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This work evaluates near-infrared (NIR) spectroscopy coupled with chemometric tools for determining the 
superficial content of citral (𝑆𝐶𝐶𝑡) on microparticles. To perform this evaluation, using spray drying, citral 
was encapsulated in a matrix of dextrin using twelve combinations of citral:dextrin ratios (CDR) and inlet 
air temperatures (IAT). From each treatment, six samples were extracted, and their 𝑆𝐶𝐶𝑡 and NIR absorption 
spectral profiles were measured. Then, the spectral profiles, pretreated and randomly divided into modeling and 
validation datasets, were used to build the following prediction models: principal component analysis-multilinear 
regression (PCA-MLR), principal component analysis-artificial neural network (PCA-ANN), partial least squares 
regression (PLSR) and an artificial neural network (ANN). During the validation stage, the models showed 𝑅2

values from 0.73 to 0.96 and a root mean squared error (RMSE) range of [0.061–0.140]. Moreover, when the 
models were compared, the full and optimized ANN models showed the best fits. According to this study, 
NIR coupled with chemometric tools has the potential for application in determining 𝑆𝐶𝐶𝑡 on microparticles, 
particularly when using ANN models.
1. Introduction

Citral (3,7-dimethyl-2,6-octadienal), whose chemical structure is 
shown in Fig. 1, is widely used in beverages, soft drinks, breads, sweets, 
pharmaceuticals, perfumes, and cigarettes, among others [1, 2]; mainly 
due to its broad antimicrobial spectrum in vitro and its antioxidant ca-

pacity [3, 4, 5, 6].

However, the citral structure is susceptible to degradation and loss 
of activity [6], which is a continuing concern for food scientists. In this 
scene, microencapsulation appears to be an alternative for protecting 
citral [4, 6], and spray drying is the most commonly used method for 
citral microencapsulation [2, 7].

However, as with other techniques, the efficiency of this process 
must be measured to evaluate the process and determine the amount of 
active compound trapped within the matrix (efficiency of microencap-
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sulation EM) [1]. The EM calculation, according to [8], uses Eqs. (1)

and (2), which require knowing the superficial content of the encapsu-

lated material as an intermediate value.

𝑆𝑃𝑀𝐸 (%) = 100
(
𝑆𝐶𝑀𝐸

𝑇𝐶𝑀𝐸

)
(1)

𝐸𝑀(%) = 100 −𝑆𝑃𝑀𝐸 (%) (2)

where 𝑆𝑃 is the superficial percentage; 𝑆𝐶 is the superficial content; 
𝑇𝐶 is the theoretical content; and 𝑀𝐸 denotes the material to be en-

capsulated.

Several methods have been used to evaluate 𝑆𝑃 and 𝐸𝑀 for cit-

ral, among which are gas chromatography (GC) [9, 10, 11, 12], solid 
phase microextraction-gas chromatography (SPME-GC) [13], GC-mass 
spectrometry (GC-MS) [14, 15], high-efficiency liquid chromatography 
(HPLC) [16], and ultraviolet spectrophotometry (UVS) [4, 17].
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Fig. 1. Chemical structures of citral: (a) geranial (citral a or cis-citral) and (b) 
neral (citral b or trans-citral). Adapted from [2] and [18].

However, all the above methods require time, sample preparation, 
use of reagents and generally carry high costs, which provides an inter-

esting field for research in the application of non-invasive techniques. 
Therefore, NIR spectroscopy is a technique with high potential in food 
analysis. Its main advantages are as follows: (1) multiple components 
can be measured simultaneously; (2) it is a nondestructive technique; 
(3) its cost is relatively low; and (4) it does not require chemical 
reagents or sample preparation [19].

NIR spectroscopy measures the response (mainly the vibrations of 
bonds such as -CH, -OH, -SH and -NH) of a sample when it is sub-

jected to electromagnetic energies between 800 to 2500 nm, thus 
forming traces or spectral profiles [20]. To date, NIR has shown po-

tential for analyses in polymer industries, textiles, industrial process 
control, biomedical science [20] and is widely used in the agricultural 
and food sectors [19]. However, the large amount of information in-

volved in these profiles requires the use of special tools capable of 
analyzing such information; consequently, chemometric tools such as 
principal component analysis (PCA), correlation coefficients (CC), ar-

tificial neural networks (ANN), multiple linear regression (MLR), and 
partial least squares regression (PLSR), among others [20, 21], must be 
explored.

