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Abstract: Septic shock substantially alters the pharmacokinetic properties of β-lactams with a sub-
sequently high risk of insufficiently low serum concentrations and treatment failure. Considering
their pharmacokinetic (PK)/pharmacodynamic (PD) index, prolonged infusions (PI) of β-lactams
extend the time that the unbound fraction of the drug remains above the minimal inhibitory con-
centration MIC (f t >MIC) and may improve patient survival. The present study is a monocentric,
retrospective before-and-after analysis of septic shock patients treated with β-lactams. Patients of the
years 2015–2017 received intermittent bolus application whereas patients of 2017–2020 received PI
of β-lactams. The primary outcome was mortality at day 30 and 90 after diagnosis of septic shock.
Mortality rates in the PI group were significantly lower on day 30 (PI: 41%, n = 119/290 vs. IB: 54.8%,
n = 68/114; p = 0.0097) and day 90 (PI: 47.9%, n = 139/290 vs. IB: 62.9%, n = 78/124; p = 0.005).
After propensity-score matching, 30- and 90-day mortality remained lower for the PI group (−10%,
p = 0.14). PI was further associated with a reduction in the duration of invasive ventilation and a
stronger decrease in SOFA scores within a 14 day-observation period. PI of β-lactams was associated
with a significant reduction of mortality in patients with septic shock and may have beneficial effects
on invasive ventilation and recovery from sepsis-related organ failure.

Keywords: prolonged infusion; β-lactams; septic shock; mortality; antibiotic therapy; critical care

1. Introduction

Sepsis has emerged as one of the most challenging global health problems, with
increasing patient numbers (49 million cases) and persistently high mortality rates (11 mil-
lion) [1,2]. The German INSEP study [3] included 1503 patients with sepsis and septic
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shock and found an overall intensive care unit (ICU) mortality of 34.3% (compared with
6% in patients without sepsis) and a 40.4% hospital mortality of septic patients.

Rapid administration of broad-spectrum antibiotics is regarded a key feature of sepsis
treatment [4]. Prospective studies found a 2 to 8% increase in mortality with each hour of
antibiotic delay [5,6]. β-lactams like piperacillin/tazobactam (TZB) and carbapenems (CP)
are considered frontline broad-spectrum antibiotics and are the most frequently prescribed
substances for the treatment of sepsis and septic shock [7,8]. Sepsis and septic shock
induce pathophysiological changes that gravely alter the pharmacokinetic properties of
the hydrophilic β-lactams [9–11] and ultimately may culminate in low β-lactam serum
concentrations [12–15] jeopardizing treatment success [16,17]. To provide critically ill
patients with effective antimicrobial therapy, guidelines strongly support efforts to optimize
antimicrobial dosing [4,18,19]. As time-dependent antibiotics, antimicrobial potency of
β-lactams is predominantly determined by the time (T) that the unbound fraction (f ) of the
drug remains above the pathogen-specific minimal inhibitory concentration (MIC) [20,21].
However, in most immediate clinical scenarios, causative pathogens, MIC and measured
serum concentrations of β-lactams are not readily available for treating physicians. In this
case, pragmatic PK-targets considering epidemiological cut-off values (ECOFF) have been
proposed (50–100%f T>2-4MIC of possible resistant targets, like Pseudomonas aeruginosa) to
ensure the best possible antimicrobial exposure. The prospective DALI study by Roberts
et al. [22] investigated antimicrobial exposure in a cohort of critically ill patients treated with
standard doses of eight distinct β-lactams (including CP and TZB). 67% of patients were
treated with intermittent bolus (IB) application while 33% received a prolonged infusion
(PI). The investigators found acceptable PK-target attainment for the most conservative
targets (Meropenem, 50% f T>MIC: 95%; TZB, 50% f T>MIC: 80.6% of patients) but poor
target attainment for pragmatic PK-targets aimed for in sepsis and septic shock (100%
f T>4MIC: 41.6% [Meropenem] and 30.3% [TZB]). Overall, 48.8% of patients achieved 50%
f T>4MIC and only 35% attained a target of 100% fT>4MIC. With regard to PK properties, PI
are a promising compromise to IB. Applying an initial loading dose (LD) and infusing
subsequent doses over a period of 2 to 4 h is a pragmatic way to effectively extend the
f T>MIC/ECOFF throughout the dosing interval. In contrast to continuous infusion (CI) of
β-lactams, therapeutic drug monitoring (TDM) is not essentially required. Abdul-Aziz
and co-workers performed a post-hoc analysis [23] of the DALI study [22] to investigate
effects of PI on patient mortality and found significantly higher 30-day-survival rates for
patients receiving PI for respiratory infections (PI 86.2% [n = 25/29] vs. IB 56.7% [17/30])
and patients with a SOFA score ≥9 (PI 73.3% [n = 11/15] vs. IB 35% [7/20]; p = 0.035).
A recent meta-analysis by Rhodes et al. [24] that included 18 studies with 3401 patients
treated with TZB concordantly reported a 1.77-fold higher odds of clinical cure (95% CI,
1.24–2.54) and a 1.22-fold higher odds of microbiological cure (95% CI, 0.84–1.77) in patients
receiving PI. Older data by Falagas and co-workers [25] also reported lower mortalities for
PI. Although, studies on PI of β-lactams comprise a broad spectrum of critically ill patients
with varying degrees of disease severity and different foci of infection. For example,
Abdul-Aziz et al. [23] included patients with a median SOFA score of 5 (IQR3-8) and
predominantly respiratory (38.5%) and abdominal (27.5%) infections. We introduced PI
of β-lactams in the surgical intensive care unit (ICU) at Heidelberg University Hospital
in 2017. As we treat a relatively homogenous and severely ill cohort of patients with
abdominal sepsis, the present analysis aims to investigate the effects of PI of β-lactams on
mortality in severely ill patients with mainly abdominal septic shock. We matched the PI
cohort to a comparable cohort of the years 2015–2017 when β-lactams were administered
as IB.

