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Abstract: Ewing Sarcoma (ES) is a rare, aggressive, and highly metastasizing cancer in children and
young adults. Most ES cases carry the fusion of the Ewing Sarcoma Breakpoint Region 1 (EWSR1) and
FLI1 (Friend leukemia virus integration site 1) genes, leading to an EWS–FLI1 fused protein, which is
associated with autophagy, a homeostatic and catabolic mechanism under normal and pathological
conditions. Following such interesting and controversial data regarding autophagy in ES, many
clinical trials using modulators of autophagy are now underway in this field. In the present review,
we summarize current data and clinical trials that associate autophagy with ES. In vitro studies
highlight the controversial role of autophagy as a tumor promoter or a tumor suppressor mechanism
in ES. Clinical and in vitro studies on ES, together with the autophagy modulators, suggest that
caution should be adopted in the application of autophagy as a therapeutic target. Monitoring and
targeting autophagy in every ES patient could eliminate the need for targeting multiple pathways
in order to achieve the maximum beneficial effect. Future studies are required to focus on which
ES patients are affected by autophagy modulators in order to provide novel and more efficient
therapeutic protocols for patients with ES based on the current autophagy status of the tumors.

Keywords: autophagy; autophagy inducers; autophagy inhibitors; cancer; Ewing Sarcoma

1. Introduction

Ewing Sarcoma (ES) represents the second most common sarcoma of bone in children.
It is a very aggressive and metastatic malignancy, with the most frequent metastatic sites
being the lungs and the bone marrow [1]. In patients with localized disease, the five year
survival rate is 60–70%, and in those with metastatic disease it is between 20% and 45%. For
this reason, new therapeutic approaches are still required in order to enhance the outcome
of ES patients, especially those with metastatic disease [2].

The vast majority of ES cases are characterized by the t(11;22)(q24;q12) chromosomal
translocation, leading to the fusion of a 5’ segment of the EWSR1 gene (Ewing Sarcoma
breakpoint region 1) and a 3′ portion of the FLI1 (Friend leukemia virus integration site 1).
Furthermore, the fusion between EWSR1 and other members of the ETS family of transcrip-
tion factors, such as Activating Transcription Factor 1(ATF-1), ETS-related gene (ERG), and
Wilms’ tumour 1 (WT1), has been identified in ES [3]. Thus, a pathognomonic chimeric
gene is created [4]. The EWS–FLI1 protein increases the deregulation of protein expression
by either transcriptionally inducing or repressing specific target genes, many of which are
associated with a different oncogenic process, such as cell proliferation, transformation, or
tumor growth [5–7]. However, the association of EWS–FLI1 with the autophagy process
remains unknown.
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EWSR1 is a member of the TET protein family [8]. TET proteins have been identified
in many cells and tissues, predominantly repositioned in the nucleus of the cells [9]. In ad-
dition, the FET protein family, which includes the EWS, TAF15 (TATA-box binding protein
associated factor 15), and FUS/TLS (fused in sarcoma/translocated in liposarcoma, herein
referred to as FUS) proteins, has been shown to be a part of the splicing machinery. The
three FET proteins are heterogeneously expressed throughout human tissues, with FUS and
TAF15 having highly correlated expression patterns. EWS shows cytoplasmic expression
in ductal and serous cells but is undetectable in the cytoplasm of mucous cells [10]. Other
protein members of the family are FUS and TAF15 [11]. All these proteins have a common
structure and function. The TET family member proteins are DNA/RNA-binding proteins
(RBPs) with three distinct domains: an N-terminal serine–tyrosine–glycine–glutamine
(SYGQ)-rich domain that acts as a transcriptional activation domain; a central RNA recog-
nition domain (RRM); and a C-terminal zinc finger domain, which is associated with sites
where TET family proteins bind onto RNA and DNA. [12,13]. The sequences of amino
acids in this protein family are highly evolutionarily conserved, share a high homology
(~70%) and are evolutionarily conserved from fish to humans [14].

