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ABSTRACT

miRNAs are small non coding RNA structures which
play important roles in biological processes. Finding
miRNA precursors in genomes is therefore an im-
portant task, where computational methods are
required. The goal of these methods is to select po-
tential pre-miRNAs which could be validated by ex-
perimental methods. With the new generation of
sequencing techniques, it is important to have fast
algorithms that are able to treat whole genomes
in acceptable times. We developed an algorithm
based on an original method where an approxima-
tion of miRNA hairpins are first searched, before
reconstituting the pre-miRNA structure. The ap-
proximation step allows a substantial decrease in
the number of possibilities and thus the time
required for searching. Our method was tested on
different genomic sequences, and was compared
with CID-miRNA, miRPara and VMir. It gives in
almost all cases better sensitivity and selectivity. It
is faster than CID-miRNA, miRPara and VMir: it
takes �30 s to process a 1 MB sequence, when
VMir takes 30 min, miRPara takes 20 h and
CID-miRNA takes 55 h. We present here a fast
ab-initio algorithm for searching for pre-miRNA pre-
cursors in genomes, called miRNAFold. miRNAFold
is available at http://EvryRNA.ibisc.univ-evry.fr/.

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs which are
only 21–25 nt in sequence length and are present in all
sequenced higher eukaryotes (1,2). They are involved as
negative regulators of gene expression at the post-
transcriptional level by binding to specific mRNA
targets whose translations are inhibited or downregulated
(2,3). According to the current understanding of miRNA
biogenesis, miRNA genes are transcribed first as long

pri-miRNAs and then are cleaved into 60–80 nt long pre-
cursors of miRNA sequences (pre-miRNAs) by the
Drosha/Pasha complex. The pre-miRNA, structured as a
hairpin, is transported into the cytoplasm by Exportin5
and cleaved by Dicer into the mature miRNA (1). In the
RISC complex, a miRNA binds to a specific mRNA tran-
script and leads to the cleavage or the degradation of the
mRNA.
Since the detection of pre-miRNAs by experimental tech-

niques is difficult, expensive and requires a large amount
of time, computational methods represent the first step
in pre-miRNA identification. These methods can be
divided into three approaches: comparative genomics,
homology-based approaches and ab-initio approaches.
The phylogenetic conservation of some pre-miRNAs in

their primary sequence and/or their secondary structure
(1,4) is used in comparative genomics approaches. These
approaches consider multiple alignments of sequences
where conserved pre-miRNAs are searched for. Several
algorithms based on this approach were developed, for
example miRseeker (5), MiRFinder (6), RNAmicro (7),
BayesMiRNAfind (8), miRRim (9).
The increase of known pre-miRNAs in miRBase (www.

mirbase.org) (10) permits homology-based approaches to
exploit information from both sequence and structure.
For example, miRAlign (11) uses sequence and structure
filters to predict new pre-miRNAs. ERPIN (12) uses RNA
alignments as weight matrices to look for homologous
pre-miRNAs.
Comparative genomics and homology-based

approaches cannot detect pre-miRNAs of unknown
families and/or pre-miRNAs with no close homologues
in genomes. Furthermore, comparative approaches do
not work on new genomes that do not have a closely
related species sequenced. Ab-initio methods are needed
to predict new pre-miRNAs in genomes.
Almost all existing ab-initio algorithms use an early

step secondary structure predictor like RNAFold (13),
RNALFold (14), Mfold (15) or UNAFold (16).
Different methods and filters are then applied for predict-
ing pre-miRNAs.
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We can classify the ab-initio methods into three
categories:

. Methods that take as input the sequence of a
pre-miRNA candidate and then classify it as true or
false pre-miRNA.

. Methods that take as input a genomic sequence and
some other information in order to predict (several)
pre-miRNAs in the given sequence.

. Methods that are completely ab-initio, since they take
as input a genomic sequence only (without any other
information) and then search for all possible
pre-miRNAs occurring in the sequence.