2. Materials and Methods
2.1. Study Design

The present study is a monocentric, retrospective before-and-after analysis of electron-
ically collected clinical data of the interdisciplinary surgical ICU at Heidelberg University
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Hospital, Germany. The local Institutional Ethics Committee approved the study (reference
number: S-586/2020).We included adult patients (age >18 years) that were treated with
β-lactam antibiotics for septic shock (according to the revised SSC definition [4]) between
March 2015 and July 2020. Two groups were compared: patients of the years 2015–2017
received IB application, whereas patients of 2017–2020 received PI of β-lactams.

2.2. Antimicrobial Treatment, Clinical Scores, Laboratory Data

Sepsis therapy was based on the recommendations of the SSC [4] and the German
Sepsis Society (DSG) [26]. The local protocol for the prolonged β-lactam administration
since April 2017 consisted of an initial LD (30-min bolus infusion) and PI of consecutive
doses over a period of 3 h using a rate-controlled syringe pump. Before April 2017 β-
lactam antibiotics were administered as an intermittent bolus of a 20-min infusion. The LD
comprised of one standard dose administered as bolus infusion. Despite the LD, patients
in both groups (IB & PI) received standard doses of the respective β-lactams. Doses
were corrected according to the manufacturers’ recommendation (mostly for acute kidney
injury/renal failure). We did not conduct therapeutic drug monitoring (TDM).

The patients’ clinical and demographic data presented in this study were derived
from the clinical documentation system. Vasopressor dependence and inotropic support
were summarized and analyzed using the vasoactive-inotropic score (VIS) as proposed by
Butts et al. [27]:

VIS = dopamine dose (µg/kg/min) + dobutamine dose
(µg/kg/min) + 100 × epinephrine dose (µg/kg/min) + 100 × norepinephrine
dose (µg/kg/min) + 10,000 × vasopressin dose (U/kg/min) + 10 × milrinone

dose (µg/kg/min)

Assessed laboratory data included leucocyte count, C-reactive protein (CRP), procalci-
tonin (PCT), creatinine, transaminases (aspartate and alanine aminotransferase), bilirubin
and albumin levels. Sepsis-related organ failure assessment (SOFA) score [28] and acute
physiology and chronic health evaluation II (APACHE 2) [29] scores were used to assess
the degree of organ dysfunction/failure and as a surrogate for disease severity. Laboratory
data, the amount of catecholamines administered were obtained at study inclusion, 48 h,
96 h, 168 h and 14 days after study inclusion.