A review of the literature shows that relatively few studies exist 
on the use of NIR spectroscopy to quantify citral, as in the case of 
lemon and orange essential oils [18]. Therefore, the objective of this 
research was to evaluate the feasibility of using NIR spectroscopy and 
chemometric tools to determine the superficial citral (𝑆𝐶𝐶𝑡) content in 
microparticles.

2. Materials & methods

2.1. Reagents

The reagents used in the production and analysis of the micropar-

ticles were soy lecithin (Epikuron® 145 V, Cargill, Germany), dextrin 
(Amisol® 4810, Ingredion, Peru), a citral mixture of cis- and trans-

isomers ≥ 96%(Sigma-Aldrich, Germany) and the citral analytical stan-

dard (Sigma-Aldrich, Germany).

2.2. Experimental procedure

The experimental procedure performed for the present study is 
shown in Fig. 2 and detailed in the following subsections.

2.3. Encapsulation

Citral encapsulation by spray drying was performed by varying the 
citral:dextrin ratio (CDR) (from 1:5 to 1:20) and the inlet air tempera-

ture (IAT) to the spray dryer (from 120 to 200 ◦C). A central composite 
design (face centered) with a factorial arrangement of 22 add star was 
used (four experimental points, four axial points and four central points, 
see Table 1).
2

Fig. 2. Experimental procedure.

Table 1

Experimental treatments for microparticle preparation.

IAT (◦C) CDR Emulsion (g) Dx (g) Wt (g)

1 200 1:20.0 32.0 20.0 48.0

2 200 1:12.5 32.0 12.5 55.5

3 120 1:20.0 32.0 20.0 48.0

4 160 1:20.0 32.0 20.0 48.0

5 160 1:12.5 32.0 12.5 55.5

6 160 1:12.5 32.0 12.5 55.5

7 120 1:5.0 32.0 5.0 63.0

8 120 1:12.5 32.0 12.5 55.5

9 160 1:5.0 32.0 5.0 63.0

10 200 1:5.0 32.0 5.0 63.0

11 160 1:12.5 32.0 12.5 55.5

12 160 1:12.5 32.0 12.5 55.5

IAT: Inlet air temperature to the spray dryer.
CDR: citral:dextrin ratio.
Emulsion = Soy lecithin (SL) + Water (Wt) + Citral (Ct).
Dx: Dextrin.
Wt: Water.

For each treatment, 100 g of feed solution was considered. The emul-

sions (citral and soy lecithin - SL) were prepared by dissolving 1 g of 
SL in 30 mL of distilled water at 50 ◦C, stirring at 350 rpm for 15 min, 
cooling to 30 ◦C, and then adding 1 g of citral and homogenizing for 
3 minutes at 15,000 rpm with a Polytron PT 2100 homogenizer (Kine-

matica AG, Switzerland). In parallel, dextrin [5 - 20] g was dissolved 
in distilled water [48 - 63] g at 50 ◦C, stirred at 350 rpm for 3 hours, 
cooled to 30 ◦C and then mixed with the emulsion. The resulting mix-

ture was homogenized at 15,000 rpm for 3 minutes.

The obtained dispersions were fed to a mini spray dryer, model B-

290 (Buchi, Switzerland); the feed and drying air flow were arranged 
in a co-current configuration. The process conditions in the dryer were 
as follows: the feed temperature was 42 ± 2.5 ◦C; the feed rate was 
5 mL/min (5%); the atomization pressure was 50 mbar; the air flow 
was 600 L/h; and the IAT of the dryer varied from 120–200 ◦C. The 
resulting microparticles were stored at -20 ◦C in 45 mL Falcon tubes 
until analysis.
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Fig. 3. Flowchart of dataset building.
2.4. Determination of superficial content of citral

To determine the superficial content of citral (𝑆𝐶𝐶𝑡), 0.2 g of mi-

croparticles (𝑀𝑝) were weighed, and 2 mL of hexane was added. The 
mixture was then manually shaken with three inversion movements and 
centrifuged at 2,000 rpm for 1 minute. Finally, the supernatants were 
transferred to 2 mL amber vials for analysis by GC [22, 23].