In the first category, we have Triplet-SVM (17),
mir-KDE, (18), miPred (19) and microPred (20). Triplet-
SVM and miPred are algorithms that classify real and
pseudo pre-miRNAs using, respectively, a support vector
machine (SVM) and a random forest prediction model.
mir-KDE transforms the secondary structure produced
by RNAFold and RNAspectral (21) into a vector of 33
features that are then estimated with a relaxed variable
kernel density estimator (RVKDE) (21). microPred
classifies human pre-miRNAs using a SVM with 48
features, including 6 folding criteria (20).
In the second category, we have miR-abela (22), and

MIReNA (23). miR-abela predicts new pre-miRNAs
that are close in the sequence to a given known
pre-miRNA; it searches for pre-miRNA clusters in
human, mouse and rat genomes. In case of MIReNA,
it is necessary to enter approximative positions of
pre-miRNAs.
To our knowledge, there are very few ab-initio algo-

rithms of the third category that search for pre-miRNA
structures in whole genomes, without any given additional
information. There are CID-miRNA (24), miRPara (25),
miRPred (26), miRANK (27), Virgo (28) and VMir (29).
CID-miRNA (24) uses a Stochastic Context Free
Grammar (SCFG) model for predicting pre-miRNAs
built for the human genome. miRPara (25) uses
UNAFold (16) first to predict the secondary structure of
the given sequence, and select the pre-miRNA candidates
through 77 parameters such as the ratio of GC, the
number of internal loops, the number of GU pairings
and the number of unpaired nucleotides. miRPred (26)
identifies pre-miRNA structures in the human genome
using linear genetic programming, and miRANK (27)
uses a ranking algorithm based on Markov random
walks, a stochastic process defined on weighted finite
state graphs. Virgo (28) uses RNAFold and hairpin and
energy filters before using a SVM classifier, called SVMlight

(30). Finally, VMir (29) was created for predicting
pre-miRNAs in viruses; it uses RNAFold and calculates
a score for RNAFold hairpins using several parameters
like the size, the number of copies and the number of
sliding windows where a same hairpin is detected.
With the new generation of genome sequencing

technologies, it is nowadays important to have ab-initio
automatic methods for quickly analyzing the newly
sequenced genomes, and an important aspect of this
analysis is the prediction of pre-miRNAs.

In this article, we present a new ab-initio method (be-
longing to the third category), called miRNAFold, for
predicting pre-miRNA structures in any genome. We de-
veloped an algorithm that, given a genomic sequence (of
any length), searches directly for pre-miRNA hairpins
occurring in that sequence. It targets more precisely
pre-miRNA structures by taking into account their char-
acteristics, in order to (i) better select the true
pre-miRNAs and (ii) reduce the search time. The main
idea is to first search for a long hairpin stem, which is
considered as an anchor allowing to predict the hairpin
structure [the idea of anchor was initially used in Tfold
(31) for RNA secondary structure prediction and in
ModuleOrganizer (32) for the detection of modules in
repeated sequences].

miRNAFold was tested on an artificial sequence and
on several real genomic sequences. It was compared with
CID-miRNA (24), miRPara (25) and VMir (29). We show
in this article that our algorithm predicts successfully
almost all known pre-miRNAs in genomic sequences
of different species. It gives better or at least similar
sensitivity and selectivity than CID-miRNA, miRPara
and VMir. We also show that our algorithm is very
fast; it takes <30 s to process a 1Mb sequence, while
VMir takes >30min, miRPara �20 h, and CID-miRNA
>55 h.

MATERIALS AND METHODS

Pre-miRNA features

Our first objective was to find features of pre-miRNAs.
For this purpose, we downloaded the last version of
miRBase database (Release 17, April 2011) that contains
16 772 pre-miRNAs (10) and we studied the pre-miRNAs
contained in this database. We then observed several
characteristics:

Pre-miRNA hairpins contain long stems. We observed that
pre-miRNAs are almost always composed of at least one
long exact stem. An exact stem is a couple of subsequences
(p, p0) such that:

ðiÞ jpj ¼ jp0j ¼ m

ðiiÞ p½k� Rc p
0½m� kþ 1�; 8k; 1 � k � m

where Rc is the relation of complementarity between nu-
cleotides: ARcU, GRcC and GRcU. In other terms, an
exact stem is a succession of base pairings A-U, C-G
and G-U.

We observed that all pre-miRNA hairpins of miRBase
have at least one exact stem of length greater or equal to 5.
And as we can see in Figure 1A, the longest exact stem in
pre-miRNA hairpins of miRBase is often between 5 and
10 nt.

Pre-miRNA hairpins are symmetric. We also observed
that most pre-miRNAs either have very few bulges or
bulges of one side almost compensate with bulges of the
other side (i.e. there is a similar number of nucleotides
on both sides of the hairpin from the terminal loop to
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the extremities). Figure 1B shows the number of hairpins
decreases when the gap increases. In all, 90% of
pre-miRNAs have less than 3 nt in excess on one side. In
other words, pre-miRNAs do not form a ‘curved’ hairpin
but form an ‘almost straight’ hairpin.