2.3. Clinical Outcome Measures

We analyzed differences in mortality rates of patients treated with IB and PI. The pri-
mary outcome was mortality at day 30 and 90 after recognition of septic shock. In addition,
overall ICU- and hospital mortality was assessed. Secondary outcomes included the ICU
length of stay and the duration of invasive ventilation. Vasopressor dependence (VIS),
the serum CRP, PCT and SOFA score were evaluated at enrollment 48 h, 96 h, 7 days and
14 days after study inclusion.

2.4. Statistical Methods

Data was collected with the aid of an electronic database system (Microsoft Excel®,
Microsoft Deutschland GmbH, Unterschleißheim, Germany). The SAS System (Version
9.4, SAS, Cary, NC, USA) was used for statistical analyses. Descriptive statistics were done
for the complete dataset. To adjust for baseline differences between the PI group and the
IB group for the primary and secondary endpoint analysis, a propensity-score matching
was performed including age, sex, SOFA- and vasoactive-inotropic score. For continuous
variables and scores, mean, standard deviation (SD), minimum, median and maximum
were calculated. Mean values with SD are presented in the manuscript. Absolute and
relative frequencies of categorical variables are presented. The t-test test was used for the
comparison of metric data between unpaired samples. For the comparison of categorical
data, the chi-square test was used. Survival analysis was performed using a Kaplan-
Meier graph with log-rank test and a fixed observation period of 30 days. Laboratory
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data and score courses over time were evaluated by analyses of covariance with repeated
measurements. Appropriate statistical graphics were used to visualize the findings.

3. Results
3.1. Baseline Characteristics

A total of 414 septic shock patients were eligible for inclusion into the final statistical
analysis. The cohorts differed in sample size (IB group n = 124, PI group n = 290 patients).
Both groups did not significantly differ regarding demographical baseline data (Table 1).
Mean SOFA scores of 13.5 (3.3) (IB) and 12.6 (2.9) (PI)—although significantly different—
however, indicated an equal severity of disease in both groups. Renal impairment measured
as mean GFR was moderate (GFR IB 56 [46] vs. PI 56 [40] mL/min) (Table 1). 43%
(n = 53/124) of patients in the IB group and 40% (n = 116/290) needed at least temporal
renal replacement therapy for sepsis related acute renal failure. Abdominal foci were most
common in both groups (IB: 66%, n = 82/124 and PI 76%, n = 221/290). For the primary
and secondary endpoints, additional propensity-score matched analyses were performed.
Both matched groups included 112 patients. The Propensity-Score matched PI group had a
lower rate of known tumor disease. SOFA score was lower, APACHE II score was higher
in the propensity-score matched PI group than in the propensity-score matched IB group.
The baseline characteristics of all patients and the propensity-score matched cohorts are
given in Table 1. Figure 1A depicts the distribution of antibiotics utilized for treatment.
The doses per day and bodyweight of the most commonly used antibiotics are presented
in the following:

TZB: PI group 0.2 g/kg/d (0.1) vs. IB group 0.19 g/kg/d (0.06)
Meropenem: PI group 0.05 g/kg/d (0.03) vs. IB group 0.04 g/kg/d (0.01)
Imipenem: PI group 0.04 g/kg/d (0.02) vs. IB group 0.04 g/kg/d (0.01)

Table 1. Patient characteristics at study enrollment (onset of septic shock*) in baseline cohort and propensity-score analysis.

Baseline (n = 414) Propensity-Score Matched (n = 224)

Intermittent Bolus
(n = 124)

Prolonged Infusion
(n = 290) p-Value Intermittent Bolus

(n = 112)
Prolonged Infusion

(n = 112) p-Value

Demographic data

Male sex 86 (69%) 189 (65%) 0.4091 81 (72%) 81 (72%) 1.0000

Tumor disease 68 (55%) 150 (52%) 0.5610 63 (56%) 48 (43%) 0.0450

Organ transplant 16 (13%) 28 (10%) 0.4926 16 (14%) 7 (6%) 0.1323

Age 65 (13) 66 (13) 0.3792 64 (13) 64 (13) 0.9309

BMI [kg/m2] 29 (8) 29 (9) 0.9718 29 (8) 28 (10) 0.3679

Clinical condition

SOFA score 13.5 (3.3) 12.6 (2.9) 0.0069 13.2 (3.0) 12.4 (3.1) 0.041

APACHE II Score
GFR

(Cockroft-Gault)

