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Abstract: Background: We designed and validated the value of multiple radiomics models for
diagnosing histological grade of pancreatic ductal adenocarcinoma (PDAC), holding a promise of
assisting in precision medicine and providing clinical therapeutic strategies. Methods: 198 PDAC
patients receiving surgical resection and pathological confirmation were enrolled and classified as
117 low-grade PDAC and 81 high-grade PDAC group. An external validation group was used to
assess models’ performance. Available radiomics features were selected using GBDT algorithm on
the basis of the arterial and venous phases, respectively. Five different machine learning models were
built including k-nearest neighbour, logistic regression, naive bayes model, support vector machine,
and random forest using ten times tenfold cross-validation. Multivariable logistic regression analysis
was applied to establish clinical model and combined model. The models’ performance was assessed
according to its predictive performance, calibration curves, and decision curves. A nomogram was
established for visualization. Survival analysis was conducted for stratifying the overall survival
prior to treatment. Results: In the training group, the RF model demonstrated the optimal predictive
ability and robustness with an AUC of 0.943; the SVM model achieved the secondary performance,
followed by Bayes model. In the external validation group, these three models (Bayes, RF, SVM)
also achieved the top three predictive ability. A clinical model was built by selected clinical features
with an AUC of 0.728, and combined model was established by an RF model and a clinical model
with an AUC of 0.961. The log-rank test revealed that the low-grade group survived longer than
the high-grade group. Conclusions: The multiphasic CECT radiomics models offered an accurate
and noninvasive perspective to differentiate histological grade in PDAC and advantages of machine
learning models including RF, SVM and Bayes were more remarkable.

Keywords: pancreatic ductal adenocarcinoma; histological grade; radiomics; machine learning; prognosis

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a notoriously digestive carcinoma due
to its occult onset and invasive progression [1]. Despite advancements in medical tech-
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nology, the PDAC patients remained poor prognosis with five-year overall survival rate
as low as 7% [2–4]. Early surgical resection is the only curative treatment modality for
PDAC [5]. Therefore, it is extremely crucial to make an accurate diagnosis and recognize
the patients who can benefit from surgical resection, helping clinical physicians select
available treatment protocols.

Histological grade is considered as a significant independent factor in PDAC, and
low-grade PDAC is associated with longer postoperative survival [6,7], while high-grade
PDAC is inclined to predict shorter survival and higher mortality [8]. Furthermore, high-
grade PDAC do not have an obviously improved prognosis after radical surgery, and
these patients could be influenced by postoperative complications such as pancreatitis and
pancreatic fistula, and have to endure an awful quality of living [9,10]. Previous studies
have reported [11–13], combining serum tumor biomarkers and invasive CT manifestation,
high-grade PDAC is prone to receive chemotherapy, radiotherapy and palliative therapy,
and low-grade PDAC without invasive signs was suggested to undergo operation as early
as possible. Currently, the histological grade of PDAC is merely evaluated by postoperative
specimen which is highly invasive and may delay the choice of available therapeutic
protocol [14,15]. Moreover, the sample obtained by puncture biopsy is not accurate because
it couldn’t represent the whole tumor due to heterogeneity in time and space. Thus, one
precise and preoperative diagnosis tool is necessary for realizing precision medicine.

Radiomics, as an emerging discipline, can non-invasively transform medical images
into multidimensional, potential information through quantizing features that are imper-
ceptible to the naked eyes, and explore features’ associations with pathophysiological
changes [16–18]. Recently, radiomics analysis in the brain, lung, pancreas and prostate
is widely applied with the progress of state-of-the-art informatic technology, aiming to
achieving computer-aided-diagnosis and providing clinical support in the decision-making
process [19–22]. Past studies denoted the success of radiomics depend on interpretability,
repeatability and reproductibility of constructed models. However, there existed no reports
about comparison and investigation in choosing machine learning approaches about the
histological grade in PDAC to our knowledge. Thus, it is essential and significative to
provide evidence in selecting appropriate models for solving clinical problems. In this
study, we compare five different machine learning approaches to construct and verify
CECT-based radiomics model for distinguishing low-grade and high-grade PDAC.