Pre-miRNA hairpins can be approximated by a non-exact
stem. We have observed that in almost all pre-miRNAs of
miRBase, there is a non-exact stem. A non-exact stem is
composed of a succession of exact stems separated by
symmetrical loops such that the size of each symmetrical
loop is less than the length of the exact stems surrounding
it. We define a symmetrical loop as follows:

ðiÞ jpj ¼ jp0j ¼ m

ðiiÞ p½k� Rnc p
0½m� kþ 1�; 8k; 1 � k � m

where Rnc is the relation of non complementarity between
nucleotides. The size of a symmetrical loop is the number
of unpaired nucleotides on one side of the loop.

A non-exact stem forms an important part of the struc-
ture, often more than 40% (Figure 1C). This percentage

corresponds to the ratio of the size of the non-exact stem
size and the size of the hairpin (without the terminal loop).
More than 75% of pre-miRNAs in miRBase have a
non-exact stem that represents at least 40% of their
length (Figure 1C).
Almost all miRBase pre-miRNAs have short symmet-

rical loops. In all, 91.5% of pre-miRNAs have symmet-
rical loops whose length ranges from 1 to 3 nt. Only 0.15%
of miRBase pre-miRNAs (24 of 16,772) have a symmet-
rical loop bigger or equal to 6 (Figure 1D).

Other pre-miRNA features. By studying pre-miRNAs of
miRBase, we observed several other characteristics. We
split the features into two categories: global characteristics
that are present in all species in miRBase and local char-
acteristics that are species dependent.
For the global features, we observed that the longest

stems are composed of at least three base pairings and
have a ratio of GU base pair always lower than 33.33%.
We also observed that the average size of the exact stems
that make up non-exact stems is >3.

Figure 1. (A) Almost all known pre-miRNAs contain at least one long stem. Percentage of pre-miRNA hairpins in human genome, mouse genome
and in all miRBase, in function of the length of their longest stem. (B) Almost all known pre-miRNAs do not contain big bulges. Percentage of
pre-miRNAs in human genome, mouse genome and in all miRBase, having a gap of a given size, i.e. having an excess of nucleotides on one side of
the hairpin. A gap of zero corresponds to a same number of nucleotides on both sides. (C) Almost all known pre-miRNAs are covered by a
non-exact stem. Percentage of pre-miRNAs in miRBase in function of the percentage of nucleotides covered by a non-exact stem. (D) Size of the
biggest symmetrical loop in a non-exact stem. Percentage of non-exact stems from miRBase in function of the size of their biggest symmetrical loop.
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For the species-dependent features, we used some usual
characteristics like the hairpin size, theminimum free
energy (MFE) and the ratio of A, C, G and U nucleotides.
MFE is calculated in the same way as in Mfold (15). We
also calculated some characteristics from Helvik et al. (33)
and van der Burgt et al. (34) like the MFE adjusted (i.e.
ratio between MFE and length), the ratio of G-U and G-C
base pairings and the ratio of G over C. All features and
thresholds are listed in the Supplementary File 1.

Our approach

Our goal was to develop an algorithm which is able to find
efficiently pre-miRNAs in whole genomes in an acceptable
time. For this purpose, we adopted the following
approach, which was motivated by the different observa-
tions (presented above) we made on miRBase
pre-miRNAs.
We consider a sliding window of a given size L suffi-

ciently long to contain a pre-miRNA, in which we search
for pre-miRNA hairpins.
In a first step, we search for long exact stems that verify

some criteria, so they are considered as anchors of possible
hairpins. In a second step, we extend the selected stems in
order to get the longest non-exact stems verifying some
criteria. Each selected non-exact stem can correspond to
a large portion of a pre-miRNA. It is therefore considered
as a good approximation of a pre-miRNA hairpin, and
gives the hairpin position. Possible pre-miRNA hairpins
are then searched for in the subsequence associated to the
selected non-exact stem, considering the middle position
of the non-exact stem as the middle position of the
hairpin. Hairpins verifying some criteria are then selected.
Thus, our approach consists of three main steps applied

on each window subsequence:

(1) search for longest exact stems;
(2) extend the selected stems and select the longest

non-exact stems; and
(3) predict the secondary structure of the hairpins cor-

responding to the selected non-exact stems.

