½ft�i ¼ PrðQt ¼ ijx1:tÞ ð1Þ

This is also called the forward belief of the hidden variable Qt, which

captures the uncertainty about the ‘clean’ signal given the observed se-

quence up to position t (We can easily extend the approach to use the

posterior distribution of Qt given the entire sequence x as features by

involving both a forward and a backward recursion.) Note that ft is anm-

dimensional vector that sums to 1. The latent features for the entire se-

quence according to the HMM are thus the concatenation of features at

all positions, i.e. f ¼ ðf>1 , . . . , f>L Þ
>. Calculating ft requires us to margin-

alize over all previous hidden variables Q1, . . . ,Qt�1, which can be car-

ried out in a recursive fashion:

Prðqtjx1:tÞ /
X

qt�1
PrðxtjqtÞPrðqtjqt�1ÞPrðqt�1jx1:t�1Þ

¼
X

qt�1
Oxt , qtTqt , qt�1 Prðqt�1jx1:t�1Þ

ð2Þ

Reexpressing the above relation in matrix form gives

ft / TdiagðOxt , �Þft�1 ð3Þ

where Oxt , � denotes the xt-th row of the emission probability matrix O.

This matrix multiplication effectively implements the marginalization

over variable Qt�1.

Let Sxt :¼ TdiagðOxt , �Þ and e be a vector of all ones of size m.

Equation (3) suggests a recursive algorithm that efficiently extracts the

latent features.

f0 :¼ �, ft :¼
Sxt ft�1

e>Sxt ft�1
, 8t ¼ 1, . . . ,L ð4Þ

which requiresOðLm2Þ time, once we have learned the HMM parameters,

i.e. the set of quantities f�,T,Og. We note that we learn two HMMs

f�þ,Tþ,Oþg and f��,T�,O�g from training sequences, one for those

with positive labels and the other for those with negative labels. Then for

a new test sequence, we can extract two latent feature vectors, fþ and f�,

and use the concatenation of these two features f :¼ ðfþ>, f�>Þ> as the

sequence features.

One straightforward but computationally intensive way to learn the

HMM is by using the EM. However, EM has the problem of slow con-

vergence and convergence only to a local minimum. These two problems

will affect the efficiency and efficacy of these latent feature extractions. To

overcome the shortcomings of the EM algorithm, we use a fast and local-

minimum-free spectral algorithm to learn an alternative parameterization

of HMMs, which is described next.

3.2 Efficient spectral algorithm for latent features

Traditional HMM learning algorithms try to recover the parameters �, T

and O. The resulting maximum-likelihood estimation problem is not

convex and algorithms can only find a local optimum. These parameters

�, T and O characterize the relations between hidden and observed vari-

ables that cannot be directly observed during training and are usually not

uniquely identifiable. However, we may not need to recover them exactly

to extract latent features. Instead, it is sufficient to recover them up to

some invertible transformation if we subsequently learn a linear classifier

such as a support vector machine. More specifically, suppose matrix A of

size m�m is invertible. Define the transformed HMM parameters
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h0 :¼ A�, h1 :¼ A�1
� �>

e, Hx :¼ ASxA
�1

ð5Þ

Then we can compute the transformed latent feature as

ht ¼
Hxtht�1

h>1Hxtht�1
¼ Aft ð6Þ

since the invertible matrix A cancels with A�1 during matrix multiplica-

tion. Then, the latent features of the final sequence that we use in our

experiments are h :¼ ðhþ>, h�>Þ> by concatenating the transformed fea-

tures from positive and negative HMMs. It is easy to see that the trans-

formed feature will achieve the same performance as the original one with

a linear classifier because the transformation matrix can be incorporated

into the classifier weight vector. That is, if we learn a binary classifier

signðw>fþ bÞ, then signðew>hþ bÞ with ew ¼ ðA�1Þ>w will achieve the

same classification accuracy.