2. Materials and Methods
2.1. Patients

This research was authorized by the local ethics organization of the first affiliated hos-
pital of Chongqing medical university (No: 2022-63), and informed consent was needless
due to the retrospective nature. A total of 198 patients with primary PDAC receiving radical
resection from January 2013 to June 2021 were enrolled as the internal training group. The
external validation group from the third affiliated hospital of Chongqing medical university
was consecutively collected from January 2022 to June 2022. The same inclusion standard
between two centers was as follows: (1) patients underwent preoperative standard multi-
phasic CECT within two weeks before surgery; (2) pancreatic lesions should be observed
visually through medical images; (3) PDAC patients were confirmed postoperatively, and
the histological grade was specific; (4) patients had intact clinical data. The exclusion
criteria were as follows: (1) tumor diameter is less than 10 mm; (2) serious motion artifacts
or distinct noise existed; (3) treatment history of biopsy, radiotherapy, chemotherapy and
chemoradiotherapy before imaging scanning; (4) other coexisting primary malignancies
existed. The screened flowchart in internal center is described in Figure 1.
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Figure 1. Flowchart for selecting the study population in internal group.

2.2. Histological Grading

All surgically removed tumors were sliced into sections, and each section was formalin-
fixed and paraffin-embedded. After that, every section was cropped as slides and stained
with hematoxylin-eosin. Referring the 2019 WHO classification of the digestive system
tumors [23,24], the histological grade of PDAC was classified as follows: well differentiated,
moderately differentiated, and poorly differentiated. Considering the imbalance of differ-
entiated types and the similarity of biological behavior, well differentiated and moderately
differentiated cases were included in the low-grade group. In contrast, poorly differenti-
ated cases were set as the high-grade group. This dichotomous method was regarded as
reflecting the pathological features and tumor invasiveness, which could better represent
degree of malignancy and predict prognosis. Moreover, this classification standard was
consistent with that of Chang, Qiu and Wasif et al. in dividing differentiated types [24–26].

2.3. Image Acquisition

One 128-slice multidetector-row CT (SOMATOM Definition Flash, Siemens Health-
ineers, Berlin, Germany) scanning was performed. The CT scanning parameters were
set as follows: 120 kV; 300 mA; 0.7 pitch; collimation, 128 × 0.6 mm; beam collimation,
160 × 0.5 mm; matrix, 512 × 512; and gantry rotation time, 0.5 s. First, patients received
unenhanced scanning. Second, nonionic contrast agent (Ultravist 370, Bayer Schering
Pharma, Leverkusen, Germany) was injected at a dose of 1.2 mL/kg and at a flow rate
of 3.5 mL/s into the antecubital vein via a pump injector (Medrad Mark V plus, Bayer,
Leverkusen, Germany). The pipe was flushed by 30–40 mL normal saline. Third, 15 s after
the abdominal aorta reaching 100 HU, arterial phase (AP) imaging was scanned. 30 s after
the AP scanning, venous phase (VP) scanning was performed.
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2.4. Data Collection and Follow-Up

Images data and baseline information were acquired from the institutional database.
All patients were evaluated by two radiologists with 8 and 10 years of experience following
double-blind principle. A consensus was reached when different ideas existed. A total of
twenty-two clinical, pathological, images and laboratory characteristics were analyzed for
all patients and were classified as follows: (1) clinical characteristics: gender, age, abdomi-
nal pain, backache, pancreatitis, jaundice, operation method; (2) pathological characteristics:
lymph node metastasis, duodenal invasion, surgical margin status, perineural invasion;
(3) images characteristics: CT-reported tumor size, tumor location, tumor density, clinical T
stage, distant metastasis, parenchymal atrophy, pancreatic duct dilatation, and common
bile duct dilatation; (4) laboratory characteristics: carcino-embryonic antigen (CEA) level,
carbohydrate antigen 19-9 (CA19-9) level, and total bilirubin (TBIL) level. Detailed charac-
teristics description is written in the Supplementary Material. The overall survival of PDAC
patients was obtained via clinical follow-up and telephone inquiry. Overall survival was
counted from the date of surgery to the time of death or the end of follow-up (1 April 2022).
Deaths were set as events, whilst other situations were set as censored observations.

2.5. Tumor Segmentation

Manual segmentation was executed on AP and VP images, respectively. Two radiolo-
gists with 8 and 10 years of diagnostic experience, respectively, drew the outline of tumor
boundary via ITK-SNAP software layer-by-layer on 5 mm CT images for every patient,
excluding cystic, necrotic, blood vessels and lymph nodes. The non-enhanced phase was
not selected due to tumor boundary could not visualize well between lesion and normal
parenchyma. One radiologist with 10 years of experience resegmented the tumor outline
for randomly selected 50 patients one month later. The delayed phase was not enrolled by
reasons of the patients we selected were maximum tumor diameter at least 10 mm on CT
images and lesion enhancement manifestation is similar between the venous phase and
the delayed phase. In addition, some patients did not receive delayed phase scanning for
reducing radiation dose if the diagnosis is fairly clear. Standard abdominal parameters
were set as 250 HU of window width and 45 HU of window level. The interobserver and
intraobserver reproducibility were evaluated by the intraclass correlation coefficient (ICC);
Two-way random-effects model was selected for ICC analysis, and an ICC value with good
consistency and reproducibility was regarded as greater than 0.75.