At each step, several selection criteria are used, corres-
ponding to several features observed on the pre-miRNA
hairpins of miRBase and on their exact stems and
non-exact stems. Because a pre-miRNA can present
some of these features but not all, an exact stem, a
non-exact stem or a hairpin is selected when a certain
percentage of the criteria are verified. This percentage is
a parameter which could be set by the user. There are 12
criteria for the longest exact stem, 17 criteria for the
longest non-exact stem and 26 criteria for the hairpin.
For example, if the user choses to select a hairpin with
80% of verified criteria, this means that the hairpin must
have at least 9, 13 and 20 criteria that are verified for,
respectively, the longest exact stem, the longest
non-exact stem and the hairpin.
After the three steps, the sliding window is shifted by

10 nt. The overlapping sequence between two sliding
windows allows the algorithm to find the complete second-
ary structure of the hairpin.

The algorithm

Given a genomic sequence of any size, for each subse-
quence delimited by the sliding window, a triangular
base pairing matrix M is built such as:

Mði; jÞ¼
Mði�1; j�1Þþ1 ifMðiÞ andMðjÞ forma base pair
0 otherwise

�

The algorithm performs then the three following main
steps.

Longest exact stem searching. Stems of length greater
than a minimal size lmin are searched for in the matrix.
For example in Figure 2A, three stems (surrounded by
blue) are selected. The 10 longest stems verifying a
certain percentage of criteria [set by default to 70% (see
‘Results’ section or given by the user)] are then selected.
The 12 exact stem criteria are section the size of the
exact-stem, the MFE, the size of the terminal loop, the
percentage of A, C, G and U, the number of consecutive
A, C, G and U and the ratio of GU pairings in the stem
(Supplementary File 1).

Longest non-exact stem searching. When an exact stem is
selected, it is used as an ‘anchor’ for finding a non-exact
stem. The extension of the exact stem is done by consider-
ing only the diagonal containing the exact stem. The
diagonal is searched to the left and right of the anchor.
For example, in Figure 2A, a non-exact stem is indicated
by red and corresponds to two exact stems. Once a longest
non-exact stem is extended, the 17 non-exact parameters
are calculated: the total length, the number of exact stems
composing it, the MFE, the length of the terminal loop,
etc. The stem is selected if it meets a certain percentage of
these parameters.

Each selected non-exact stem can correspond to a large
portion of a pre-miRNA. It is therefore considered as a
good approximation of a pre-miRNA hairpin, and gives
the hairpin position. Possible pre-miRNA hairpins are
then searched for in the subsequence associated to the
selected non-exact stem, considering the middle position
of the non-exact stem as the middle position of the
hairpin.

Hairpin formation. The hairpins are predicted from
selected non-exact stems. We consider that a selected
non-exact stem approximates well a pre-miRNA hairpin
structure. The anchor of the considered non-exact stem is
positioned in the matrix, and then is extended inwards left
and right (Figure 2B, light green areas) on different diag-
onals, in order to allow here bulges and non-symmetrical
internal loops.

The hairpins determined from the matrix must verify a
set of criteria in order to be selected (26 criteria): length,
MFE, size of the terminal loop, ratio of base pair GU and
GC, etc. (Supplementary File 1). Only hairpins where the
percentage of verified criteria is higher than a certain per-
centage are selected.

Complexity of the algorithm. The algorithm uses a sliding
window of a given size L on the sequence of size N.
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The search of hairpins in the window is of time and space
complexity of O(L2). Therefore, the total time complexity
of the algorithm is O(L2

�N), where N is the sequence
length. The space complexity is of O(L2+N).

RESULTS AND DISCUSSION

The data

To test our method, we considered two types of sequences:
(i) an artificial sequence obtained by concatenating known
pre-miRNAs with mRNA sequences, and (ii) real genomic
sequences where a great number of pre-miRNAs are
known.

Artificial sequence. The artificial sequence was created by
the concatenation of human mRNAs and the insertion of
100 human pre-miRNAs. The mRNA sequences came
from the Human genome (build 37.2) of the NCBI
Website (www.ncbi.nlm.nih.gov) and the pre-miRNAs
came from miRBase database (release 17) (www
.mirbase.org). Pre-miRNA lengths are from 63 to 110 nt
and the start position of pre-miRNAs begins every 300 nt,
the first pre-miRNA starting at position 300. The total
length of the artificial sequence is 30 500 nt. The
obtained sequence is given in Supplementary File 2.

Real genomic sequences. We considered for our tests four
genomes: human, mouse, zebrafish and sea squirt. We
chose these genomes as they present a large cluster of
known miRNAs:

. The human chromosome 19 (strand ‘+’) has a cluster
of 50 pre-miRNAs, the first pre-miRNA starting at
position 54,169,933 and the last one ending at
position 54,485,651.