A natural question is how to choose an A such that the transformed

parameters fh0, h1,Hxg can be easier to estimate without using an EM

algorithm. To solve this problem, we use a construction ofA by Hsu et al.

(2012), which allows these transformed parameters to be estimated from

just tri-gram information of the observed sequences. Formally, let

ðX1,X2,X3Þ be a triple of adjacent variables in the HMM and define

the marginal probabilities of observation singletons, pairs and triples as

½c1�i ¼ PrðX1 ¼ iÞ ð7Þ

½C2, 1�ij ¼ PrðX2 ¼ i,X1 ¼ jÞ ð8Þ

½C3,x, 1�ij ¼ PrðX3 ¼ i,X2 ¼ x,X1 ¼ jÞ, 1 � x � n ð9Þ

c1 is an n dimensional vector, C2, 1 is an n� n matrix and C3,x, 1 is a series

of n� n matrices indexed by x. Hsu et al. (2012) showed that setting

A ¼ U>O directly links the above three quantities to the transformed

parameters in (5), where U is the leading m principal left singular vectors

of C2, 1. Specifically, the transformed parameters can be directly re-

covered from single sequence statics as

h0 ¼ U>c1, h1 ¼ ðC
>
2, 1UÞ
yc1 ð10Þ

Hx ¼ U>C3,x, 1ðU
>C2, 1Þ

y
ð11Þ

where ð�Þy computes the pseudo-inverse of a matrix.

Algorithm 1 Spectral learning of transformed HMM parameters

Require: m—the number of hidden states, k—the number of nt to com-

bine. Ensure: transformed HMM parameters fh0, h1,Hxg.

1: Transform all training sequences by combining k consecutive nt into

a ‘mega-observation’.

2: Use all triples ðx1,x2,x3Þ from the transformed sequences to esti-

mate c1, C2, 1 and C3,x, 1 according to (12), (13) and (14).

3: Compute the Singular Value Composition (SVD) of C2, 1, and let U

be the matrix of left singular vectors corresponding to the m largest

singular values.

4: Compute transformed model parameters using (10) and (11).

The learning algorithm for HMMs is summarized in Algorithm 1. It

first estimates the quantities in (7), (8) and (9) using training data

½c1�i �
1

DL

XD
d¼1

XL
t¼1

X
i2�k

I xdt ¼ i
� �

ð12Þ

½C2, 1�ij �
1

DðL� 1Þ

XD
d¼1

XL�1
t¼1

X
i, j2�k

I xdt:tþ1 ¼ ði, jÞ
� �

ð13Þ

½C3,x, 1�ij �
1

DðL� 2Þ

XD
d¼1

XL�2
t¼1

X
i, j, x2�k

I xdt:tþ2 ¼ ði,x, jÞ
� �

ð14Þ

where D is the number of training sequences. These estimates are

subsequently used to compute the transformed HMM model parameters

according to (10) and (11). The algorithm has two parameters m and

k that can be tuned by cross-validation. The major computation is

an SVD of C2, 1 and hence the name ‘spectral algorithm’. We note that

we learn two HMMs, one for the positive class and the other for the

negative class. Then, we use both HMMs to extract features for each test

sequence and concatenate the features, which are summarized in

Algorithm 2.

Algorithm 2 Spectral latent feature extraction algorithm

Require: ðx1, . . . , xtÞ—a test sequence, k—the number of nt to combine,

fhþ0 , h
þ
1,H

þ
x g and fh

�
0 , h

�
1,H

�
x g—learned HMM models for positive and

negative classes. Ensure: spectral latent features h.

1: Transform the input sequence by combining k adjacent nt into a

‘mega-observation’.

2: For t ¼ 1 . . .L, compute hþt ¼ Hþxth
þ
t�1= hþ>1 Hþxth

þ
t�1

� �
.

3: For t ¼ 1 . . .L, compute h�t ¼ H�xth
�
t�1= h�>1 H�xth

�
t�1

� �
.

4: Concatenate features h ¼ ðhþ>1 , . . . , hþ>L , h�>1 , . . . , h�>L Þ
>.

