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A B S T R A C T   

White light emitting diodes (wLEDs) have been widely used as the green lighting sources. The 
commercial wLEDs devices are mainly achieved through the combination of blue emission chips 
and yellow phosphors, which offer advantages of high efficiency and long lifetime. However, the 
color rendering index (CRI) of traditional wLEDs is low due to the lack of red components. In 
recent years, with the improvement of the quality of life, a lot of efforts have been paid to improve 
the performance of wLEDs devices related to CRI, correlated color temperature, light uniformity, 
luminous flux, etc. In this article, we summarize the recent advances on the optimization of 
wLEDs toward healthy lighting. Brief introductions on the fundamentals of healthy effect of 
lighting are presented, followed by discussions of current methods to realize wLEDs devices. 
Special overviews on strategies for luminescent materials of wLEDs in recent years are presented. 
The opportunities and challenges in the future development of wLEDs lighting devices are also 
discussed.   

1. Introduction 

White light emitting diodes (wLEDs) are becoming the most popular lighting devices around the world, which are typically 
fabricated by blue emission chips with rare-earth doped phosphors with yellow emission under the excitation of blue light to produce 
white light [1–3]. Compared with previously used lighting devices such as incandescent and fluorescent bulbs, wLEDs use less energy 
with no glass or mercury, negating the risk of glass shards or toxic metal floating which have been regarded as the direction of future 
lighting [4]. For example, it is forecast that LEDs will penetrate around 86 % of electrical lighting installations by 2035 in the United 
States [5]. The popularity of electrical lighting has also put people’s attention on the environmental impacts of the artificial light at 
night itself [6]. Human’s biological clock controlling circadian rhythms have been changed for increasing reliance on artificial lighting 
found in existing studies [7]. Apart from that, too much blue light and the lack of red light in the light source will lead to poor color 
rendering of the light. The original color of the object can’t be presented, which can easily lead to visual fatigue, and will also affect 
people’s mood and appetite to a large extent. Besides, human visual perception depends on the regulation of pupil and photoreceptor 
cells. The pupil adjusts its size according to the strength of the external light to make the luminous flux on the retina remains moderate. 
Therefore, when the eyes are in uneven light for a long time, it will make the eyes tried, and to a certain extent, it will destroy the 
photosensitive cells on the retina, so that vision is affected. In view of the impact of light source on human health, there is an urgent 
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need to improve light quality. In this paper, we introduce the influence on health of artificial light, current fabrication methods of 
wLEDs, analyze its advantages and disadvantages, list the performances of healthy light source and summarize the optimization 
strategies for the most commonly used wLEDs at present, and put forward the prospect of the future lighting. 

2. Fundamentals of healthy lighting 

2.1. Visual effect of lighting 

Ambient lighting is vital for visual health of human eye, including the spectral composition and intensity of light. There is 
increasing evidence that the spectral composition of ambient lighting can influence normal ocular growth and refractive development 
and the intensity of ambient lighting has a great influence on the ciliary muscle because it needs to adjust focal distance and light 
exposure according to luminance of lighting environment. The impact of the spectrum on visual health can’t be underestimated. Infant 
rhesus monkeys were used as experimental subjects to draw a conclusion that the long-wavelength red light greatly reduced the 
likelihood of developing either form-deprivation myopia or compensating myopic changes in response to imposed hyperopic defocus 
[8]. Besides, it has been preliminarily demonstrated that 650 nm low-level red light not can slow down myopia progression, but also 
reverses the myopia progression in human [9,10]. In contrast, short-wavelength blue light may lead to retinal damage and degen-
eration and the primate threshold of phototoxicity for wavelength between 400 and 450 nm was experimentally fixed at 22 J/cm2 

[11–13]. At the same time, a lighting environment with suitable luminance is also needed for visual health. More consumption of 
strength is needed from ciliary muscle adjusting light exposure to obtain clear image in retina in dark ambient lighting contributing to 
visual fatigue. [2,14] Further experiments imply that luminance above 80 cd/m2 would be helpful to prevent the accumulation of 
visual fatigue [15]. 