. The mouse chromosome 2 (strand ‘+’) has a cluster of
71 pre-miRNAs, the first one starting at position
10,388,290 and the last one ending at position
10,439,906.

. The zebrafish chromosome 4 (strand ‘�’) has a cluster
of 50 pre-miRNAs, the first one starting at position
34,353,975 and the last one ending at position
34,481,435.

. The sea squirt chromosome 7q (strand ‘�’) has a
cluster of 46 pre-miRNAs, the first one starting at
position 5,400,066 and the last one ending at
position 6,168,570.

For each of these genomes, we extracted from NCBI
Website the sub-sequence that includes the considered
pre-miRNAs cluster.

Tested algorithms

In order to evaluate our algorithm, we compared it to
existing algorithms of the same category (the third
category of ab-initio algorithms), i.e. with ab-initio algo-
rithms searching for pre-miRNA structures in genomes.
We can cite five programs in this category: CID-miRNA
(22), miRPara (23), miRPred (24), miRANK (25), Virgo
(28) and VMir (26).
Unfortunately, we could not access the source code,

binary or web server of miRPred and miRANK. Virgo
has only a web server (http://miracle.igib.res.in/virgo/)
that limits the size of input sequences to 5000 pb. This
size is too short for our data sets and for genome
screening. We therefore considered CID-miRNA,
miRPara and VMir for our tests. All have their binaries
available and take as input the genome sequence in a
FASTA format. To our knowledge, only CID-miRNA
has a Webserver (http://mirna.jnu.ac.in/cidmirna/).

Figure 2. (A) Example of a symmetrical matrix for searching for exact and non-exact stems in a given genomic subsequence. Three stems are selected
with a threshold of minimum length equal to 4 (surrounded by a blue circle). One of the three stems has been extended to a non-exact stem
(surrounded by a red circle). (B) Search for hairpins. The anchor (surrounded by an orange circle) of the non-exact stem shown in (A) is positioned
in the matrix, and then is extended in left and in right (green areas) on different diagonals, in order to allow bulges and internal loops.
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CID-miRNA, which is dedicated to human genome, uses
a sliding window for parsing the genomic sequence. On
each subsequence delimited by the window, it uses a
Cocke-Younger-Kasami (CYK) parser to build the most
likely secondary structures and uses a classification tree
[obtained with WEKA (http://www.cs.waikato.ac.nz/ml/
weka) on training data] to determine if the secondary
structure is a pre-miRNA.
miRPara also uses a sliding window and on each sub-

sequence uses first UNAFold (16) for predicting the sec-
ondary structure of the pre-miRNA candidate. miRPara
calculates 77 parameters and uses a SVM classifier to
select or not the candidate.
VMir, which is dedicated to viruses pre-miRNA predic-

tion, also uses a sliding window and on each subsequence
delimited by the window, performs RNAFold (13) to
predict the secondary structures. VMir calculates a score
based on the size of the terminal loop, the number of base
pairs and the size of the bulges for each hairpin in the
sliding window. The hairpins with a score higher than a
given threshold are then selected.
For the three ab-initio software CID-miRNA, VMir

and miRNAFold, we used a sliding window of 150 nt.
We also considered their default parameters, except for
CID-miRNA, where we changed the parameter value of
the hairpin minimal size. By default, CID-miRNA sets the
minimal size of hairpin to 60 bp, but the ciona intestinalis
cluster we chose has some pre-miRNAs range from 47 bp
to 61 bp, so we chose as minimal size 40 nt.
A predicted hairpin does not always correspond exactly

to the functional hairpin in vivo. Therefore, we consider
that a known pre-miRNA is correctly predicted if the
returned position is correct. The position of a hairpin is
considered as its center and we assume that a predicted
pre-miRNA corresponds to a known pre-miRNA if the
distance between the known and the predicted center is
lower than 10% of the hairpin size.

Statistical measures

In order to evaluate and compare the tested programs, we
used the measures of sensitivity and selectivity (specifi-
city). The sensitivity measures the capability of the
software to find known pre-miRNAs. The selectivity rep-
resents the probability that a predicted hairpin corres-
ponds to a pre-miRNA. The sensitivity and the
selectivity are given by the following equations:

Sensitivity ¼ 100 �
TP

TPþ FN

Selectivity ¼ 100 �
TP

TPþ FP

where TP (true positives) is the number of correctly pred-
icted pre-miRNA, FN (false negatives) is the number of
non correctly predicted pre-miRNA and FP (false posi-
tives) is the number of wrong pre-miRNAs predicted.