2.6. Radiomics Feature Extraction and Selection

Images data were resampled to a uniform voxel spacing (1.0 × 1.0 × 1.0 mm3). The
feature extraction procedure was executed on the basis of the Image Biomarker Stan-
dardization Initiative (IBSI) via the Pyradiomics package (accessed on 10 April 2022,
http://www.radiomics.io/pyradiomics.html) in Python (version 3.6). Radiomics features
were divided as two types including original feature and through filter transformation. The
former enrolled first-order features, shape features, grey-level cooccurrence matrix features
(GLCM), grey-level dependence matrix features (GLDM), grey-level run-length matrix
features (GLRLM), grey-level size-zone matrix features (GLSZM), and neighbourhood
grey-zone difference matrix features (NGZDM). The latter enrolled logarithm, exponen-
tial, gradient, square, square root, lbp-2D, and wavelet transformation. The workflow of
radiomics analysis is showed in Figure 2.

http://www.radiomics.io/pyradiomics.html
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First, feature values were cleaned and organized, including abnormal and missing
feature values were replaced with median values. Data were unified by z-score standard-
ization. After ICC analysis, the features were retained with ICC scores of more than 0.75.
Second, a univariate logistic regression analysis was performed. Only the features with sta-
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tistical significance (p value < 0.05) were selected. Then, the gradient boosting decision tree
(GBDT) algorithm was chosen in order to rank the features based on the importance across
all of the decision trees [27]. GBDT algorithm is derived from boosting ensemble learning,
which has strong interpretability and good application effect in data mining, computational
system and other fields. GBDT output the relative importance of features used by the
model after model training, specifically, the global importance of features is measured by
the average value of the importance of features in a single tree. The features possessing the
greatest importance were ensured when the loss function-the mean square error reached
minimum. The final selected features were plotted as heatmap for intuitively observing the
overall expression pattern of features between different groups. The radiomics features
used for building radiomics models were consistent in the internal training group and the
external validation group.

2.7. Radiomics Model, Clinical Model and Combined Model Building and Evaluation

To construct multiple radiomics models that have the greatest ability of recognizing
tumor inherent characteristics and to compare application effect of different machine
learning-based models, our study chose five mainstream machine learning algorithm,
including logistic regression (LR), k-nearest neighbor (KNN), naive bayes model (Bayes),
support vector machine (SVM) and random forest (RF). Model building were executed
using the scikit-learn (accessed on 12 April 2022, https://scikit-learn.org/stable/index.
html) library. According to the Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) criterion [28], the models’ performance
was evaluated based on ten times tenfold cross-validation. The quality of tenfold cross-
validation is not lower than that of the hold-out method.

The predictive ability of the five models were assessed by the area under the curve
(AUC), accuracy, sensitivity, specificity, f1 score, and recall. The delong test was imple-
mented to assess the statistical discrepancy among AUCs. The decision curves were eval-
uated by measuring the net benefits with different threshold probabilities to exhibit the
models’ clinical efficiency in tumor classification task. The calibration curve was used to fit
the actual and predicted incidence rates. Univariate and multivariate logistic regression
analysis were performed on a total of twenty-two predictor variables. Simultaneously, we
performed the multicollinearity check for all variables. Ultimately, statistically significant
features were selected for clinical model development. The clinical variables building
clinical model is consistent in the internal training group and the external validation group.
The sole best radiomics model in five radiomics models was selected and integrated with
the clinical model to construct a combined model. To enhance the interpretability of the
combined model, a quantitative model was built via regression coefficients and visualized
as a radiomics nomogram. In general, the radiomics model, clinical model and combined
model are different in the building procedure. The radiomics model adopted machine
learning approaches, whereas the clinical model and the combined model used linear
logistic regression.