In this review, we will try to address autophagy as a key regulator mechanism in ES
development and eventually we will suggest this mechanism as a putative chemothera-
peutic target for ES. The appearance of new therapeutics targeting relevant pathological
processes, the plethora of agents that directly or indirectly modulate autophagy, and the
availability of more informative autophagy biomarkers will give us new opportunities for
more beneficial therapeutic protocols for ES patients.

2. The Complex Mechanism of Autophagy

Autophagy is a basic catabolic mechanism characterized by homeostasis maintenance
via the removal of dysfunctional proteins and organelles from the cells [15]. Under nor-
mal conditions, cells initiate basal levels of autophagic machinery in order to maintain
the homeostasis, biological function, and quality-control of cytoplasmic contents, and to
eliminate old, misfolding proteins and damaged organelles [16]. In addition, autophagy
represents an essential mechanism that is activated in response to conditions that are too
stressful, such as exercise, starvation, and/or immune signaling [16]. During both condi-
tions, “housekeeping” and stress response, cells try to find ways to maintain cytoprotective
levels of autophagic machinery while simultaneously avoiding the potentially cytotoxic
effects of autophagic activity. This delicate balance implies self-control of autophagy levels
and the mechanisms of preventing the degradation and toxification of proteins, cargos, and
products [17].

Three types of autophagy exist, macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA) [18]. The critical structure of the macroautophagic machinery
is the autophagosome [19]. During autophagosome formation, various morphological
changes occur. The first step in macroautophagy (hereafter described as “autophagy”
unless otherwise mentioned) is the initiation, where a double-membrane structure, the
phagophore, is formed through the activation of a complex structure, the class-III PI3K–
Beclin-1 complex [20,21]. In elongation (the second step), the phagophore is formed from
subcellular membrane structures, such as the Golgi and endoplasmic reticulum (ER), that
start to enclose the cytosolic cargos, leading to the formation of the autophagosome. The
next step is the maturation of the autophagosome, followed by the fusion with a lysosome
(Figure 1). The autolysosome is the structure in which the cytosolic cargo is digested, and
the products are released to the cytosol [22].
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Figure 1. The main steps of autophagosome formation in cells. A plethora of different morphological changes occur during 
the autophagy process in order to form the autophagosome. The first step, or initiation (1), in this procedure, is the for-
mation of a double-membrane structure, the phagophore, after the activation of a PI3K-classIII–Beclin-1 complex in the 
endoplasmic reticulum or other double-membrane organelles. Initiation is followed by the elongation (2) step, where the 
newly formed phagophore begins to enclose the ubiquitin-labeled cytosolic cargos. Different proteins, such as LC3 (light 
chain 3) (LC3-I is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate or LC3-II, 
responsible for the autophagosomal membrane structure), Atgs (autophagy-related genes), and p62 (an adaptor protein 
responsible for the docking of cargos), have an essential role in the maturation (3) step, where the autophagosome has 
already formed. The fusion of the lysosome and autophagosome in the fusion/degradation (4) step creates the autolyso-
some where, in the degradation step (5), the cytosolic cargos are digested by lysosomal enzymes and the products are 
released into the cytosol. 

2.1. The Key Components in Autophagy  
A plethora (more than thirty-six) of different autophagy-related (ATG) genes, which 