The GC analysis was performed following the methodology proposed 
by [14] in a gas chromatograph (7890A, Agilent Technologies, USA) 
equipped with a DB-5MS fused silica capillary column (30 m x 0.25 mm 
x 0.25 μm film, J & W Scientific, USA) and a flame ionization detector 
(FID). The carrier gas was nitrogen at a flow rate of 1.11 mL/min. The 
injected sample volume was 1 μL. The column temperature was initially 
set to 60 ◦C for 5 min and then heated to 120 ◦C at a rate of 5 ◦C/min 
and finally, to 250 ◦C at a rate of 10 ◦C/min.

The quantification of 𝑆𝐶𝐶𝑡 was performed using a calibration curve 
(1 - 2,000 μg/mL, 𝑅2 = 0.999) calculated according to Eq. (3) [8].

𝑆𝐶𝐶𝑡 =
𝐶𝐶𝑆𝑡

𝑊𝑀𝑝

(3)

where 𝑆𝐶𝐶𝑡 is the superficial content of citral (mg Ct/g Mp); St is sol-

vent; Mp are the microparticles; 𝐶𝐶 is the concentration of superficial 
citral in solvent (mg Ct/2 mL hexane); and 𝑊 is the weight (g).

2.5. NIR spectroscopy

To determine the absorbance spectra we followed the methodology 
reported by [24] and [25]. In this study, we used a Unity Scientific 
NIR spectrometer (SpectraStar 2500XL, USA) equipped with a tungsten 
halogen lamp as a light source and an InGaAs (indium-gallium-arsenic) 
detector with a range from 1,100 to 2,500 nm, a resolution of 3 nm, 
and 467 wavelengths.

The measurements were performed in the reflectance mode and 
applied directly to the microparticles without pretreatment or manipu-

lation using a quartz cuvette with an internal diameter of 3.5 cm and a 
thickness of 1.0 cm, to which 2.3 ± 0.5 g of microparticles were added.

Additionally, dilutions of citral with petroleum ether were prepared 
at ratios of 0.25, 0.50 and 1.0 w/w. The spectral profile for each dilu-

tion was measured according to the previously reported procedure for 
3

microparticles, with the difference that 1.2 mL of each citral dilution 
was added to the cuvette.

2.6. Pretreatment of spectral profiles

As discussed by ElMasry and Nakauchi [26], in most cases, extracted 
spectral profiles contain noise and variability and thus require the ap-

plication of spectral enhancements such as spectral filtering, smoothing, 
normalization, mean centering, and auto-scaling. In our case, similar 
way to [27] and [28], the spectra were smoothed using a second-order 
Savitzky-Golay filter with eleven frames according to the following 
equation (4):

𝑌 𝑜 =
∑𝑚

𝑖=−𝑚 𝐶𝑖.𝑦𝑗+𝑖

𝑁
(4)

where 𝑌 𝑜 is the smoothed profile; 𝑦𝑗 is the original profile; 𝐶 is the 
coefficient for the 𝑖𝑡ℎ term of the profile; and 𝑁 is an integer number of 
convolutions.

2.7. Dataset construction

Fig. 3 depicts the procedure performed to obtain the modeling and 
validation datasets, using both 𝑆𝐶𝑐𝑡 and spectral profiles. First, the 𝑆𝐶𝑐𝑡

used in each treatment were determined; then, the microcapsules ob-

tained for each treatment were divided into six parts, and their spectral 
profiles were determined.

For each obtained treatment matrix with dimensions [6 x 467]; in 
a sample of a row, the columns contain both an absorbance spectral 
profile and 𝑆𝐶𝑐𝑡. Then, the matrices was randomly divided: four were 
used for modeling and two for validation. Finally, the two datasets for 
each treatment were concatenated into two full datasets (forty-eight 
profiles for modeling and twenty-four profiles for validation) for use in 
model building, validation, and comparison.

2.8. Model construction

To model the relationships between the NIR absorption spectral pro-

files and 𝑆𝐶𝑐𝑡, we applied different chemometric tools, such as PCA, 
MLR, PLSR and ANNs. Models were implemented using MATLAB v9.2 
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scripts (Mathworks, Natick, MA), based on the following works [20, 21, 
27]. In all cases, both calibration and validation datasets were used.

2.8.1. PCA

The 𝑃𝐶𝐴 algorithm creates new variables or identifies principal 
components and sorts them according to their capacity to explain vari-

ance. In this sense, the first principal component (𝑃𝐶1) has the highest 
variance, the second principal component (𝑃𝐶2) has the second highest 
variance, and so on until a pre-established percentage [29] is reached 
(99.5% in our case).