2.8. Statistical Analysis

SPSS software (version 25.0), R software (version 3.6.1) and Python software (version
3.7.0) were applied for statistical analysis. Continuous variables with normal distributions
are computed using independent-sample t tests; continuous variables with non normal
distributions were used wilcoxon test. Categorical data were expressed as the relative
distribution frequency and percentage using the chi-square test or fisher’s exact test. A
p value less than 0.05 was regarded as statistical significance. Variables with statistical
significance in univariate analysis were fed into multivariable logistic regression analysis
with implementing forward stepwise selection method. Kaplan–Meier analysis and the
log-rank test were executed to plot the survival curves and to analyze the differences
between the curves.

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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3. Results
3.1. Clinical Data

A total of 198 patients were enrolled as the internal training group, including 138 men
(age: 60.96 ± 9.85 years; range: 38–85 years) and 60 women (age: 62.17 ± 8.52 years;
range: 41–78 years). Moreover, 30 patients were enrolled as the external validation group,
including 16 men and 14 women. Detailed baseline characteristics are showed in Table 1.
In the internal training group, there are 117 patients in the low-grade cohort and 81 pa-
tients in the high-grade cohort; in the external validation group, there are 17 patients in
the low-grade group and 13 patients in the high-grade group. Univariate and Multivari-
able logistic regression analysis showed that gender (statistic= 4.238, p = 0.040), T stage
(statistic = 9.347, p = 0.025), lymph node metastasis (statistics = 10.482, p = 0.005) and CA-
199 level (statistics = 5.446, p = 0.020) were independent predictors of histological grade.
The results indicated that the high-grade group were more likely to have male, more higher
T stage, lymph node metastasis and abnormal CA-199 level. The Kaplan–Meier curves
showed significant difference between low-grade and high-grade PDAC with p < 0.05
(Figure 3). An evidently longer survival time was revealed in the low-grade group (mean:
24.19 months, 95% CI: 20.78–27.59) than the high-grade group (median: 17.91 months, 95%
CI: 14.37–21.45).

Table 1. Baseline characteristics of patients with PDAC.

Characteristics

Internal Training Group External Validation Group

Low-
Grade Group

High-
Grade Group Statistics p Value Low-

Grade Group
High-

Grade Group Statistics p Value

Clinical characteristics
Age(y), mean ± SD 61.32 ± 9.72 61.33 ± 9.13 −0.010 0.990 60.94 ± 11.48 60.46 ± 8.67 0.126 0.901
Gender 4.238 0.040 * 0.002 0.961

Female 42(35.9) 18(22.2) 8(47.1) 6(46.2)
Male 75(64.1) 63(77.8) 9(52.9) 7(53.8)

Abdominal pain 0.386 0.534 0.475 0.491
Yes 70(59.8) 52(64.2) 7(41.2) 7(53.8)
No 47(40.2) 29(35.8) 10(58.8) 6(46.2)

Backache 1.186 0.276 1.186 0.276
Yes 24(20.5) 22(27.2) 3(17.6) 2(15.4)
No 93(79.5) 59(72.8) 14(82.4) 11(84.6)

Pancreatitis 0.338 0.561 0.136 0.713
Yes 18(15.4) 15(18.5) 2(11.8) 1(7.7)
No 99(84.6) 66(81.50 15(88.2) 12(92.3)

Jaundice 0.406 0.524 0.475 0.491
Yes 19(16.2) 16(19.8) 10(58.8) 6(46.2)
No 98(83.8) 65(80.2) 7(41.2) 7(53.8)

Operation 1.202 0.273 0.305 0.580
Pancreaticoduodenectomy 86(73.5) 65(80.2) 13(76.5) 11(84.6)
Distal pancreatectomy 31(26.5) 16(19.8) 4(23.5) 2(15.4)

Pathological characteristics
Lymph node metastasis 10.482 0.005 * 4.344 0.037 *

Negative 84(71.8) 41(50.6) 14(82.4) 6(17.6)
Positive 32(27.4) 40(49.4) 3(17.6) 7(53.8)

Duodenum Invasion 0.748 0.387 2.330 0.127
Negative 75(64.1) 47(58.0) 7(41.2) 9(69.2)
Positive 42(35.9) 34(42.0) 10(58.8) 4(30.8)

Surgical margin status 2.783 0.095 0.305 0.580
Negative 110(94.0) 80(98.8) 13(76.5) 11(84.6)
Positive 7(6.0) 1(1.2) 4(23.5) 2(15.4)

Perineural invasion 2.054 0.152 1.639 0.201
Negative 20(17.1) 8(9.9) 2(11.8) 0(0.0)
Positive 97(82.9) 73(90.1) 15(88.2) 13(100)
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Table 1. Cont.