Results on the artificial sequence. An important parameter
of miRNAFold is the minimal percentage of criteria that
must be verified at each step of the algorithm. To select

this important parameter, we ran miRNAFold on the arti-
ficial sequence.

The results of sensitivity and selectivity obtained by
miRNAFold, CID-miRNA, miRPara and Vmir are
given in Table 1. Because the artificial sequence contains
100 pre-miRNAs, the sensitivity shown in Table 1 corres-
ponds to the number of pre-miRNAs correctly predicted
(true positives).

CID-miRNA, miRPara, VMir, miRNAFold50,
miRNAFold60, miRNAFold70, miRNAFold80 and
miRNAFold90 predicted a total of 288, 2968, 7565, 529,
525, 514, 419 and 126 hairpins, respectively. CID-miRNA,
miRPara, VMir, miRNAFold50, miRNAFold60,
miRNAFold70, miRNAFold80 and miRNAFold90 have
predicted, respectively, 28, 97, 97, 98, 98, 97, 96 and
65% of the real pre-miRNAs. As expected, the lower the
percentage parameter value considered in miRNAFold,
the higher the sensitivity. The higher the percentage, the
higher the selectivity.

miRNAFold was always more selective than the other
methods whatever the considered criteria percentage.
miRNAFold50, miRNAFold60, miRNAFold70 found at
least 10 times less false pre-miRNAs than VMir whereas
they found the same number of true pre-miRNAs.
miRNAFold80 is 15 times more selective when it losts
only one true pre-miRNA. miRPara found the same
number of pre-miRNAs than miRNAFold70 but it also
predicted 2436 more pre-miRNAs, which corresponded
to five times the number of pre-miRNAs predicted by
miRNAFold70.

miRNAFold is faster than the other tested methods: in
the worst case (with miRNAFold50), miRNAFold was
about 120 times faster than Vmir, which is the fastest
tested method.

When we increase the percentage of criteria from 50%
to 80%, miRNAFold misses only 2 pre-miRNAs but
removes more than 109 false pre-miRNAs. These thresh-
olds allow the user, in a simple way, to choose between the
discovery of a maximum number of pre-miRNAs with
numerous false positives or the discovery of some
pre-miRNAs with a lower number of false positives.

In the following, we set to 70% the default value of this
parameter as it represents the percentage giving a good
compromise between the sensitivity and the selectivity.

Table 1. Results obtained by miRNAFold, CID-miRNA, miRPara

and Vmir on an artificial sequence

Sensitivity Selectivity Time (min : s)

CID-miRNA 97 11.72 90:49
miRPara 97 9.7 5:24
VMir 28 1.32 2:32
miRNAFold50 98 18.77 0:0.88
miRNAFold60 98 18.96 0:0.88
miRNAFold70 97 19.17 0:0.84
miRNAFold80 96 22.91 0:0.76
miRNAFold90 65 52 0:0.68

Comparison of prediction results obtained on an artificial sequence by
miRNAFold, CID-miRNA, miRPara and Vmir. miRNAFold was run
with different values for the parameter of minimal percentage of verified
criteria: 50, 60, 70, 80 and 90. Values in bold denote best results.
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Results on the real genomic sequences. We tested
CID-miRNA, miRNAFold, miRPara and VMir on the
four genomic sequences described above (human, mouse,
zebrafish and sea squirt), which contain each a cluster of
several known miRNAs. miRNAFold was run with a
threshold of 70% for its parameter of minimum percent-
age of verified criteria.

Sensitivity results

Table 2 shows the sensitivity results obtained with
CID-miRNA, miRNAFold, miRPara and VMir in each
of the considered sequences.

For the human sequence, miRNAFold and VMir suc-
ceeded both to predict all known pre-miRNAs. For the
mouse sequence, our algorithm has a better prediction rate
than VMir: 98.59% versus 88.73% which means that
miRNAFold missed one known pre-miRNA when VMir
missed eight pre-miRNAs. For the zebrafish sequence,
miRNAFold missed only three known pre-miRNAs
(94.74%) when VMir missed nine known pre-miRNAs
(84.21%). For the sea squirt sequence, VMir found all
known pre-miRNAs while our algorithm missed four
pre-miRNAs (91.30%).

In the human sequence, CID-miRNA missed 31 of the
50 known pre-miRNAs where miRNAFold found all of
them. For the mouse sequence, CID-miRNA found less
than one-third of known pre-miRNAs (21 of 71) when
miRNAFold missed only one pre-miRNA. For the
zebrafish and the sea squirt sequences, the sensitivity of
CID-miRNA decreases to 19.30% and 28.26%.