Likewise, to calculate components, Eq. (5) is commonly used:

𝑃𝐶𝑖 = 𝜙1
𝑖 .𝑋

1 +𝜙2
𝑖 .𝑋

2 +𝜙3
𝑖 .𝑋

3 +⋯+𝜙𝑛
𝑖 .𝑋

𝑛+ (5)

where 𝑃𝐶𝑖 is the 𝑖𝑡ℎ principal component, 𝜙𝑗
𝑖 is the loading vector for 

the 𝑖𝑡ℎ principal component, 𝑋𝑗 are normalized predictors, and 𝑗 is the 
number of variables (wavelengths).

2.8.2. MLR

MLR is the oldest of the methods used here; however, its use in 
applications has steadily diminished due to improvements in computing 
power. This regression allows the establishment of a link between a 
reduced number of predictors (the previously calculated 𝑃𝐶𝑠) and a 
sample property [20]. The prediction 𝑦𝑖 for the target property can then 
be described by Eq. (6):

𝑦𝑖 = 𝑏0 +
𝑘∑
𝑖=1

𝑏𝑖𝑃𝐶𝑖 + 𝑒𝑖,𝑗 (6)

where 𝑏𝑖 is the computed coefficient; 𝑃𝐶𝑖, 𝑖𝑡ℎ principal component; and 
𝑒𝑖,𝑗 is the error.

2.8.3. PLSR

PLSR is a statistical method that transforms input variables X into 
output Y variables. In this work, X is an absorbance matrix [𝑛 x 𝑚], 
where 𝑛 is the wavelength and 𝑚 is the number of observations, and 
Y are the response variable values (𝑆𝐶𝐶𝑡) of the microparticles. PLSR

decomposes X and Y by projecting them in new directions with the re-

striction that the decomposition must describe how variables change 
together to the greatest extent possible. After the variable decomposi-

tion, a regression step is performed in which the decomposed X and 
Y are used to calculate a regression model called the full model (see 
Eq. (7)):

|||||||||

𝑌1
⋮

𝑌𝑛−1
𝑌𝑛

|||||||||
⏟⏟⏟

𝑆𝐶𝐶𝑡

=

|||||||||

𝛽1
⋮

𝛽𝑛−1
𝛽𝑛

|||||||||
⏟⏟⏟

Beta coefficients

∗

𝑚 samples absorbance profiles with 𝑛 wavelengths
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞|||||||||

𝑋1,1 ⋯ 𝑋1,𝑚−1 𝑋1,𝑚
⋮ ⋱ ⋮ ⋮

𝑋𝑛−1,1 ⋯ ⋱ 𝑋𝑛−1,𝑚−1
𝑋𝑛,1 ⋯ 𝑋𝑛,𝑚−1 𝑋𝑛,𝑚

|||||||||
+ 𝑒

⏟⏟⏟

Error

(7)

This equation can be rewritten as shown in Eq. (8):

𝑌 = 𝛽.𝑋 + 𝑒 (8)

where Y is the 𝑆𝐶𝐶𝑡; 𝛽 is the beta coefficient matrix; X is the absorbance 
data matrix; and e is the model error.

Full PLSR models were constructed using all the wavelengths in 
the spectral profiles. The relevance of each wavelength in the model 
was evaluated by the regression coefficients or 𝛽 coefficients [30]. The 
wavelengths were linked to the absolute 𝛽 coefficient value for the full 
PLSR model; then, the wavelengths were selected according to their 
values, which reflects their ability to explain 𝑅2 (coefficient of deter-

mination) and root mean square error (RMSE). Finally, simplified or 
optimized models were constructed using only the most relevant wave-

lengths [27, 31].
4

Fig. 4. Multilayer neural network example.

2.8.4. ANN

An ANN is a nonlinear model inspired by brain neural architecture 
and was developed in an attempt to model the learning capacity of bio-

logical neural systems [32]. ANNs have been widely used for prediction 
(multilayer perceptron - MLP) and classification (radial basis neuronal 
networks - RBN). An artificial neuron can calculate the weighted sum of 
its inputs and then apply an activation function to obtain a signal that 
is transmitted to the next neuron [33, 34].

Typical ANN models consist of three layers, as shown in Fig. 4. The 
first layer (input layer), receives the input values and, employing a 
transfer function, distributes the input attribute values to the process-

ing elements in the second layer. The second layer is a hidden layer, 
in which the data are calculated using a nonlinear sigmoidal transfer 
function. The third layer is the output layer whose number of process-

ing elements depends on the number of prediction categories [35].