play a crucial role in autophagy, have already been characterized [23]. The autophago-
some formation is triggered by the ULK-1 and class III PI3K complexes. The critical com-
ponents in the ULK-1 complex are ATG13, ATG101, ULK1/2, and the family interacting 
protein FIP200 [24]. mTOR is a main inhibitor of the ULK-1 complex and consequently 
suppresses autophagy [25,26]. The ULK-1 and class-III PI3K–Beclin-1 complexes, via pro-
tein sorting-associated protein 34 (VPS34), are the regulators of autophagy initiation 
[27,28]. Two ubiquitin-like conjugates, through the interaction of several ATG genes 
(ATG5-7, ATG10, ATG12, ATG16L1), regulate the elongation of the autophagosome [28]. 
The second ubiquitin-like pathway is regulated by the interaction of the microtubule-as-
sociated protein 1-light chain 3 (LC3-I) with the lipid phosphatidylethanolamine (PE) by 
ATG3 and ATG7, forming the membrane-bound LC3-II, which is a crucial protein for both 
sides of the autophagosomal membrane [29,30]. During the maturation step, lysosomal-
associated membrane protein 2 and Ras-related protein Rab-7a promote autophagosome 
fusion with the endocytic and lysosomal compartments in order to form an autolysosome 
[31,32]. After the formation of the autolysosome [31,32], LC3-II on the cytoplasmic domain 
of the newly formed organelle (the autolysosome) can be delipidated by ATG4 and recy-
cled. The proteins of the internal surface of the autophagosome are processed for degra-
dation [33] with autophagic cargo through the activity of lysosomal proteases [34]. More 
detailed guidelines for the selection and interpretation methods for monitoring autoph-
agy are presented in “Guidelines for the use and interpretation of assays for monitoring 

Figure 1. The main steps of autophagosome formation in cells. A plethora of different morphological changes occur during
the autophagy process in order to form the autophagosome. The first step, or initiation (1), in this procedure, is the formation
of a double-membrane structure, the phagophore, after the activation of a PI3K-classIII–Beclin-1 complex in the endoplasmic
reticulum or other double-membrane organelles. Initiation is followed by the elongation (2) step, where the newly formed
phagophore begins to enclose the ubiquitin-labeled cytosolic cargos. Different proteins, such as LC3 (light chain 3) (LC3-I
is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate or LC3-II, responsible for
the autophagosomal membrane structure), Atgs (autophagy-related genes), and p62 (an adaptor protein responsible for
the docking of cargos), have an essential role in the maturation (3) step, where the autophagosome has already formed.
The fusion of the lysosome and autophagosome in the fusion/degradation (4) step creates the autolysosome where, in the
degradation step (5), the cytosolic cargos are digested by lysosomal enzymes and the products are released into the cytosol.

2.1. The Key Components in Autophagy

A plethora (more than thirty-six) of different autophagy-related (ATG) genes, which
play a crucial role in autophagy, have already been characterized [23]. The autophagosome
formation is triggered by the ULK-1 and class III PI3K complexes. The critical compo-
nents in the ULK-1 complex are ATG13, ATG101, ULK1/2, and the family interacting
protein FIP200 [24]. mTOR is a main inhibitor of the ULK-1 complex and consequently sup-
presses autophagy [25,26]. The ULK-1 and class-III PI3K–Beclin-1 complexes, via protein
sorting-associated protein 34 (VPS34), are the regulators of autophagy initiation [27,28].
Two ubiquitin-like conjugates, through the interaction of several ATG genes (ATG5-7,
ATG10, ATG12, ATG16L1), regulate the elongation of the autophagosome [28]. The sec-
ond ubiquitin-like pathway is regulated by the interaction of the microtubule-associated
protein 1-light chain 3 (LC3-I) with the lipid phosphatidylethanolamine (PE) by ATG3 and
ATG7, forming the membrane-bound LC3-II, which is a crucial protein for both sides of
the autophagosomal membrane [29,30]. During the maturation step, lysosomal-associated
membrane protein 2 and Ras-related protein Rab-7a promote autophagosome fusion with
the endocytic and lysosomal compartments in order to form an autolysosome [31,32].
After the formation of the autolysosome [31,32], LC3-II on the cytoplasmic domain of the
newly formed organelle (the autolysosome) can be delipidated by ATG4 and recycled. The
proteins of the internal surface of the autophagosome are processed for degradation [33]
with autophagic cargo through the activity of lysosomal proteases [34]. More detailed
guidelines for the selection and interpretation methods for monitoring autophagy are
presented in “Guidelines for the use and interpretation of assays for monitoring autophagy
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(3rd edition)” and can be used by researchers who aim to examine macroautophagy and
related processes [35].