Characteristics

Internal Training Group External Validation Group

Low-
Grade Group

High-
Grade Group Statistics p Value Low-

Grade Group
High-

Grade Group Statistics p Value

Imaging characteristics
CT-reported tumor size(mm) 28.03 ± 11.02 29.11 ± 11.30 −0.669 0.504 28.65 ± 9.27 31.31 ± 9.93 −0.755 0.456
Location 1.726 0.422 0.679 0.410

Head and neck 88(75.2) 66(81.5) 15(88.2) 10(76.9)
Body and tail 29(24.8) 15(18.5) 2(11.8) 3(23.1)

Tumor density 0.772 0.680 - -
Hypodensity 114(97.4) 80(98.8) 17(100) 13(100)
Isodensity 2(1.7) 1(1.2) 0(0.0) 0(0.0)
Hyperdensity 1(0.9) 0(0.0) 0(0.0) 0(0.0)

T stage 9.347 0.025 * 2.90 0.235
cT1 30(25.6) 9(11.1) 3(17.6) 0(0.0)
cT2 72(61.5) 55(67.9) 12(70.6) 10(76.9)
cT3-4 15(12.8) 17(21.0) 2(11.8) 3(23.1)

Metastasis 0.140 0.709 0.084 0.773
cM0 115(98.3) 79(97.5) 15(88.2) 11(84.6)
cM1 2(1.7) 2(2.5) 2(11.8) 2(15.4)

Parenchymal atrophy 0.003 0.958 0.136 0.713
Yes 64(55.2) 45(55.6) 3(17.6) 3(23.1)
No 52(44.8) 36(44.4) 14(82.4) 10(76.9)

PD dilatation 0.121 0.728 0.679 0.410
Yes 90(76.9) 64(79.0) 15(88.2) 10(76.9)
No 27(23.1) 17(21.0) 2(11.8) 3(23.1)

CBD dilatation 0.062 0.803 0.197 0.657
Yes 76(65.0) 54(66.7) 4(23.5) 4(30.8)
No 41(35.0) 27(33.3) 13(76.5) 9(69.2)

Laboratory characteristics
CA-199 level 5.446 0.020 * 0.151 0.697

Normal 34(29.1) 12(14.9) 5(29.4) 3(23.1)
Abnormal 83(70.9) 69(85.2) 12(70.6) 10(76.9)

CEA level 0.001 0.972 0.197 0.657
Normal 98(83.8) 68(84.0) 13(76.5) 9(69.2)
Abnormal 19(16.2) 13(16.0) 4(23.5) 4(30.8)

TBIL level 0.338 0.561 0.362 0.547
Normal 54(46.2) 34(42.0) 6(35.3) 6(46.2)
Abnormal 63(53.8) 47(58.0) 11(46.2) 7(53.8)

Note: * highlights the p values that are smaller than 0.05. Categorical data are number of patients; data in
parentheses are percentage. Abbreviation:PD, pancreatic duct; CBD, common bile duct; CA 19–9, carbohydrate
antigen 19–9; CEA, carcino-embryonic antigen; TBIL, total bilirubin.
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Figure 3. A comparison between patients within the low-grade and the high-grade group. (A) High-
grade group pathological expression (×20). (B) Low-grade group pathological expression (×20). (C) The
Kaplan–Meier curves of the two groups were significantly different (p < 0.05). Patients in the low-grade
group had significantly longer survival than those in the high-grade group by log-rank test.
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3.2. Feature Selection

A total of 960 radiomics features were extracted in every scanning phase; thus, a
total of 1920 radiomic features were extracted from every patient. After GBDT algorithm
implementation, nine most valuable and important features were selected (Table 2), in
which six features are derived from arterial phase and three features are derived from
venous phase. GLCM and shape features take up the majority in nine features. Taking the
feature types as standard, six features are from wavelet transformation and the remained
three are from original images. The features’ heatmap displayed the difference in different
groups visually by finding out which two features are most similar and merge them
into a cluster, then, repeating this process until all the features are assembled together.
Hierarchical clustering is accompanied by the generation of a dendrogram, which shows
the feature similarity and order of clustering in this task (Figure 4).

Table 2. Radiomics features’ selection results.