We built three different ANN models: a) PCA-ANN which uses 𝑃𝐶𝑠

as input, b) A full ANN that uses all the wavelengths in the spectral pro-

files, and c) an optimized ANN that uses the most relevant wavelengths 
according to the 𝛽 coefficient analysis.

2.9. Model comparison criteria

All the models were compared in terms of statistical metrics such 
as the coefficient of determination (𝑅2), adjusted coefficient of deter-

mination (𝑅2
𝑎𝑑𝑗

), mean square error (MSE), and root mean square error 
(RMSE). These measures can be calculated for both the calibration (𝑅2

𝑐 , 
𝑅2

𝑎𝑑𝑗,𝑐
, 𝑀𝑆𝐸𝑐 and 𝑅𝑀𝑆𝐸𝑐 ) and validation datasets (𝑅2

𝑣, 𝑅2
𝑎𝑑𝑗,𝑣

, 𝑀𝑆𝐸𝑣

and 𝑅𝑀𝑆𝐸𝑣) using Eqs. (9)–(12) [28, 36, 37]. In addition, the resid-

ual prediction deviation (RPD) (Eq. (13)) and range error ratio (RER) 
(Eq. (14)) were used to evaluate the quality of the models on the vali-

dation data set [38]:

𝑅2
𝑐,𝑣 =

∑𝑛
𝑖=1

(
𝑦𝑖 − 𝑦𝑖

)2
∑𝑛

𝑖=1
(
𝑦𝑖 − 𝑦

)2 (9)

𝑅2
𝑎𝑑𝑗,𝑐,𝑣 = 1 −

(
1 −𝑅2)( 𝑛− 1

𝑛− 𝑝− 1

)
(10)

𝑀𝑆𝐸𝑐,𝑣 =
1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦

)2
(11)

𝑅𝑀𝑆𝐸𝑐,𝑣 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦

)2
(12)

𝑅𝑃𝐷 =
𝑆𝐷𝑟

𝑅𝑀𝑆𝐸𝑣

(13)

𝑅𝐸𝑅 =
𝑅𝑟

𝑅𝑀𝑆𝐸𝑣

(14)

where 𝑦𝑖 and 𝑦𝑖 are the quality attribute values of the 𝑖𝑡ℎ sample for 
prediction and reference, respectively; 𝑦 is the average value; 𝑝 is the 
number of predictors; 𝑛 is the number of samples; 𝑆𝐷𝑟 is the standard 
deviation of the reference values of the samples in the validation set; 
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Fig. 5. Evolution of mean absorbance according to 𝑆𝐶𝐶𝑡 .

and 𝑅𝑟 is the difference between the largest and smallest reference val-

ues (range) in the validation set. In this sense and according to [39], the 
model must have high 𝑅2, low 𝑅𝑀𝑆𝐸𝑐 and 𝑅𝑀𝑆𝐸𝑣, an 𝑅𝑃𝐷 greater 
than three and 𝑅𝐸𝑅 greater than ten.

3. Results & discussion

3.1. Reference analysis

According to the reference analyses of the microparticles made by 
GC, the 𝑆𝐶𝐶𝑡 varied between 0.17 and 1.28 mg Ct/g Mp.

3.2. Spectral profiles of superficial citral content

Fig. 5 presents the average spectral profiles that illustrate the evo-

lution of absorbance. This figure shows peaks related to the absorbance 
bands in the overtone region (from 1,206 to 1,761 nm) and the com-

bination region (from 1,934 to 2,490 nm). In the first region, an ab-

sorbance drop was observed that averaged 0.042 units between 1,340 
and 1,341 nm, mainly due to the detector in the 𝑁𝐼𝑅 equipment. This 
drop in absorbance does not affect the prediction calculation because it 
depends on the chemometric model used.

The absorption peaks at 2,096 and 2,312 nm are within the 
ranges corresponding to C-H bending-stretching and C=O stretching

interactions—possibly due to the presence of an aldehyde group [25, 
40]. The peaks at 1,206, 1,710 and 1,761 nm correspond to C-H stretch-

ing interactions, probably due to the presence of dextrin, the polymer 
used as an encapsulant in this study. The obtained results were similar 
to those reported by [41] and [42].