2.2. The Controversial Role of Autophagy in Human Cancer

The role of autophagy in cell metabolism and tumor growth is controversial [36]. In
normal cells, autophagy regulates the energy balance and suppresses carcinogenesis [37].
In contrast, autophagy induces the survival of cancer cells against anti-cancer drugs in
already established tumors, and consequently induces tumor growth [38,39]. It appears
that anti-cancer therapy (radiotherapy and chemotherapy) induces autophagy as a survival
mechanism in cancer cells [40]. Several studies support the hypothesis that radiotherapy
initiates autophagy through the up-regulation of several autophagy mediators, such as
ATG3-5, ATG12, and Beclin-1. Furthermore, other studies have identified that some
chemotherapy agents, such as cisplatin [41] and histone deacetylase (HDAC) inhibitors [42],
induce autophagy by increasing the production of ROS in mitochondria. The survival-
promoting effect of autophagy has been confirmed by autophagy inhibition [40]. Therefore,
the use of autophagy as a putative therapeutic target should be further examined [43].

In the early stage of tumorigenesis, autophagy is characterized as a tumor suppressor
mechanism. The first evidence of the association between autophagy and cancer was
identified in 1999 when Levine et al. found that Beclin-1 was a candidate for the tumor
suppressor gene [44]. The monoallelic deletion of Beclin-1 is detected in breast and ovarian
cancer [45]. Furthermore, the overexpression of Beclin-1 decreases the proliferation of colon
cancer cell lines [46]. Moreover, Beclin-1 knockout in mice increases the development of
spontaneous lymphomas, lung cancers, and liver cancers [47]. Several other components,
such as Atg4, Atg5, Atg12, and Atg9b, regulate tumor development [48]. The deletion of
Atg7 develops spontaneous benign liver adenomas [49].

In contrast to the early stages of tumorigenesis, autophagy has a beneficial role in
already established tumors. Many studies support that autophagy has a crucial role as a
survival mechanism under stressful conditions like hypoxia [38]. Under moderate and
chronic hypoxia, hypoxia-induced factor-1 (HIF-1a) and PKC-JNK regulate the autophagy
levels. A plethora of studies have identified the notion that HIF-1α, which can up-regulate
the transcription of Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), interferes
with Beclin-1 and inhibits mTOR. Furthermore, the stress sensor ataxia telangiectasia
mutated (ATM) was identified as a modulator of mTOR signaling. It is supported that
hypoxia-induced ATM activation leads to an enhancing of the expression of HIF-1α-BNIP3
and Regulated in development and DNA damage response 1 (REDD1) and activates
autophagy through the inhibition of the mTOR signaling pathway [50]. Autophagy sup-
presses hepatocarcinogenesis during the dysplastic stage of the disease and enhances
hepatocarcinogenesis in the tumor-forming stage [51]. The dual role of autophagy in cancer
is more apparent in colorectal cancer (CRC), as these tumors require high basal levels of
autophagy to maintain energy balance, increasing metabolic demands and cell proliferation,
especially in hypoxic regions [52].

3. The Impact of Autophagy in Ewing Sarcoma

The controversial role of autophagy as a survival or pro-death mechanism is also
identified in different cases of ES. While different mechanisms have been identified to
regulate autophagy in ES, it is now well-established that microRNA (miRNA) regulates
downstream steps in autophagy, such as initiation, nucleation, elongation, and completion,
in different types of cancer [53]. Several studies in this field show that miR125a and miR351
target and destroy UVRAG mRNA [54]. It is well known that UV radiation resistance-
associated gene (Uvrag) regulates autophagy through its interaction with Beclin-1 in order
to promote autophagosome formation [55]. In Ewsr1 KO mice, the levels of miR125a
and miR351 are increased, a condition that leads to the reduction of UVRAG and LC3II
autophagy markers. Besides this, microarray analysis of miRNA has verified that mir125a
and miR351 are increased in Ewsr1−/− MEFs and that they depredate Uvrag mRNA. This
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study suggests that EWSR1 regulates autophagy through the epigenetic modulation of
UVRAG [54].