3.2.1 Fast implementation The runtime of algorithm 1 is dominated

by the SVD computation of an n� n matrix C2, 1, and the memory re-

quirement is dominated by storing the tri-gram statistics C3,x, 1 for each x.

One technical challenge is that n, the number of possible values of ‘mega-

observation’, can grow as n ¼ 4k, exponential in k. It seems, at first sight,

that we may need to decompose a huge matrix C2, 1, and the memory

requirement for C3,x, 1 is prohibitively large. However, most entries in

these matrices are zero because some k-mers do not exist in the training

sequences. Moreover, the total number of non-zero entries is at most the

number of ‘mega-observations’ in the training set. Taking advantage of

this property, we can do sparse matrix SVD and store all the tri-gram

statistics in a sparse matrix, thus facilitating efficient computation and

manipulation. The computational complexity thus grows linearly with the

number of ‘mega-observations’ in the worst case.

3.3 Visualizing the importance of k-mers and positions

Besides accurately classifying the sequences, we are also interested in k-

mers and positions that are most informative for motif classification.

Sonnenburg et al. (2008) proposed positional oligomer importance matri-

ces (POIMs) for WD kernels to analyze the importance of substrings in

different locations of the sequence. Here, we also develop a technique for

visualizing the importance of the k-mer at each position t for the classi-

fication problem based on our spectral latent features.

Intuitively, we want to use the contribution of the k-mer at position t

to the support vector classifier as its importance score. In particular, we

make use of the margin of a training sequence in the support vector

machine. For example, if most positive sequences with large positive

margins all contain k-mer AAGC at position t, then this k-mer is import-

ant for correct classifications. More formally, let the support vector clas-

sifier learned from our spectral latent features be signðw>hþ bÞ and let

the margin corresponding to a sequence be sðxÞ ¼ w>hðxÞ þ b, where we

use hðxÞ to indicate that the features are extracted from sequence x. Then,

we define the importance of k-mer y1:k at position t as

�ðy1:k@tÞ :¼
X

x2�L
sðxÞPrðxjxt:tþk�1 ¼ y1:kÞ ð15Þ
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That is, given the sequences that have y1:k at position t, we compute

the importance as the weighted sum of the margin of these sequences. In

practice, we only have a finite number of training sequences, and we

will use the finite sample average to estimate the importance score.

That is, �ðy1:k@tÞ � 1
jT ðy1:k@tÞj

P
x2T ðy1:k@tÞ sðxÞ, where T ðy1:k@tÞ denotes

the set of training sequences with k-mer y1:k occurring at position t.

Once we have computed the importance score for every k-mer at every

position t, we can visualize it in a few different ways. One way is to

visualize scores as a heatmap of k-mer versus sequence position. For

longer k-mers, there are 4k possible values that cannot be easily visua-

lized. Instead, we sum the absolute values of all k-mer importance scores

at each position, as is done in Sonnenburg et al. (2008), and visualize the

importance score as a function of the position t. That is,

�ð@tÞ :¼
P

y1:k2�k �ðy1:k@tÞ.

4 RESULTS

4.1 Datasets

The proposed method was tested on the benchmark set proposed

in Kalkatawi et al. (2012). The dataset contains 14 740 sequences

(7370 with true poly(A) motifs—positive samples, and 7370 with

false poly(A) motifs—negative samples) for the 12 main variants

of human poly(A) motifs (see Table 1 for these variants and their

respective sizes). For each variant, the number of positive se-

quences is equal to the number of negative sequences.

Furthermore, for each variant, the positive motifs with the sur-

rounding sequences were extracted from human mRNA and

mapped back to the human genome, whereas the same numbers

of negative motifs were randomly selected from human chromo-

some 21. Each sample is a candidate 6 nt poly(A) motif sur-

rounded by 100nt upstream and downstream. This represents

a comprehensive benchmark set for poly(A) motifs in human

DNA sequences. The goal is to predict which candidate motifs

are true poly(A) motifs.