30.3 (6.4)
56 (46)

33.5 (7.1)
56 (40)

<0.0001
0.8994

29.9 (6.3)
60 (47)

33.7 (6.6)
57 (50)

<0.0001
0.6158

VIS [µg/kg/min] 68 (56) 51 (35) 0.0073 57 (37) 56 (40) 0.5616

Creatinine [mg/dL] 2.1 (1.2) 2.0 (1.2) 0.457 2.1 (1.2) 2.0 (1.3) 0.4988

Serum lactate
[mg/dL] 55 (54) 44 (41) 0.0428 51 (49) 46 (47) 0.5728

Leukocytes [n/mL] 17 (12) 17 (12) 0.6721 17 (12) 15 (11) 0.5173

CRP [mg/L] 193 (113) 181 (182) 0.1036 194 (110) 193 (256) 0.1355

Procalcitonin
[ng/mL] 28 (52) 30 (62) 0.0534 26 (45) 30 (50) 0.7274
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Table 1. Cont.

Baseline (n = 414) Propensity-Score Matched (n = 224)

Intermittent Bolus
(n = 124)

Prolonged Infusion
(n = 290) p-Value Intermittent Bolus

(n = 112)
Prolonged Infusion

(n = 112) p-Value

SOT
% (n)

13
(16/124)

% (n)
10 (28/290) 0.5 % (n)

14 (16/112)
% (n)

6 (7/112) 0.1323

Liver 63 (10/16) 46 (13/28) 63 (10/16) 71 (5/7)

Kidney 19 (3/16) 36 (10/28) 19 (3/16) 14 (1/7)

Others 19 (3/16) 18 (5/28) 19 (3/16) 14 (1/7)

Focus 0.04 * 0.108

Abdominal 66
(82/124) 76 (221/290) 65 (73/112) 78 (87/112)

Pulmonary 17
(21/124) 11 (31/290) 18 (20/112) 10 (11/112)

UTI 6 (7/124) 7 (20/290) 5 (6/112) 6 (7/112)

Data are n(%) or mean (SD) unless otherwise specified. BMI: Body-mass-index. SOFA: Sequential Organ Failure Assessment score. APACHE
II: Acute Physiology And Chronic Health Evaluation II. GFR: Glomerular filtration rate. VIS: Vasoactive-Inotropic score (µg/kg per min)
= 10× milrinon dose (µg/kg/min) + 10,000× vasopressin dose (U/kg/min) + 100× (epinephrine dose [µg/kg/min] + norepinephrine
dose [µg/kg/min]). CRP: C-reactive Protein. SOT: solid organ transplantation. UTI: Urinary tract infection. * administration of: 1 or more
vasopressor to maintain a mean arterial pressure of 65 mmHg or higher + hydrocortisone + β-lactam antibiotic.

1 
 

 

Figure 1. Distribution of Antibiotics in (A) Entire Cohort, (B) Intermittent bolus (IB) group and (C) prolonged infusion (PI)
group.

One hundred and thirty-four (134) patients (46.2%) of the PI group and 51 patients
(41.1%) of the IB group had already received antibiotic therapy prior to the onset of septic
shock. Overall, carbapenems (meropenem 60%, n = 249/414, imipenem 17%, n = 70/141)
and piperacillin/tazobactam (22%, n = 89/414) were the most frequently prescribed antibi-
otics. Compared to the IB cohort, patients in the PI group were given TZB more frequently
(12%, n = 15/124 vs. 26%, n = 74/290 (Figure 1B,C). 29.3% of patients of the PI group and
25.8% of patients of the IB group were additionally treated with antimycotics. 17.9% of
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patients of the PI group and 26.6% of patients of the IB group received antiviral medication.
Consistent with the predominantly abdominal focus of infection, Gram-negative Enter-
obacterales and Gram-positive Enterococci were the leading pathogens (Table 2). In 36 of
414 patients (8.7%) septic shock was treated without evidence of a causative pathogen.

Table 2. Pathogen distribution.