Several studies in this field support the hypothesis of autophagy as a protective mech-
anism under different conditions in ES models. In SK-ES-1 cells (anaplastic osteosarcoma
or ES cell line), Beclin-1 knockdown strongly decreased the basic cancer properties of the
cell line, such as proliferation, migration, and invasion [56]. Beclin-1 is a crucial regulator
for autophagy initiation and its dysfunction has been identified in several cancer types [57].
A silencing of Beclin-1 leads to the inhibition of matrix metallopeptidase (MMP)-9 ex-
pressions [56]. In another study, the chimerical protein EWS–FLI1 was shown to trigger
autophagy in the NIH3T3 ES cell line. Lu et al. (2017) also showed that EWS–FLI1 proteins
interacted with the promoter of the ATG4B gene and, as a result, increased the expression
of ATG4B, which is a key regulator of autophagy [58]. Furthermore, it has been shown
that EWS–FLI1-dependent autophagy inhibited apoptotic cell death, which was confirmed
through the reduction of PUMA and cytosolic cyto-chrome-c, two major pro-apoptotic
regulators [59]. Inhibition of autophagy with 3-MA (3-Methyladenine) re-sensitizes the
ES cell line to apoptotic cell death [58]. Several studies have already identified the asso-
ciation of NF-kB and autophagy with the regulation of cell death [59–62]. Studies in ES
cell lines showed that treatment with TNF activates NF-kB and mTOR [63], and more
specifically, mTORC1 was reported to directly phosphorylate and suppress this kinase
complex required to initiate autophagy. Moreover, lacking NF-kB activation, the treatment
of ES cell lines with TNF led to autophagy activation through up-regulation of Beclin-1.
The authors suggested that autophagy might be a resistance mechanism against anti-cancer
therapy in ES. It is well known that mTOR regulates several cellular functions, including
autophagy [64]. PTEN (a natural inhibitor of PI3K) deficiency led to the activation of the
PI3K/AKT/mTOR signaling pathway [65], which subsequently inhibited apoptosis and
increased cell proliferation and anchorage-independent growth [66]. In ES cell lines after
the silencing of PTEN, treatment with temsirolimus (a potent mTOR inhibitor) increased
autophagy as a protective mechanism under this condition, but the effect of temsirolimus
was lost when PTEN was expressed [67]. This study highlighted the complexity of au-
tophagy in cancer, especially in ES. Furthermore, a recent study suggested that TRIM3
(Tripartite Motif Containing 3 inhibits autophagy in Ewing Sarcoma cells. TRIM proteins
have been associated with many biological processes, including transcriptional regulation
cell differentiation, signaling transduction, and apoptosis. Overexpression of TRIM3 signif-
icantly inhibits autophagy through promoting the degradation of Beclin-1, as evidenced by
the increases in the amount of P62 (SQSTM1) and the reductions in the amount of LC3B-II,
two important markers of autophagy, as well as by the increased LC3 puncta in cells [68].

In contrast with the general concept of autophagy as a resistance mechanism in ES,
a study in the ES cell lines’ model identified autophagy as a pro-apoptotic mechanism
and a possible target for treating ES patients. The anti-cancer agent 2-methoxyestradiol
(2-ME) activates apoptotic cell death through the initiation of autophagy in the ES cell
line model [69]. In more detail, the authors of this study show that autophagy was
activated through the p53-target gene damage-regulated autophagy modulator (DRAM)
after treatment with 2-ME in a JNK-dependent manner. The silence of DRAM in ES cells
reduced autophagy and apoptotic cell death. Moreover, another study supported that
PTEN deficiency led to enhanced AKT activation associated with decreased apoptosis,
increased proliferation, and anchorage-independent cell growth. PTEN loss led to increased
sensitivity to temsirolimus treatment, as marked by the activation of autophagy [67].

4. Targeting Autophagy in Clinical Practice—A Promising Anti-Cancer Strategy for
Ewing Sarcoma

Following such interesting preclinical data, many clinical trials are now underway
in this area. In total, clinical trials using small molecules that directly or indirectly target
autophagy have already undergone recruitment, and some of them show encouraging
results for ES patients (Table 1). Furthermore, clinical studies on different types of can-
cer other than ES are presented in Table 1. The combination of the autophagy inhibitor
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hydroxychloroquine with different drugs (gemcitabine, paclitaxel, carboplatin, etc.) or
with mTOR inhibitors (rapamycin, everolimus, temsirolimus) is already used in several
types of cancers, such as non-small cell lung cancer (NSCLC), pancreatic cancer, renal cell
carcinoma, myeloma and squamous cell cancer (head and neck cancer) (Table 1).