2.2. Non-visual biological effect of lighting 

Apart from a visual effect, light entering the human eyes has also an important non-visual biological effect on the human body 
[16–18], which is mediated by the non-image-forming intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina [19,20]. 
These effects are manifested in changes in sleep behavior [21,22], alertness [17,18,21], mood [18–20]. A third type of light-sensitive 
cells unlike cone and rod photoreceptors, ipRGCs, can affect the circadian phase by reporting light stimuli to the suprachiasmatic 
nucleus (SCN) to slow down the melatonin secretion, which have spectral sensitivity to light in the blue part around 460–480 nm [19, 
22] The circadian stimulus value increases with corneal illumination and decreases with correlated color temperature (CCT) in a 
certain range and the artificial lighting with the CCT of 2700 K and 4000 K can be selected to reduce the impact on circadian phase 
[22]. The ipRGC-driven effects and mechanisms of light on mood have been studied [20,23]. The means of positive mood always 
decreased with an increase in CCT [24]. Multiple studies have proven that lighting environment with CCT of 4000 K is beneficial for 
both circadian phase and mood (Fig. 1) [19,24]. 

Fig. 1. The distributions of the subjective perception feedback (Reprinted with permission from Ref. [24], copyright 2022, Elsevier).  
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3. Product features of wLEDs 

There are several parameters to evaluate the characteristics of ambient lighting, including CCT, color rendering index (CRI), CCT 
uniformity, luminous flux, etc. Among them, CCT and CRI are mainly affected by the spectral composition of light. Luminous flux 
defines the light emitted by a source such as a lamp or received by a surface, irrespective of direction, which can measure the intensity 
of light. Light uniformity refers to whether the spectral composition and intensity of light are consistent at different angles. It is 
generally accepted that the spectral composition and intensity of light have a huge impact on body’s health, so a suitable light can be 
selected according to these parameters to achieve healthy lighting. CRI represents the ability of a light source to accurately reproduce 
the color of the object it illuminates. When there is little or no main wave reflected by the object under the reference light source in the 
light source spectrum, the color will produce a significant chromatic difference. The CRI of sunlight is defined as 100, and the larger the 
CRI, the closer to the natural light source [25]. CCT is an important measurement standard of wLEDs products, which is related to the 
color characteristics of wLEDs light source display [26]. The more blue-components in the emission spectrum of lighting source, the 
higher CCT. CCT uniformity is one of the major problems in wLEDs fabrication, which is associated with the different ratios of blue and 
yellow emissions, leading to different CCTs at various angles. As a result, there is a yellow ring phenomenon in the application of 
wLEDs bring a poor lighting experiments [27]. Besides, in the process of the light emitted from the chip through the encapsulating 
material layer into the air, there are total reflection at the interface reduce the light extraction efficiency and the luminous flux because 
the difference of refractive index (RI) between semiconductor chips (>2.4 for blue chips of gallium nitride) and encapsulating ma-
terials (1.5–1.6 for commercial silicone) [28]. From the point of view of human health and energy saving, we need a white lighting 
source with high CRI, low CCT, uniform light output and high luminous flux. 