The peaks at 1,457 and 1,934 correspond to vibration bands of O-

H stretching and O-H combinations, respectively, which could be due to 
the presence of water. In addition, a small peak was observed at 1574 
nm, which is within the vibration band of C-H stretching associated with 
lipids, probably due to the presence of the soy lecithin used as an emul-

sifier during microparticle preparation [19].

These profiles indicate a correspondence between the spectral 
changes and the 𝑆𝐶𝐶𝑡 in the microparticles, which supports pattern 
analysis and the implementation of prediction models.

3.3. Modeling

In the following subsections, the principal results of the modeling 
stage are shown.
5

3.3.1. PCA-MLR and PCA-ANN

Fig. 6a shows that four 𝑃𝐶𝑠 can explain over 99.5% of the variance; 
these first two 𝑃𝐶𝑠 account for 86.4 and 10.8%of the spectral variance, 
respectively. These results are similar to those provided by [43], who 
reported 88.9 to 94.4%, or the 98% reported by [44] when citrus fruits 
and their juices were evaluated. Then, using the 𝑃𝐶 matrix, the 𝑃𝐶𝐴 −
𝑀𝐿𝑅 and 𝑃𝐶𝐴 −𝐴𝑁𝑁 models were built (see Fig. 6b and c). In both 
models, on the calibration and validation datasets, 𝑅2 ranged between 
0.72 and 0.77.

3.3.2. PLSR modeling

PLSR model construction was divided into two stages. In the first 
stage, all the wavelengths were used as inputs for the model. In this 
case, using the calibration and validation datasets, the 𝑅2 varied be-

tween 1.0 and 0.898 (Fig. 7a). According to these results, the full PLSR

validation showed a major dispersion concerning full PLSR calibration 
in the results. In this case, according to [45, 46, 47], the result may be 
due to high collinearity and the overlapping of spectral profiles, which 
introduce noise to the model, making it necessary to determine the rel-

evance of each wavelength previously used in the model.

Then, in an approach similar to [31] through cross-validation, PLSR 
models of the effects of different numbers of latent variables (LVs, wave-

lengths) were found and plotted in Fig. 7b; the number of relevant LVs 
or wavelengths was set to seventeen.

Fig. 8 shows the most relevant wavelength according to its abso-

lute 𝛽 coefficient value, the mean profiles of the microparticles, and 
the average citral profiles. As shown, the relevant wavelengths (𝑅𝑊 )
were distributed mainly in the range [2,282–2,390] nm and in two 
other ranges ([1,190–1,514] nm and [1,664–2,000] nm). The 𝛽 coef-

ficients resulting from the 𝑆𝐶𝐶𝑡 calibration procedure show a similarity 
between the citral and microparticle profiles, with higher predominance 
overtones and bands of C-H bending-stretching in the range from 2,282 
to 2,354 nm.

Likewise, a high 𝛽 coefficient was observed at 2,303 nm for citral 
caused by the combination of the C=O and C-H stretching frequencies 
of the aldehyde group present in citral. The negative peaks (2,282 and 
2,333 nm) occur because the absorbance peaks are reversed in the 𝛽 co-

efficient calculation [40]. These results are within the ranges obtained 
by [25] when they evaluated the NIR spectrum of pure limonene, which 
showed predominant peaks between 2,250 and 2,360 nm. Meanwhile, 
the results are slightly superior to those reported by [40] for their eval-

uation of the NIR spectrum of citral in lemongrass (Cymbopogon citratus) 
and lemon (Citrus limon) oils, in which they observed that the aldehydic 
C-H group (present in citral) exhibits characteristic combination bands 
between 2,210 nm and 2,250 nm. Additionally, they noted an increase 
in absorbance at approximately 2,212 nm with an increase in citral 
content. This difference in the results could be due to the presence of 
dextrin and soy lecithin as part of the microparticle formulation.

Then, the relevant wavelengths were used to build an optimized 
PLSR model (see Fig. 9). As shown in this figure, the 𝑅2 values are 0.96 
and 0.94 for calibration and validation, respectively. These results are 
similar to those obtained by [48] in their evaluation of NIR correlation 
statistics for aldehyde composition in cinnamon leaf (Cinnamomum zey-

lanicum), clove leaf and clove bud (Syzygium aromaticum) essential oils. 
Additionally, these results are consistent with those obtained by [25]

and [49] when they evaluated limonene in citrus oil and with those re-

ported by [40] and [18], who quantified citral in lemongrass and lemon 
orange oils. Finally, these results are consistent with [50], who eval-

uated the chemical compositions of thyme, oregano, and chamomile 
essential oils. All these studies reported 𝑅2 values above 0.90.