Intermittent Bolus
(n = 179)

Prolonged Infusion
(n = 451)

Lead Pathogen
(n = 112)

Contributing Pathogen
(n = 67)

Lead Pathogen
(n = 265)

Contributing Pathogen
(n = 186)

% (n) % (n) % (n) % (n)

G
ra

m
-n

eg
at

iv
e

E. coli 25 (28) 20.9 (14) 29.8 (79) 16.1 (30)

MDR—E. coli * 1.8 (2) — — 0.5 (1)

K. pneumoniae 9 (10) 3 (2) 6.4 (17) 4.3 (8)

MDR—K. pneumoniae * none 1.5 (1) 0.4 (1) —

K. oxytoca 2.7 (3) — 3.4 (9) 4.3 (8)

Klebsiella spp. — — 0.4 (1) 1.1 (2)

Citrobacter freundii 1.8 (2) 3 (2) 0.4 (1) 0.5 (1)

Citrobacter spp. 1.8 (2) — — 1.1 (2)

Serratia marscescens 2.7 (3) — 0.8 (2) 0.5 (1)

Serratia spp. 0.9 (1) — 0.4 (1) —

Proteus mirabilis 2.7 (3) 1.5 (1) 4.5 (12) 1.6 (3)

Proteus spp. — 1.5 (1) 0.4 (1) 0.5 (1)

Enterobacter spp. 3.6 (4) — 2.3 (6) 5.4 (10)

Pseudomonas aeruginosa 6.3 (7) 6 (4) — 5.9 (11)

MDR—P. aeruginosa # 0.9 (1) 1.5 (1) — —

Bacteroides fragilis 3.6 (4) 7.5 (5) 1.5 (4) 1.1 (2)

G
ra

m
-p

os
it

iv
e

Enterococcus spp. 4.5 (5) 10.4 (7) 3 (8) 5.9 (11)

E. faecium 9 (10) 13.4 (9) 10.9 (29) 6.5 (12)

E. faecalis — 4.5 (3) 1.1 (3) 3.8 (7)

VRE 8 (9) 3 (2) 7.5 (20) 10.8 (20)

Staphylococcus spp. 7.1 (8) 4.5 (3) 7.5 (25) 4.3 (8)

MRSA 0.9 (1) 3 (2) — —

Streptococcus spp. 1.8 (2) 1.5 (1) 3.4 (9) 4.3 (8)

Clostridium spp. 0.9 (1) 1.5 (1) 2.6 (7) 1.6 (3)

Others 46 (83/179) 15 (67/451)

Data are given as relative frequencies (%) and absolute numbers (n). Lead pathogens were considered the primarily causative pathogen
identified. Overall, no pathogen was detected in 8.7% (36/414) of cases (subgroups: IB 10.5% (13/124), PI: 7.9% (23/290)) * Combined
resistance towards 3rd-generation cephalosporins & fluoroquinolones # Combined resistances towards piperacillin/tazobactam, ceftazidime,
fluoroquinolones & carbapenems.

3.2. Primary Outcome
Prolonged β-Lactam Administration Was Associated with Lower Mortality

Unmatched analysis of the entire cohort suggested a significantly lower 30-day
(−13.8%, p = 0.0097) and 90-day-mortality (−15%, p = 0.005) in patients receiving PI
of the β-lactams. Survival estimates using a Kaplan-Meier-Plot of 30d-mortality (Figure 2)
shows early partitioning of survival probability lines. The propensity-score matched anal-
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ysis of the cohorts led to non-significant, however clinically still relevant, differences in
30 day-(−10.7%), 90 day-(−9.8%), ICU-(−9.9%), and hospital-mortality (−11.6%) (Table 3).
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Table 3. Primary endpoints in baseline cohort and propensity-score matched patients.

Baseline (n = 414)
Propensity-Score Matched (n = 224)

Intermittent Bolus Prolonged
Infusion d% p Intermittent

Bolus
Prolonged
Infusion d% p

Hospital mortality,
% (n)

64.5
(80/124) 48.3 (140/290) 16.2 0.0024 62.5 (70/112) 50.9 (57/112) 11.6 n.s.

ICU mortality,
% (n)

57.3
(71/124) 43.5 (126/290) 13.8 0.01 54.5 (61/112) 44.6 (50/112) 9.9 n.s.

30-day mortality
% (n)

54.8
(68/124) 41 (119/290) 13.8 0.0097 52.7 (59/112) 42 (47/112) 10.7 n.s.

90-day mortality
% (n)

62.9
(78/124) 47.9 (139/290) 15 0.005 60.7 (68/112) 50.9 (57/112) 9.8 n.s.