4.2 Experimental settings

The proposed method was tested on each of the 12 datasets using

5-fold cross-validation. Each dataset was randomly partitioned

into five subsets, four of which were used for training and val-

idation, and the remaining one was used for testing in each fold.
We then searched for m 2 2, 4, . . . , 40f g and k 2 3, 4, 5, 6, 7f g

using cross-validations (Supplementary Fig. S1). For each par-

ameter combination and each dataset, two HMMs were learned

for the positive samples and the negative ones in the training

data. For each HMM, the parameters, fh0, h1,Hxg, were learned

by Algorithm 1. For each training sequence of 206 nt, the spec-

tral latent feature vectors, ðh>1 , . . . , h>206�kþ1Þ
>, were then calcu-

lated for the positive and negative HMMs and concatenated

(Algorithm 2). A linear Support Vector Machine (SVM) was

then trained using these spectral latent features.
Given a testing sequence of 206 nt, the spectral latent feature

vectors were extracted by Algorithm 2 using the learned HMMs

for the same poly(A) motif. The concatenated feature vector was

then given to the corresponding SVMmodel to predict whether it

was a true poly(A) motif or a false one. The grid search for

different parameters with respect to the training and testing

errors indicated that the parameter ranges that had highest ac-

curacy on the training set were k ¼ 4, 5, 6 and m 	 20

(Supplementary Fig. S1).

4.3 Comparison to other string kernels

We first compare the classification performance of the proposed

method (HMM) with the previous state-of-the-art string kernels,

namely, the PPK, SPE kernel and WD kernel. The best k for

these alternative kernels, except PPK, was also searched using

the cross-validation between three and seven, and we report here

the best results. In Table 1, all reported errors are the average

over the 5-fold cross-validation. It can be seen that the WD

Table 1. Comparison of the error rates of our method (HMM) with PPK, SPE and WD

Variants Size Error rate (%) False-negative rate (%) False-positive rate (%)

PPK SPE WD HMM Rel PPK SPE WD HMM Rel PPK SPE WD HMM Rel

AATAAA 5190 — 23.08 23.72 18.59 19.45 — 21.93 23.70 18.54 15.47 — 24.24 23.74 18.65 23.05

ATTAAA 2400 27.13 20.17 18.29 16.21 19.63 32.50 22.83 21.50 18.17 20.44 21.75 17.50 15.08 14.25 18.57

AAGAAA 1250 31.28 14.72 16.72 9.36 36.41 37.12 14.08 19.68 11.36 19.32 25.44 15.36 13.76 7.36 52.08

AAAAAG 1230 15.04 13.25 7.80 5.45 58.90 25.20 8.94 8.46 6.02 32.73 4.88 17.56 7.15 4.88 72.22

AATACA 880 31.48 18.98 23.18 15.34 19.16 35.91 19.55 30.68 19.09 2.33 27.05 18.41 15.68 11.59 37.04

TATAAA 780 29.87 16.28 18.46 11.15 31.50 34.36 22.31 21.54 15.64 29.89 25.38 10.26 15.38 6.67 35.00

ACTAAA 690 40.72 24.35 30.29 16.96 30.36 43.48 28.41 39.42 20.00 29.59 37.97 20.29 21.16 13.91 31.43

AGTAAA 670 31.19 20.90 23.88 14.33 31.43 33.73 30.75 25.67 20.60 33.01 28.66 11.04 22.09 8.06 27.03

GATAAA 460 25.43 17.39 14.13 9.57 45.00 35.22 21.74 16.96 10.43 52.00 15.65 13.04 11.30 8.70 33.33

AATATA 410 29.51 15.85 18.78 9.27 41.54 31.22 23.90 25.85 14.63 38.78 27.80 7.80 11.71 3.90 50.00

CATAAA 410 32.68 18.78 22.20 12.68 32.47 40.98 22.93 27.80 20.49 10.64 24.39 14.63 16.59 4.88 66.67

AATAGA 370 24.05 8.11 14.86 5.14 36.67 22.16 6.49 9.73 6.49 0.00 25.95 9.73 20.00 3.78 61.11

Average — — 19.56 20.22 14.42 28.09 — 20.60 22.47 16.26 20.75 — 18.52 17.96 12.59 34.17