3.4. ANN modeling

Fig. 10 summarizes the results of this stage. Fig. 10a shows the full 
ANN model, where the values for both the 𝑅2 calibration and validation 
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Fig. 6. (a)PC vs Variance, (b) PCA-MLR, and (c) PCA-ANN.

Fig. 7. (a) Full PLSR, (b) 𝑅2
𝑐

and 𝑅𝑀𝑆𝐸𝑐 vs LVs.
(0.97 and 0.95, respectively) were similar. Fig. 10b shows the opti-

mized ANN model, which was built from the selected LV, where the 𝑅2

values for calibration and validation were 0.98 and 0.96, respectively. 
Consistent with these results, in both figures, little data dispersion was 
observed. In this case, similar to [27], the ANN models are shown to be 
more stable.

3.5. Model comparisons

The metrics for the chemometric models (full and optimized) on 
both the calibration and validation datasets are shown in Table 2. The 
obtained values show that the PCA-MLR, PCA-ANN, PLSR and ANN

models produced acceptable results, achieving high 𝑅2 values (above 
0.71). Except for the full PLSR model, the ANN model achieved a 
slightly better fit than did the other models.

The superior performance of the ANN model can be partially at-

tributed to its ability to adjust to nonlinear functions, an ability that the 
other models do not possess. These results agree with those reported 
6

by [27, 51, 52], who compared different models and found the best fit, 
with at least a slight advantage, for ANN models in all the studies.

4. Conclusions

This paper evaluated the feasibility of applying NIR spectroscopy 
coupled with chemometric tools (PCA-MLR, PCA-ANN, PLSR and ANN) 
to determine the superficial citral content on microparticles. The results 
indicated that all the models were able to predict the superficial content 
of citral on the microparticles, achieving a coefficient of determination 
over 0.71. The results of the ANN models (𝑅2 from 0.950 to 0.980) were 
slightly better than those of the PLSR models (0.935 - 0.970) and better 
than PCA-MLR (0.737 - 0.767) and PCA-ANN (0.715 - 0.748). Similarly, 
the ANN model achieved the best RPD (4.479) and RER (18.235). Con-

sequently, this technique shows potential as a method for predicting the 
superficial content of citral on microparticles. However, a larger num-

ber of samples must be studied to improve the generalizability of the 
models.
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Fig. 8. From top to bottom are the 𝛽 coefficients and RW (dark points), the spectral profiles of the citral solutions, and the spectral profiles of microparticles.
Fig. 9. Optimized PLSR models.

4.1. Difficulties and future work

Chemometric tools have shown efficacy for selecting relevant wave-

lengths. However, this selection could be optimized by applying a dif-

ferent method of selecting characteristics and regression models, similar 
to [53, 54], who showed that the selection method influences the effi-

cacy of prediction models. Despite having this background, we still do 
not have a standardized method for extracting variables.

Therefore, in subsequent studies, a combined method for variable 
selection and prediction properties must be applied for cases similar to 
the one exposed here. This approach, along with a larger number of 
samples, will allow us to propose this method as a referential method 
for analyzing compounds on the surfaces of microparticles.
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Table 2

Statistical measures for 𝑆𝐶𝐶𝑡 determination models.

Calibration dataset

Parameter PCA PLSR ANN

MLR ANN Full Optimized Full Optimized

𝑅2 0.767 0.715 1.000 0.964 0.970 0.980

𝑅2
𝑎𝑑𝑗

0.762 0.709 1.000 0.963 0.969 0.979

MSE 0.016 0.014 0.000 0.003 0.003 0.002

RMSE 0.126 0.120 0.000 0.055 0.052 0.043

Validation dataset

Parameter PCA PLSR ANN

MLR ANN Full Optimized Full Optimized

𝑅2 0.737 0.748 0.898 0.935 0.950 0.957

𝑅2
𝑎𝑑𝑗

0.725 0.737 0.893 0.932 0.948 0.955

MSE 0.020 0.013 0.009 0.006 0.004 0.004

RMSE 0.140 0.112 0.094 0.077 0.067 0.061

RPD 2.127 2.659 3.173 3.867 4.436 4.479

RER 7.948 9.936 11.857 14.451 16.579 18.235
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