Data are %(n) unless other specified. IB: intermittent bolus. PI: prolonged infusion. d%: percentage difference. ICU: Intensive Care Unit.
n.s.: not significant.

3.3. Secondary Outcome Parameters
3.3.1. Prolonged β-Lactam Administration Was Associated with Shorter Duration of
Invasive Ventilation

Patients treated with PI also had a shorter ICU stay in the unmatched (IB 15.8 d [19.4 d]
vs. PI 13.6 d [16.1 d]; 0.219) and matched analysis (IB 17.1 d [19.9 d] vs. PI 13.5 d [15.7 d];
0.139), the difference was not statistically significant in both analyses (Figure 3A). PI of
β-lactams was associated with significantly shorter mean duration of invasive ventilation
in both unmatched (IB 13.2 d [16.2 d] vs. PI 8.4 d [10.1 d]; p < 0.001) and propensity-score
matched analysis (IB 14.2 d [16.6 d] vs. PI 8.3 d [10.6 d]; p = 0.002) (Figure 3B).
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Figure 3. Secondary endpoints. Plot bars show mean values, error bars the standard deviation. PI: prolonged infusion.
IB: intermittent bolus. (A) ICU treatment; (B) Invasive ventilation.

3.3.2. PI of β-Lactams Was Associated with Faster Improvement of Organ Failure

Figure 4A–F depict the course of other parameters clinically used to predict responses
to effective sepsis therapy. While the decline in laboratory infection surrogates (C-reactive
protein [CRP] and procalcitonin [PCT]), APACHE II score and vasopressor dependence
(VIS) did not significantly differ between both groups. PI of β-lactam antibiotics was
associated with a stronger decrease of the SOFA score over a period of 14 days.

1 
 

 

 

 

Figure 4. Course of Vasoactive-inotropic-score (A), Lactate (B), C-reactive protein (C), Procalcitonin (D), SOFA-Score (E),
APACHE II Score (F) in baseline cohort over a 14 day observation period.

Number (n) of patients is presented below graph in red for the prolonged infusion and
blue for the intermittent bolus group. SOFA Score: Sepsis-related organ failure assessment
score. APACHE II: Acute Physiology And Chronic Health Evaluation II.