In the human sequence, miRPara missed one known
pre-miRNA while miRNAFold found all of them. In the
mouse sequence, the two methods have the same sensitiv-
ity (98.58%), which is the best sensibility rate for the
mouse sequence. For the zebrafish and the sea squirt se-
quences, the sensitivity of miRPara dropped to 47.37 and
58.7%, respectively, when miRNAFold has a sensitivity
rate greater than 91%.

Thus we can say that miRNAFold has a better or
similar sensitivity than VMir in three of the four
genomic sequences. However, the sensitivity rate of
miRNAFold is always higher than 90% while the sensi-
tivity of VMir can decrease under 85%. CID-miRNA is
the least sensitive of the four programs. For the four
genomic sequences, the sensitivity of CID-miRNA is
lower than 40%. The higher sensitivity value is for the
human sequence, which confirms that CID-miRNA was
originally built for human pre-miRNAs. miRPara has a
good sensitivity for the mammalian genomes (human and
mouse), but its sensitivity dropped under 60% for
zebrafish and sea squirt genomes. Finally, miRNAFold
is the only algorithm giving a sensitivity always greater
than 90% for all tested sequences. Unlike the other
programs, it gives homogeneous and stable sensitivity
results whatever the genomic sequence.

Selectivity results

Table 3 shows the selectivity results obtained by
miRNAFold, CID-miRNA, miRPara and VMir on the
four considered sequences.

Compared with Vmir, miRNAFold has a higher select-
ivity in all sequences. The selectivity of miRNAFold is
about two times better than the selectivity of VMir in
mouse and zebrafish. This means that miRNAFold finds
two times less pre-miRNAs than VMir. For example, for
the mouse sequence, VMir predicted 2149 hairpins when
miRNAFold predicted only 913 for the whole genomic
sequence.
miRNAFold has also a higher selectivity than

CID-miRNA in all sequences excepted in sea squirt.
miRNAFold is nine times better than the selectivity of
CID-miRNA in mouse and almost four times better in
zebrafish. It is also better in the human sequence. The
selectivity of CID-miRNA is better than the selectivity
of miRNAFold in sea squirt: CID-miRNA predicted 323
putative pre-miRNAs while miRNAFold predicted 526
pre-miRNAs.
miRNAFold has also higher selectivity than miRPara in

all sequences, except for the human genome. The sensitiv-
ity rate of miRNAFold was almost two times greater in
the zebrafish genome.
To summarize, miRNAFold has better sensitivity and

selectivity results than CID-miRNA, miRPara and Vmir
on the mouse and zebrafish sequences. In human genomic
sequence, miRPara has a slightly better selectivity than
miRNAFold, but it has a lower sensitivity. In sea quirt
genomic sequence, VMir predicts only four supplementary
known pre-miRNAs compared with miRNAFold but
VMir also predicted 344 false supplementary hairpins.
CID-miRNA has better selectivity in this genome
sequence but missed 33 pre-miRNAs when miRNAFold
missed only four pre-miRNAs.

Table 2. Sensitivity of CID-miRNA, miRNAFold, miRPara and

VMir

Human Mouse Zebrafish Sea squirt

CID-miRNA 38 29. 58 19.30 28.26
miRPara 98 98.59 47.37 58.7
VMir 100 88.73 84.21 100

miRNAFold70 100 98.59 94.74 91.30

Sensitivity results obtained by CID-miRNA, miRNAFold, miRPara
and VMir on Human, Mouse, Zebrafish and Sea squirt genomic se-
quences. Values in bold denote best results.

Table 3. Selectivity of CID-miRNA, miRNAFold, miRPara and

VMir

Human Mouse Zebrafish Sea squirt

CID-miRNA 0.69 0.82 0.75 10.88

miRPara 0.93 5.34 1.4 5.86
VMir 0.56 2.93 1.35 5.29
miRNAFold70 0.89 7.71 2.60 7.98

Selectivity results of CID-miRNA, miRNAFold, miRPara and VMir
obtained on Human, Mouse, Zebrafish and Sea squirt genomic se-
quences. Values in bold denote best results.
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Running time

With the increase of sequencing of large genomes, the
running time is an important evaluation parameter of
pre-miRNA searching algorithms.
To compare the run time of CID-miRNA,

miRNAFold, miRPara, and VMir, we considered subse-
quences of 1 million nucleotides beginning at positions
54.000.000, 10.000.000, 34.000.000 and 5.400.000 from
the Human, Mouse, Zebrafish and Sea squirt genomes,
respectively, containing the clusters considered above.
Experiments were performed on a Linux machine

equipped with an Intel Core Duo 2 T6600 of 2.2 GHz
and 4 GB of RAM. The execution time of the three
programs on the four sequences is given in Table 4.
miRNAFold is the fastest algorithm. Our average time

execution is 25 s for a sequence of 1 million of nucleotides,
when VMir, the second fastest algorithm, has an average
time execution of 30min. CID-miRNA has an average
time execution of 55 h and the average time of miRPara
is almost 20 h.
miRNAFold is then almost 60 times faster than VMir,

about 2400 times faster than miRPara, and about 6600
times faster than CID-miRNA.