Table 1. Clinical studies with autophagy modulators for ES patients.

Number of Study Intervention/Treatment Autophagy Modulator and
Target Phase of Study Other Cancers

NCT03275818 Nab-paclitaxel nab paclitaxel: Inhibit
phosphorylation of VPS34 II

NCT03344172: Pancreatic cancer,
gemcitabine, nab-paclitaxel, HCQ

and avelumab

NCT02945800 Nab-
paclitaxel+gemcitabine

nab paclitaxel: Inhibit
phosphorylation of VPS34 II

NCT01649947: NSCLC, Drug:
paclitaxel, carboplatin, HCQ,

bevacizumab

NCT01962103 Nab-paclitaxel nab paclitaxel: Inhibit
phosphorylation of VPS34 I/II

NCT00728845: NSCLC, Biological:
bevacizumab drug: carboplatin,

HCQ, paclitaxel

NCT03507491 Nab-
paclitaxel+gemcitabine

nab paclitaxel: Inhibit
phosphorylation of VPS34 I

NCT00002854

etoposide, cisplatin, and
cyclophosphamide

followed by ifosfamide,
carboplatin, and paclitaxel

nab paclitaxel: Inhibit
phosphorylation of VPS34 I

NCT03190174 Nab-rapamycin nab rapamycin: Inhibitor of
mTORC1 I NCT01396200: Myeloma, drug:

HCQ, rapamycin

NCT03245151 Everolimus everolimus: inhibitor of
mTORC1 II NCT01510119: Renal cell carcinoma,

Drug: HCQ RAD001 (everolimus)

NCT00949325 Temsirolimus + lip.
doxorubicin

temsirolimus: inhibitor of
mTORC1 I/II NCT00909831: Metastatic solid

tumors, drug: HCQ, temsirolimus
NCT01016769: Squamous cell cancer,

head and neck cancer, drug:
temsirolimus, paclitaxel, carboplatin

NCT: national clinical trial; VPS34: vacuolar protein sorting-associated protein 34; mTORC1: mammalian target of rapamycin complex 1;
PI3K Class III: Phosphoinositide 3-kinases (PI3Ks) class III; NSCLC: non-small cell lung cancer; HCQ: hydroxychloroquine.

The controversial role of autophagy as a protective or a pro-death mechanism in
cancer and tumorigenesis led to the development of molecules that could either inhibit or
induce autophagic activity [70,71]. The primary roles of autophagy are to regulate energy
balance, remove dysfunctional proteins or organelles, and recycle molecules [72,73]. Thus,
it could become the primary target in cancer therapy.

4.1. The Clinical Impact of Autophagy Inhibition in Ewing Sarcoma

Because of the vital role of autophagy in different cellular functions, its inhibition
should be beneficial as a putative chemotherapeutic strategy, and years of effort led to
developing compounds able to inhibit autophagy at different stages (Table 2).