4. Discussion

This retrospective study investigated the effects of prolonged infused β-lactams on
mortality of patients in septic shock in a German intensive care unit between 2015 and 2020.
Critically ill patients with sepsis are prone to insufficiently low serum concentrations and
consecutive treatment failure because of unique alterations of β-lactam PK [11,13,14,30–32].
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PI of β-lactams evolved as a reaction to a better understanding of the PK/PD index of
this group of antibiotics whereby prolongation of the fT>MIC/ECOFF subsequently leads to
a better antimicrobial exposure of the causative pathogens [33]. Previous investigations
already suggested lower mortality rates and better clinical outcome using extended in-
fusions in adults [23–25,34–36] and pediatric patients [37]. These effects are attributed to
improved PK target attainment during extended infusions [36,38–40]. Critical patients
included in the study of Roberts [22] and Abdul-Aziz et al. [23] had median SOFA scores
of only 6 (IQR 3–9) and had varying sites of infection. Abdul-Aziz and co-workers [23]
demonstrated significantly lower mortality for PI of β-lactams in patients with a SOFA
score ≥9 and those with pneumonia. We analyzed a cohort of 414 severely ill patients
with predominantly abdominal septic shock with mean SOFA scores of 13 predicting
an a priori high mortality [41]. The monocentric nature of the study allowed for good
comparability as depicted in the baseline characteristics given in Table 1. Contrary to
Rhodes et al. [24], we exclusively evaluated only prolonged infusions of β-lactams. As a
primary outcome measure, we found a significant reduction in mortality for the PI group.
To control for interfering clinical properties, we performed a propensity-score matching
and re-analyzed the primary outcome measure in the matched cohorts. While differences
in mortality did not reach statistical significance, we still found markedly lower mortality
rates when β-lactams were administered as a PI. Because of the unequal number of patients
in both groups, generating pairs of patients as a prerequisite of matching was followed
by a loss of about 50% of patients making it unlikely for a chi-square test to reach the
significance level. Decreasing mortality rates by 10% in a cohort of patients with high
probability of death—statistically significant or not—is, of utmost importance to patients
and clinicians. Kaplan-Meyer estimates of survival show an early divergence of survival
curves, suggesting a significant impact (p = 0.014) of PI on median survival probability.
These findings strongly support the conclusion of a recently published review of Abdul-
Aziz and colleagues whereby PI of β-lactams might be especially important for critically
ill/immunocompromised patients and those who are more likely to have less susceptible
Gram-negative infections [42]. Responding to the revised SSC guidelines [4], we changed
our local sepsis protocol in 2017 which most likely explains that patients in the PI group
received TZB considerably more often (26%) as between 2015–2017 (12%) while prescrip-
tion patterns of meropenem did not change. As can be seen in Table 2, major changes in
causative pathogens or an increase of infections caused by multidrug-resistant bacteria as a
reason can be excluded. We further found a reduction of duration of invasive ventilation
for patients in the PI group. We would like to argue that these effects are in line with
prospective investigations highlighting the role of focus control and adequate antibiotic
treatment [3,5,6,43,44]. On the other hand, uncontrolled or prolonged abdominal infection
is accompanied by a gastrointestinal paralysis with subsequent distension of intestinal
loops leading to a restrictive airway and higher incidence of micro-aspiration [45,46]. An
interesting finding of our study is, that inflammatory markers like C-reactive protein and
procalcitonin showed similar courses (Figure 4C,D) although PI was associated with lower
mortality. An explanation is that CRP is an unreliable marker of infection in patients on
surgical ICUs as CRP levels can vary as a consequence of surgical trauma or liver insuf-
ficiency. PCT is an inflammatory marker mainly well evaluated for (lower) respiratory
tract infections and a general marker to distinguish bacterial from non-bacterial infections.
While PCT is routinely used in abdominal infections its role in guiding therapy is still
unclear [47].In what way the gut-lung axis and its role in immunomodulation contributes
remains to be investigated [48]. Unlike previous prospective studies [38,39], we included
patients on RRT or/and hepatic dysfunction. RRT may have unpredictable effects on
serum concentrations of hydrophilic β-lactams and PK target attainment, according to
recently published work [36,49]. We decided against a detailed evaluation of the subgroup
of patients receiving RRT for two reasons. Firstly, serum concentrations were not available,
and the study did not focus on PK effects. Secondly, we intended to analyze crude overall
effect of a representative cohort of septic shock patients. With a fraction of 43% (IB) and



Antibiotics 2021, 10, 687 10 of 13

40% (PI) both cohorts show a rather high fraction of patients in need for temporal RRT.
The high rates of RRT result from the inclusion criteria that focused on patients in septic
shock. Further, baseline characteristics imply that the evaluated cohort constituted of older
patients (IB: 65 y [13]; PI: 66 [13]) with high VIS.

The study has some limitations. Data were drawn from a single center and comprised
an exclusive cohort of patients with predominantly abdominal septic shock. Though our
findings are in line with other prospective studies, findings cannot readily be generalized
to other cohorts. Although we report microbiological data, resistance data and MICs were
not available. Also, serum concentrations of β-lactams were not measured. Attaining
PK targets is advised during treatment of critically ill patients [19]. Unfortunately, our
data do not allow to link outcome (mortality) to specific PK-targets. Until 2020, we did
not implement TDM-guided dose optimization in our department and adjusted β-lactam
doses according to the manufacturers’ recommendation. Hence, we were not able to
either investigate β-lactam toxicity [50–53] nor could we connect serum concentrations
to outcome. Against this background, we are expecting the results of two interesting
studies: The German TARGET study by Hagel et al. [54] (DRKS00011159) investigates the
impact of TDM-guided dose adjustments in the ICU on survival of patients with sepsis
and septic shock while the Australian BLING 3 study (NCT03213990) is still recruiting
patients to evaluate clinical effects of continuously infused β-lactams versus intermittent
bolus application.

5. Conclusions

The present study strongly endorses existing evidence of pivotal prospective studies
and meta-analyses favoring PI of β-lactams in critically ill patients. PI was associated with
a clinically relevant reduction of mortality in a severely ill subpopulation of ICU patients
with septic shock and a shorter duration of ventilation. Further studies are necessary to
investigate the effect of TDM-guided dose-optimization in addition to PI.
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