CT Scanning Phase ID Radiomics Features’ Name

Arterial phase

1 original_shape_Elongation
2 original_shape_Flatness
3 wavelet-LHH_glcm_Autocorrelation
4 wavelet-LHH_glcm_JointAverage
5 wavelet-LHH_glszm_SmallAreaEmphasis
6 wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis

Venous phase
1 original_shape_Flatness
2 wavelet-LHH_firstorder_Median
3 wavelet-HHH_glcm_ClusterShade
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Figure 4. Heatmap of nine radiomics features including. The heatmap is grouped according to the
low-grade group and the high-grade group. Each row corresponds to one radiomics feature, and each
column corresponds to one patient. The rightmost lines represent hierarchical clustering of radiomics
features, shown as a dendrogram.

3.3. Radiomics Models Evaluation

The five different machine learning-based models were built including the LR, KNN,
Bayes, SVM and RF algorithms via ten times tenfold cross-validation. In internal training
group, Figure 5 showed RF achieved the best ability in every statistical indicator. The
RF radiomics model reached the optimal performance with an AUC of 0.943 (95% CI,
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0.915–0.967) and an accuracy of 0.864, and SVM model achieved the secondary diagnostic
ability with an AUC of 0.787 (95% CI, 0.734–0.839) and accuracy of 0.732, followed by
the Bayes model, yielding an AUC of 0.727 (95% CI, 0.667–0.784) and accuracy of 0.677.
The worst outcome was derived from LR and KNN models between five radiomics model
(Figure 6 and Table 3). The delong test demonstrated the AUC of RF model was significantly
statistically significant than that of other models (all p < 0.001), and the SVM model was
also statistically different compared with other four models (all p < 0.05). The remaining
three models (Bayes, KNN, LR) were not significantly different to each other (p > 0.05)
(Figure 6B). Figure 6C showed the RF model had the greatest net benefit with a threshold
probability > 0.06. One mosaic map using the RF classifier indicated that 70 patients were
accurately predicted among 81 patients (86.42%, 70/81) in the high-grade group, and 101
patients (86.32%, 101/117) were accurately predicted among 117 patients in the low-grade
group (Figure 6D).
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Figure 5. Comparison of five radiomics models based on ten times tenfold cross-validation in internal
training group. Box-and-whisker plots of the differences in SVM, RF, LR, KNN and Bayes model
among AUC, ACC, Sensitivity and Specificity. RF achieved the best performance in every statistical
indicators than other models. The box indicates the 25- and 75- quartile; the horizontal line indicates
the median and the cross indicates the mean. Whiskers show the 5- and 95- percentiles; outliers are
indicated by circles.

Table 3. Model performance of five radiomics models in internal training group.

Model AUC Sensitivity Specificity Accuracy f1_Score Recall

LR 0.715 (0.658–0.772) 0.469 0.838 0.687 0.551 0.469
KNN 0.722 (0.664–0.779) 0.667 0.667 0.667 0.621 0.667
Bayes 0.727 (0.667–0.784) 0.58 0.744 0.677 0.595 0.58
SVM 0.787 (0.734–0.839) 0.556 0.855 0.732 0.629 0.556
RF 0.943 (0.915–0.967) 0.864 0.863 0.864 0.838 0.864

Note. Numbers in parentheses are the 95% confidence interval. Abbreviation: logistic regression (LR), k-nearest
neighbor (KNN), naive bayes model (Bayes), support vector machine (SVM), random forest (RF), areas under
receiver operating characteristic curve (AUC).
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Figure 6. The performance evaluation of the five radiomics models in internal training group. (A) The
RF model had the maximum AUC, followed by SVM, Bayes, KNN and LR. (B) DeLong test showed the
AUC of RF model was significantly different than that of other models, followed by SVM model. (C) The
decision curves show that the RF model had greatest net benefit with a threshold probability > 0.06.
(D) Mosaic map showed the RF model achieved 86.42% and 86.32% predictive accuracy in the
high-grade and the low-grade group, respectively.

In the external validation group, the result (Table 4 and Figure 7) showed the Bayes
achieved the best diagnostic ability with an AUC of 0.857 (95% CI: 0.548–0.912), followed
by the RF model with an AUC of 0.810 (95% CI: 0.636–0.984) and SVM model with an AUC
of 0.810 (95% CI: 0.648–0.972). There were no significant differences with AUCs between
the RF, SVM and Bayes models. The top three models with excellent performance in the
external validation group was consistent with that in the internal training group (Bayes, RF,
SVM), verifying that our models have stable diagnostic ability and generalization ability.
Considering that the RF model have reached outstanding performance both in the internal
training group and the external validation group, and the RF model is especially powerful
in large data set, RF model is ultimately selected as the best radiomics model to further
construct the combined model.
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Table 4. Comparison of radiomics model performance in the external validation group.