AVAILABILITY AND IMPLEMENTATION

miRNAFold takes in input a genomic sequence in a Fasta
format. The size of the sliding window is a parameter
which could be set by the user (by default equal to
150 nt). Another important parameter is the percentage
of criteria that must be verified at each step of the algo-
rithm. The value of this parameter is set by default to 70%
and the user can vary it between 0% and 100%.
miRNAFold was implemented using the C++language.

The software can be used through the web server: http://
EvryRNA.ibisc.univ-evry.fr.

CONCLUSION

We presented here an original ab-initio method called
miRNAFold, which allows a fast search for miRNA pre-
cursors in genomes. This method first searches for the
position of pre-miRNAs by approximating their structure

before deducing the final structure. The interest of this first
step is to reduce the run time. miRNAFold searches for
long exact stems that are then extended into long
non-exact stems. The position of a selected non-exact
stem represents position of a possible pre-miRNA,
which structure is then predicted in a fast way.
miRNAFold uses a sliding window, where all possible
pre-miRNAs are searched for. The algorithm has a time
complexity of O(L2

� N), where L is the length of the
window, and N the size of the sequence.

miRNAFold was tested on several genomic sequences,
and was compared with CID-miRNA, miRPara and
VMir. miRNAFold has almost always better sensitivity.
It is the only one algorithm giving a sensitivity always
greater than 90%. Unlike the other programs, its sensitiv-
ity is homogeneous and stable whatever the genomic
sequence. However, the selectivity of miRNAFold is not
satisfactory, even if it is better than the selectivity of
almost all other methods. Decrease substantially the
number of false positives is a challenging problem. We
are currently developing clustering and machine learning
methods for improving the selectivity of our algorithm.

An important advantage of our method compared with
existing ones is the run time. We obtain better (or similar)
sensitivity and selectivity results than other existing
methods but with an average running time at least 60
times faster than the fastest tested algorithm, i.e. Vmir.
On the tested sequences, miRNAFold takes <30 s for a
sequence of 1 million length, when VMir takes >30min,
miRPara takes about 20 h and CID-miRNA >55 h.
Our method is the only one that permits whole genome
analysis.

The different criteria thresholds were defined from ob-
servations we done on miRBase hairpins. One of our
further work is to develop automatic learning methods in
order to define automatically these thresholds. Another
further work is to optimize and adapt our code for using
it on HPC solutions, and more precisely on GPU solutions,
in order to make it much faster for whole genomes. Finally,
we are working with biologists in order to use miRNAFold
for finding new pre-miRNAs in genomes, and more pre-
cisely on the Xenopus tropicalis genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online:
Supplementary File 1–2.

ACKNOWLEDGEMENTS

We would like to thank Mikael Trellet and Mederich
Besnard for developing the web server of miRNAFold.

FUNDING

Council of Essonne Region (Pôle System@tic, OpenGPU
project). Funding for open access charge: Council of
Essonne Region.

Conflict of interest statement. None declared.

Table 4. Run time of CID-miRNA, miRNAFold, miRPara and

VMir

Human Mouse Zebrafish Sea squirt Average

CID-miRNA 54h 58m 54 h 48m 54 h 40m 55 h 29m 55 h 08m
miRPara 20 h 12m 19 h 47m 19 h 40m 19 h 25m 19 h 46m
VMir 30m 30m 30m 30m 30m
miRNAFold70 0m 25 s 0m 22 s 0m 29 s 0m 24 s 0m 25 s

Execution time of the algorithms CID-miRNA, miRNAFold, miRPara
and VMir for predicting pre-miRNAs in genomic sequences of 1
million of nucleotides each in the four species Human, Mouse,
Zebrafish and Sea squirt. The values of miRNAFold was rounded to
the second. The values of CID-miRNA, miRPara, and Vmir were
rounded to the minutes. The last column shows the average execution
time for a sequence of 1 million of nucleotides. Values in bold denote
best results.
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