Many studies are already in the clinical phase II using nab-paclitaxel, a molecule that
inhibits autophagy through a microtubule stabilizer that inhibits phosphorylation of VPS34
at T159 [74]. One phase II clinical study uses nab-paclitaxel in patients with desmoid
tumors (DT) and multiply relapsed/refractory desmoplastic small round cell tumors and
ES (ABRADES). The primary goal of this study is to determine the objective response
rate (ORR) and the clinical benefit rate (CBR) in subjects with DT, and to determine the
objective response rate (ORR) in subjects with desmoplastic small round cell tumor and ES
(ClinicalTrials.gov number NCT03275818). In another phase II clinical study, nab-paclitaxel
was combined with gemcitabine in order to prevent the formation or growth of tumors
in participants’ osteosarcoma, ES, rhabdomyosarcoma, and other soft tissue sarcomas
(ClinicalTrials.gov number NCT02945800) (Table 1).
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The goal of clinical study NCT01962103 was to find a safe dose of nab-paclitaxel for
children with solid tumors (including ES). This study supported that nab-paclitaxel (240
mg/m2 qw3/4) had a tolerable toxicity profile and demonstrated preliminary clinical activ-
ity in pediatric patients with solid tumors [75]. A phase II portion of this study evaluating
the effect of nab-paclitaxel as a monotherapy for patients with rhabdomyosarcoma, neu-
roblastoma, and ES is currently enrolling. Another study tried to combine nab-paclitaxel
with gemcitabine in patients with pediatric relapsed and refractory solid tumors in order
to evaluate if this combinatorial scheme is beneficial for relapsed and/or refractory solid
tumors (ClinicalTrials.gov number NCT03507491). Moreover, a phase I clinical study has
evaluated the combination of paclitaxel with several other anti-cancer drugs in different
types of cancer including ES. The goal of this study was to evaluate the feasibility, toxi-
city, and maximum tolerated dose of different combinatorial schemes (ClinicalTrials.gov
number NCT00002854) (Table 1).

Years of efforts have led to the development of small molecules that inhibit autophagy.
The most well-known autophagy inhibitors are the anti-malarial drug chloroquine (CQ) and
its derivative hydroxychloroquine (HCQ) which target and inhibit the fusion of lysosomes
with autophagosomes [76]. Several clinical trials have already tested the clinical significance
of CQ or HCQ, but these trials failed to provide a significant effort due to the lack of
consistent autophagy inhibition by these compounds [77]. A plethora of other molecules are
already used as autophagy inhibitors, targeting different steps and regulatory mechanisms
of autophagy. Such compounds are used as autophagy inhibitors and their main modes of
action are presented in Table 2.

Table 2. Small agents and drugs that effectively inhibit autophagy. In the table, many small molecules and drugs that
are already used to inhibit autophagy are shown. Moreover, the main mechanism of action and the target point in the
autophagy procedure where they act is shown.

Agents Mechanism Target

Chloroquine (CQ) Neutralizes the acidic pH of intracellular vesicles Lysosome

Hydroxy-chloroquine (HCQ) CQ derivative Lysosome

3-Methyladenine (3-MA) Inhibitor of PI3K Class I and III Autophagosome formation

Wortmannin Inhibitor of PI3K Class I and III Autophagosome formation

LY294002 PI3-kinase inhibitor Autophagosome formation

LY3023414 PI3-kinase and mTOR inhibitor Autophagosome formation

SAR405 (Vps18 and Vps34) inhibitor Autophagosome formation

SB203580 Inhibitor of p38α and p38β. p38α inhibits trafficking of Atg9 Autophagosome formation

Bafilomycin A1 Inhibition of lysosomal acidification Lysosome

Concanamycin A Inhibition of lysosomal acidification Lysosome

Azithromycin Inhibition of lysosomal acidification Lysosome

Paclitaxel Microtubule stabilizer inhibits phosphorylation of VPS34 Autophagosome formation

SAHA Inhibit autophagosome–lysosome fusion Autophagosome formation

Monensin Inhibit autophagosome–lysosome fusion Autophagosome formation

Sputin-1 (USP10) and (USP13) inhibitor Autophagosome formation

NSC185058 Inhibitor of ATG4B Autophagosome formation

Verteporfin Alter acidification of lysosomes Autophagosome formation

PI3K: phosphatidylinositol 3-kinases; VPS: vacuolar protein sorting; ATG: autophagy-related proteins; USP: ubiquitin-specific protease.
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4.2. The Clinical Impact of Autophagy Induction in Ewing Sarcoma

The association of autophagy with apoptotic cell death, in some cases, led to the
development of molecules that induced autophagy (Table 3).

Table 3. Small agents and drugs that induce autophagy. In the table, molecules and drugs that have
been identified as autophagy inducers are shown. Moreover, the main mechanism of action and the
target point in the autophagy procedure where they act are shown.