Models AUC 95%CI

LR 0.733 0.548–0.912
Bayes 0.857 0.727–0.988
KNN 0.722 0.538–0.905
SVM 0.810 0.648–0.972
RF 0.810 0.636–0.984

Abbreviation: logistic regression (LR), k-nearest neighbor (KNN), naïve bayes model (Bayes), support vector
machine (SVM), random forest (RF), areas under receiver operating characteristic curve(AUC).
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Figure 7. The performance evaluation of the five radiomics models in the external validation group.
(A)The Bayes model had the maxium AUC, followed by RF model and SVM model. (B) Delong test
showed there were no significant difference between RF, SVM and Bayes with AUCs each other.

3.4. Performance Evaluation of the Clinical and Combined Models

Due to the fact that the collected samples were relatively small in external vali-
dation group, we determined to build clinical and combined model only for internal
training group. Meanwhile, we executed multicollinearity check with satisfactory result
(Supplementary Table S1). Then, the screened features (gender, T stage, lymph node metas-
tasis, CA-199 level) were built as a clinical model using multivariate logistic regression
analysis. The combined model was constructed using the clinical model and RF model, with
the highest AUC of 0.961 and an accuracy of 0.909 (Figure 8 and Table 5). The clinical model
performed worst with an AUC of 0.728 and an accuracy of 0.677 between RF, clinical and
combined model. A nomogram was established as a quantitative diagram for noninvasive
LNM prediction (Figure 8A). The calibration curve of the combined model displayed good
consistency between the predicted and actual histological grade (Figure 8D). The decision
curve demonstrated that the combined model provides the best diagnostic efficacy over
and above the “treat all” or “treat none” scheme with a threshold probability between 0.04
and 0.96 (Figure 8E).
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Figure 8. Construction of clinical and combined model in the internal training group. (A) A nomo-
gram was visualized by integrating the best radiomics model-RF and screened clinical features
including T stage, gender, CA199, lymph node metastasis. The clinical model (B) and combined
model (C) achieved the modest and the best diagnostic performance, respectively. (D) The calibration
curve of the nomogram presented a good consistency between predicted and observed histological
grade. (E) The decision curve of the nomogram provided the best diagnostic efficacy over and above
the “treat all” or “treat none” scheme.
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Table 5. Model performance of the best radiomics model, clinical model and combined model in
internal training group.

Model AUC Sensitivity Specificity Accuracy f1_Score Recall

RF 0.943 (0.915–0.967) 0.864 0.863 0.864 0.838 0.864
Clinical 0.728 (0.667–0.790) 0.481 0.812 0.677 0.549 0.481
Combine 0.961 (0.938–0.980) 0.864 0.940 0.909 0.886 0.864

Abbreviation: random forest (RF).

4. Discussion

In our study, we designed and verified multiple CECT-based radiomics models for
differentiating histological grade in PDAC. No matter whether it was the internal training
group or the external validation group, the top three (RF, SVM and Bayes) radiomics
model achieved satisfactory outcome. Due to the relatively small dataset, according to
the TRIPOD criterion, random grouping is not more reliable than the results of total data
modeling. In addition, we have performed ten times ten-fold cross-validation to minimize
the over-fitting of the model. Thus, we have confidence that our result is reliable and
meaningful, and this result could offer an accurate and noninvasive approach to further
investigate application value in PDAC evaluation after feasibility of clinical translation. To
our knowledge, this is also the first study comparing values of multiple radiomics models
for the purpose of preoperatively identifying histological grade in PDAC.

Radiomics, as a noninvasive technology, could investigate and analyze the potential
phenotypic message hidden in medical images which is invisible by naked eyes, thereby im-
proving diagnosis and assisting individualized treatment strategy. The radiomics features
extracted in our study, mainly included shape features and GLCM features, indicating that
high-grade mass grow faster and bigger, and heterogeneity of tumor entity varied more
complicatedly and asymmetrical, thus, generating a relationship between a local or overall
area of an image and adjacent pixels or pixels within a certain distance which possessed
evident difference and variation in the spatial distribution of voxel gray-scale level. Past
study reported that CT-based radiomics could discriminate the heterogeneous distribution
of neoplastic cells. Less tumor heterogeneity is correlated to lower histological grade [29],
which is consistent with our finding. With observing medical images, high-grade PDAC
could demonstrate more uneven CT value and easily generate necrosis and microhemor-
rhage, similarly to Cassinotto [30] who also denoted that poorly differentiated histological
grade was relevant to lower central CT value.