‘Average’ denotes the weighted average of the corresponding column. ‘Size’ denotes the number of samples for the corresponding motif variant. ‘Error rate’ is the proportion of

false results in the dataset, which equals one minus accuracy. ‘False-negative rate’ is the proportion of true poly(A) motifs that are predicted to be false, which equals one

minus sensitivity. ‘False-positive rate’ is the proportion of false poly(A) motifs that are predicted to be true, which equals one minus specificity. ‘Rel’ denotes the relative

improvement of HMM with respect to SPE. The lowest error rate for each motif variant is indicated in bold. PPK could not finish running within 48 h on AATAAA.
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kernel compares favorably with the SPE kernel, with slightly

higher false-negative rate and slightly lower false-positive rate.

Our method, which simultaneously takes into account location

information, sequence uncertainty and training labels, performs

consistently and significantly better than PPK, SPE and WD.

The PPK kernel has the worst results. As discussed in Section

2, PPK can suffer from severe overfitting by fitting each sequence

to a separate HMM and it discards important discriminative

information by not using the training labels.

Next, we compare the runtime of different methods using

the largest two variants, AATAAA and ATTAAA. Our

method is significantly faster than alternatives at training

time, while being comparable in speed at test time (Table 2).

In this experiment, the training time is equal to the time for

kernel (or feature) computation for training data plus that for

learning SVM models; and the test time is equal to the time

for kernel (or feature) computation for test data plus that for

classification. At training time, PPK, SPE and WD need to

compute a square kernel matrix of size D�D, and the asso-

ciated SVM models need to be trained in the dual form. In

contrast, our method computes a feature matrix of size

D� 2mL, and the associated SVM model can be trained in

the primal form (usually faster than in the dual form). At test

time, PPK, SPE and WD need to compute the kernel values

between each support vector (the number of support vectors

can be large) and each test data point. In contrast, our

method only computes a feature vector of length 2mL for

each data point, and then performs an inner product with

the learned SVM model w, a vector of length 2mL.

4.4 Comparison to state-of-the-art method: the RF model

Table 3 compares the proposed method with a state-of-the-art by

5-fold cross-validation on the 12 variants of human poly(A)

motifs: the RF model using domain-specific features by

Kalkatawi et al. (2012). As shown in Table 3, our method is

always significantly more accurate than RF (much lower error

rates) and is more sensitive than RF on 11 out of the 12 variants.

In fact, our method improves the error rates by 7–72% as com-

pared with RF on the 12 motif variants. On average, our method

has an improvement over RF in terms of the error rate, false-

positive rate and false-negative rate by �26, 15 and 35%,

respectively. These percentages imply that the significant im-

provement on the error rate is not just the result of a better

trade off between sensitivity and specificity, but it is the result

of being a better method in both senses. By comparing the results

in Tables 1 and 3, it can be seen that the RF model outperforms

other string kernels (PPK, SPE and WD) in terms of accuracy

for poly(A) motif prediction. Our method that systematically

extracts spectral latent features significantly improves upon RF

Table 3. Comparison of our method (HMM) with RF

Variants Size Error rate (%) False-negative rate (%) False-positive rate (%)