Agents Mechanism Target

Rapamycin Inhibitor of mTORC1 Autophagosome formation

Temsirolimus Inhibitor of mTORC1 Autophagosome formation

Deforolimus Inhibitor of mTORC1 Autophagosome formation

Everolimus Inhibitor of mTORC1 Autophagosome formation

Metformin AMPK activator Autophagosome formation

GDC-0980 PI3K and mTORC1 inhibitor Autophagosome formation

GDC-0941 Inhibitor of PI3K Class I Autophagosome formation

fluspirilene Antagonists of L-type Ca2+ channels Lysosome

Perifosine AKT inhibitior Autophagosome formation

Tat–Beclin 1 peptide Releases Beclin-1 into cytoplasm Autophagosome formation

isoliensinine Natural alkaloid Autophagic flux

cepharanthine Natural alkaloid Autophagic flux
mTORC1: mammalian target of rapamycin complex 1; AMPK: 5′ AMP-activated protein kinase; PI3K: phos-
phatidylinositol 3-kinases; AKT: Protein kinase B (PKB); Beclin-1: the mammalian ortholog of the yeast autophagy-
related gene 6 (Atg6).

A phase I/II study (NCT03190174) has investigated the combination of nivolumab
(an anti-PD-1 monoclonal antibody) with the mTOR inhibitor nab-rapamycin in different
sarcoma types, including ES. The primary and secondary objectives of this study were to
investigate the maximum tolerated dose of nab-rapamycin and DCR/PFS, respectively, in
advanced UPS, LPS, CS, OS, and ES (Table 1).

The mTOR inhibitor everolimus has also been studied with lenvatinib in a clinical
study with the ClinicalTrials.gov number NCT03245151. The primary goal of this study
was to determine a maximum tolerated dose and a recommended phase II dose, and
to describe the toxicities of lenvatinib administered in combination with everolimus in
pediatric participants with recurrent/refractory solid tumors. In addition, they tried to
estimate the antitumor activity of lenvatinib in combination with everolimus in pediatric
participants with selected recurrent/refractory solid tumors, including ES.

Currently, the study with ClinicalTrials.gov number NCT00949325 shows some en-
couraging results. The primary purpose of this study was to identify a safe dosing regimen
for the combination of temsirolimus and liposomal doxorubicin in patients with recurrent
sarcomas. Thus, the combination of the mTOR inhibitor temsirolimus with doxorubicin is
safe for heavily pretreated sarcoma patients, and the doxorubicin did not affect the pharma-
cokinetics of temsirolimus, but it does appear to have increased the exposure to its active
metabolite [78]. Furthermore, mTOR inhibition enhances the efficacy of chemotherapy, and
re-sensitization may be via sensitizing the chemo-resistant CSC population [79].

Several other molecules are used as autophagy inducers. Rapamycin and rapalogs
are the most well-known molecules that induce autophagy through the inhibition of the
PI3K/AKT/mTOR signaling pathway. In Table 3, compounds used as autophagy inducers
and their primary mechanism of action are shown.
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5. Conclusions

The primary role of autophagy has been identified as a highly conservative home-
ostatic degradation mechanism for dysfunctional cellular organelles and proteins. Au-
tophagic cells capture, depredate, and recycle necessary components in order to maintain
the metabolic and energy balance. The vast majority of research studies in the field of
autophagy highlight its controversial role as a survival or pro-apoptotic mechanism for
different cell types, including cancer ones. The dual role of autophagy is also identified
in rare ES tumors. Several in vitro studies on ES linked autophagy with the development
and progression of this type of sarcoma. Years of efforts led to the development of many
small molecules that directly target autophagy. Currently, a number of clinical trials are
underway in this area. In total, clinical trials using small molecules that target autophagy
have already undergone recruitment, and some of them show encouraging results for ES
patients. Future studies need to focus on the different circumstances in which autophagy is
implicated in ES and are expected to provide novel and more efficient therapeutic protocols
for patients with ES. Collectively, autophagy appears to have a negative impact on patients’
survival in different types of cancer, including, possibly, ES patients.
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