Our study demonstrated that the RF, SVM and Bayes models performed better than
the LR and KNN models in both internal training group and external validation group.
The reasons were speculated that RF as an ensemble learning algorithm is outstanding
among current machine learning approaches by integrating multiple decision trees branch
node to train the data set based on multiple base classifiers, and the final classification
result was obtained by the vote of all base classifiers; Moreover, RF specialize in predicting
classification result especially in larger data sets, thus, RF performed the best in internal
training group, followed by the SVM model and the Bayes model; and RF performed
second in the external validation group. Bayes summed each feature’s predictive proba-
bility up which is assumed that features are independent of each other. Bayes behaved
particularly well in small data sets. Thus, the classification effect of Bayes is the highest
in the external validation group and is modest in the internal training group. This result
indicated performance of model depend on algorithm’s characteristics and matching with
research objectives. Every experiment should attempt as much as possible models for
selecting the best model aiming at different clinical problem. The performance of KNN and
LR remained weak in internal training groups and external validation groups. We guessed
that this was due to variability and instability of parameters and unfitted with nonlinear or
linearly inseparable data.

In this study, integrating the AP and VP features showed the better predictive ability
than sole AP or sole VP features in our experiment. Ultimately, the nine most important fea-
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tures were selected including six AP features and three VP features. Some studies [25,31,32]
only used one venous phase for the purpose of convenience and regarded VP as a clearer
lesion boundary. Our finding implied that AP is significant as well. Thus, enrolling more
CT scanning phases might have the opportunity to exploit more complete and abundant
inherent characteristics. Chang [25] also used radiomics method to identify histological
grade in PDAC, however, it only used one scanning phase (pancreatic parenchymal phase)
and one machine learning approach (SVM) and achieving an AUC of 0.910 in the test
group and 0.770 in the external validation group. Our research emphasis is quite different
from Chang’s. We selected arterial and venous phase, rather than one scanning phase. We
compared and investigated multiple radiomics models, rather than only SVM model. We
used one novel feature selection method, namely GBDT model, rather than one traditional
and outdated LASSO regression model. In addition, the predictive performance of Chang’s
study is similar with that of ours in the internal training group, whereas is worse than
ours in the external validation group. Thus, we have confidence that our research is valu-
able and effective and could improve model performance and generalization ability in
multicenter study.

Among the clinical risk factors, our study found that the high-grade group were
more easily observed males than the low-grade group, which is not consistent with the
result of Dunet [26]; we speculated this was due to eating habits of local citizen and races
distribution of southeast China. Consistent with our results, Wasif [33] denoted that high-
grade group had a significantly higher ratio of clinical T stage and lymph node metastasis,
indicating the two features is valuable in predicting worse differentiated degree. Our result
indicated that CA19-9 had significant differences for identifying histological grade of
PDAC, we guessed this was because CA19-9 is a specific tumor marker which could reflect
biological behavior, and the higher CA19-9 is, the poor prognosis patient have. With the
consideration of that lymph node metastasis is acquired from postoperative specimens, its
diagnostic ability will be further decreased after removing lymph node metastasis. Our
combined model integrating aforementioned clinical variables and RF model demonstrated
the outstanding diagnostic ability with an AUC of 0.961, which is higher than sole RF model
or sole clinical model. It is recommended that despite limitation existed in visual image
evaluation, but through fusing multiple clinical information, fusioned models could assess
tumor more comprehensively and accurately. Previous studies implied that by adding
clinical information, the combined model denoted an evident progress than the radiomics
model individually [34]. Thus, clinical information is meaningful and deserving attention
in radiomics analysis.

Some limitations exist in our study. First, manual segmentation was subjective. It
is essential to realize complete auto segmentation for consistency in the future. Second,
this study was based on traditional machine learning methods due to it possess more
interpretability and generalization ability without black box theory in deep learning, but
deep learning will be attempted in the future. Third, we only focused on arterial and
venous phases, and future studies need to integrate more scanning technology, functional
or perfusion parameters.

5. Conclusions

In summary, among five radiomics models, the preferable performance was achieved
by RF, SVM, Bayes in internal and external data groups. Our two-center study demonstrated
the combined model integrating with the RF model and clinical features performed greatest,
which could represent a precise and noninvasive tool for predicting histological grade of
PDAC, thus assisting in clinical decision-making and therapeutic strategies. Acceptable
individuals could benefit from early personalized surgical plans.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics12081915/s1, Table S1: Multicollinearity check. Relevant references
are [24,35,36].
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