RF HMM Rel RF HMM Rel RF HMM Rel

AATAAA 5190 20.06 18.59 7.31 19.74 18.54 6.10 20.37 18.65 8.44

ATTAAA 2400 18.42 16.21 12.01 18.68 18.17 2.75 18.15 14.25 21.49

AAAAAG 1250 16.64 9.36 43.75 16.53 11.36 31.28 16.75 7.36 56.06

AAGAAA 1230 11.06 5.45 50.75 11.92 6.02 49.53 10.15 4.88 51.94

TATAAA 880 19.55 15.34 21.53 18.10 19.09 �5.47 20.87 11.59 44.46

AATACA 780 19.36 11.15 42.39 18.13 15.64 13.73 20.49 6.67 67.46

AGTAAA 690 27.83 16.96 39.07 25.24 20.00 20.76 29.92 13.91 53.50

ACTAAA 670 22.09 14.33 35.14 20.69 20.60 0.45 23.36 8.06 65.50

GATAAA 460 20.00 9.57 52.17 21.01 10.43 50.33 18.92 8.70 54.04

CATAAA 410 18.54 9.27 50.01 16.92 14.63 13.51 20.00 3.90 80.49

AATATA 410 24.88 12.68 49.02 24.12 20.49 15.06 25.59 4.88 80.94

AATAGA 370 18.38 5.14 72.06 19.37 6.49 66.51 17.32 3.78 78.15

Average — 19.19 14.42 25.62 18.83 16.26 14.81 19.48 12.59 35.40

Note: The performance of both RF and HMM is evaluated on the same 5-fold cross-validation. ‘Rel’ denotes the relative improvement of HMM with respect to RF. The

lowest value for each criterion of each motif variant is indicated in bold.

Table 2. Runtime comparisons on two variants AATAAA and ATTAAA for one train/test split, with k¼ 3 and all other parameters set to optimal

Time (s) AATAAA ATTAAA

PPK SPE WD HMM PPK SPE WD HMM

Training — 46.16 37.38 7.59 2722.81 9.46 6.47 3.86

Testing — 6.81 0.94 1.43 674.08 1.54 0.69 0.67

Note: PPK could not finish running within 48h on AATAAA. The values in bold indicate better results.
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and other string kernels on the same task. This supports our

assumption that uncertainty and diversity information is import-

ant for this problem and there is a ‘clean’ DNA signal hidden in

the observed sequences.

4.5 Visualizing importance scores of dimers and positions

Another advantage of our method over previous state-of-the-art

poly(A) motif predictors is that our method can be used to visu-

alize the importance of k-mers or positions to the prediction task.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 1. Visualization of the importance of different dimers at different positions for the 12 variants of human poly(A) motifs. The x-axis gives the

positions in the sequence. The y-axis lists all 16 possible dimers. The colors denote the levels of importance: the light green color for the positions 0–6 is

the background color, which indicates that no effects differentiate true and false motifs; the darker the red, the more important the dimer at that position

is to identifying true motifs; the darker the blue, the more important the dimer at that position is to identifying false motifs.
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This can provide researchers or users a direct and intuitive way

to study the patterns and characteristics of DNA sequences.

More importantly, most previous studies on poly(A) motifs try

to reveal statistics of the surrounding regions of true motifs. Our

method, in contrast, can reveal patterns for false motifs at the

same time.
In Figure 1, we present the importance scores �ðdimer@tÞ for

dimers (subsequences of 2 nt, e.g. AG) in determining whether or

not a candidate poly(A) motif is a true motif. A number of

interesting observations can be made about this figure:

AA is an informative subsequence to differentiate true poly(A)

motifs from false ones in all 12 variants of human poly(A)

motifs. When AA appears frequently within 30 nt downstream

of the candidate poly(A) motif, this strongly suggests that it is a

true poly(A) motif. This is expected because the mRNA cleavage

site is often 15–25nt downstream of the poly(A) motif, and the

region between the cleavage site and the motif is known to be A-

rich (Retelska et al., 2006). Interestingly, when AA appears fre-

quently within 100 nt upstream of the candidate motif, the can-

didate is likely to be a false motif.

CG is an interesting dimer. Its positions carry important in-

formation for determining both true and false poly(A) motifs.

When CG appears beyond 40nt upstream of the motif, this sug-

gests that the motif is a true poly(A) motif. On the other hand,

CG serves as a strong sign for false predictions in the immediate

20 nt downstream and then becomes a sign for true predictions

for further downstream sequences. In Hu et al. (2005), it was

found that �100/�41 and þ41/þ100 regions of poly(A) motifs

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 2. Visualization of the importance of different positions for the 12 motif variants. The x-axis gives the position in the sequence. For each k from 1 to

5, the y-axis is the importance score of a position by summing over the absolute values of the importance for all possible k-mers at that position
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are C- and G-rich regions. Our results suggest that looking at CG
together rather than individually may capture more informative
patterns.

TA or AT is one of the characteristics for false poly(A)
motifs among all 12 variants. No matter if it appears frequently
in downstream or upstream nt sequences of the candidate

poly(A) motif, TA or AT suggests that the candidate is a false
one. Between them, TA is more informative than AT to specify
false motifs. On the one hand, our findings coincide with previ-

ous studies that TA and AT are important features around
the poly(A) motifs and TA is more frequent than AT [e.g. the
TATATA oligonucleotide is more over-represented than the

ATATAT oligonucleotide (Hu et al., 2005; van Helden et al.,
2000)]. On the other hand, our findings reveal that TA and
AT appear much more often in sequences around the false

motifs than around the true motifs. In van Helden et al.
(2000); Hu et al. (2005), it was found that TATATA

and ATATAT are the most over-represented oligonucleotides
downstream of the poly(A) motifs. However, by analyzing the
negative motifs, our results imply that although TA and AT

appear often in positive motifs, they appear even more often in
negative ones.
TG can determine false motifs at alternate positions upstream

or downstream of the candidate motif of AATAGA (Fig. 1(l)).
This is not the case for the two most frequent motifs, AATAAA
and ATTAAA, which partially supports our hypothesis that the

intrinsic characteristics of the frequent motifs and rare motifs are
different. Thus, a good poly(A) motif predictor should have dif-
ferent models for different motif variants.

Figure 2 shows the importance scores for different positions
with k from 1 to 5. Again, the 6 nt positions for the candidate
motifs offer no information to the prediction. However, because

the k-mers overlapping with the motif regions contain subse-
quences of the motifs, the motif regions do not have absolutely
‘zero’ importance. Again, we list key observations here:

The longer the subsequences are (bigger k), the smoother the
importance curves are. This is expected because considering
more nt at the same time will average the effects caused by in-

dividual positions.
In almost all the variants, the 50 nt downstream of the candi-

date motifs are informative. Specifically, motif variants
AATAAA, CATAAA and AATATA have important information
at the positions around the 25th nt downstream of the candidate

motifs (Fig. 2a, j and k). This coincides with the fact that the
mRNA cleavage site is 15–25nt downstream of poly(A) motifs
(van Helden et al., 2000; Retelska et al., 2006).

5 CONCLUSION AND FUTURE WORKS

In this article, we proposed a novel method to extract fea-
tures from upstream and downstream regions of candidate
poly(A) motifs in human DNA sequences. Our proposed spectral

latent feature-based method achieves state-of-the-art results.
The proposed method systematically explores the informa-
tion encoded in nucleotide sequences by learning sequence

dynamics and matching latent distributions on each position,
and it can be easily extended to visualize the importance of
subsequences and positions, thus providing a general method

for sequence-based classification problems in bioinformatics.

Our method can be directly applied to other sequence classi-

fication problems and achieve state-of-the-art results, such

as the transcription start-site prediction and splice-site

prediction (Supplementary Material S1 and Supplementary

Table S1).
Our method, currently, requires a fixed length of upstream and

downstream sequences for the training and testing data. Such

prior knowledge has to be given as input. We are trying to gen-

eralize and extend our method to take varying lengths of se-

quences for different samples. Furthermore, there may be

longer-range dependency between the latent variables, and

HMMs of higher orders may be needed for the feature extraction

purpose, for which junction tree-type algorithms can be applied

(Parikh et al., 2012). Similar to the WD kernel with shifts

(Rätsch et al., 2005), our method can also be straightforwardly

extended to take shifted matches into account.
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