Commercial wLEDs are usually approached by integrated packaging of a diode generating a short wavelength and phosphors 
absorbing a few short wavelength photons and converting them into longer wavelength photons, because white light sensation can be 
caused when two photons of complementary wavelengths arrive simultaneously on the human eye (Fig. 2a) [2,11,29–32]. The ad-
vantages of this combination is that it is simple to make and has the lowest cost and highest efficiency among all the combinations of 
wLEDs. The efficiency of this kind of wLED is affected by both LED chips and phosphors. Low CRI and high CRI is the biggest deficiency 
of the wLEDs realized by combining the blue LED and YAG:Ce, mainly caused by the weak luminosity of the phosphor in the red region, 
and more blue light of short wavelengths than a sunset, originating in narrowband blue-light emission from a semiconductor LED. 
Apart from that, wLEDs can be composed of ultraviolet LED (UV-LED) chip and phosphors with different color (Fig. 2b) [33,34]. The 
principle of white lighting is that UV-LED pump different phosphors emitting red, green, blue lights respectively, and the white light 
can be obtained by adjusting the ratio of three phosphors. Because UV light will not participate in the composition of white light, it is 
much simpler than blue LED to control the color and the higher CRI and lower CCT can be obtained. But the low efficiency of UV-LED 
which drops dramatically at wavelengths below 400 nm limits its commercialization, and because the energy difference between the 
excited and emitted photons is a natural energy loss, when UV light is converted to red, its energy loss is 10 %–20 % higher than that 
when it is converted from blue light. There is color reabsorption between the mixtures of different phosphors, and it is difficult to 
match the absorption wavelength of the tricolor phosphor with the emission wavelength of its LED at the same time, which will have a 
greater impact on lumen efficiency and CRI. What’s more, the uneven grain size and specific gravity (affecting settling velocity) of 
phosphors make inhomogeneous color and intensity distribution in the whole system, which also reduces the conversion efficiency of 
phosphors. Another way of wLEDs implementation is to combine red LED, green LED and blue LED chips into a pixel to achieve white 
light (Fig. 2c). This way can control the LEDs with different color separately, leading to a high flexibility of color adjustment and can 
obtain an ideal light source. Besides, the color purity of white light obtained by this way is also high, so this wLED has a huge market 
potential in large liquid crystal display (LCD) backlight. But the three colors need to be compensated with feedback circuits to keep the 
light stable, so that the production cost of white light synthesized by this method is the highest. Table 1 summarize the characteristics 

Fig. 2. Three approaches to relized wLEDs for lighting. a) wLED composed of blue LED chip and yellow phosphors, b) wLED composed of UV-LED 
chip and phosphors with different color, c) wLED composed of three-primary color LED chips. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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of three types wLEDs. In general, the most mature method at present is the combination of 460 nm blue InGaN chip and yellow light 
YAG:Ce phosphor into wLEDs. In view of the problems existing in this combination, optimizing the phosphor to improve the quality of 
lighting sources and actively exploring new phosphor to replace YAG:Ce is one of the main topics in the current research and 
development of wLEDs. 

4. Optimization Strategies of wLEDs 

4.1. Tuning the emission spectrum of phosphors 

Typical unit of wLEDs consists a blue emission chip with a certain amount of yellow luminescent particles encapsulated in 
packaging materials. As key materials for tuning the emission spectra of wLEDs, luminescent particles are supposed to have the 
following characteristics: a) excitation spectrum exhibits well overlap with emission of blue LED chip in the wavelength region of 
420–480 nm, b) high stability under practical application conditions such as oxygen, carbon dioxide, chemical reagents, water and 
thermal treatment, c) emission spectra with suitable CRI and CCT when combined with blue light of the chip, d) the luminescent 
materials can be synthesized in mild conditions, including easy control of particle morphology, harmless production and reasonable 
cost. To date, many kinds of luminescent materials have been studied for wLEDs, including carbon dots [35–40], semiconductor 
quantum dots [30,31,41], and inorganic phosphors [1,42–44]. Among them, luminescent ions doped inorganic crystals are most 
commonly used luminescent materials in LED lighting, which can make white light softer, improve the color reproduction and light 
efficiency of devices. Tuning the emission spectrum of light is an effective method to improve the CRI and reduce CCT, includes doping 
modification of phosphors to make the original yellow phosphor emission wavelength redshift to increase the red component [45], or 
adding an appropriate amount of red phosphor to the yellow phosphor to improve the CRI [41]. As shown in Table 2, the CRI is 
significantly improved after the addition of red components, and it can also be seen that, compared with optimizing the existing yellow 
luminescent materials, directly adding red phosphors has a more obvious effect on reducing the value of CCT, which less than 4000 K 
beneficial for both circadian phase and mood. 

4.1.1. Yellow-emitting phosphors pumped by blue LED 
Ordinary products of wLEDs are approached by integrated packaging of blue chips made of GaN and luminescent particles of YAG: 

Ce.[1] The space group of Y3Al5O12(YAG) belonging to cubic crystal system is Ia3d, and YAG exhibits excellent optical and thermo-
dynamic performance. Y in the dodecahedral sites has an ionic radius similar to that of most rare earth elements and is easily 
substituted. In case of doping with Ce3+, the Ce ions occupy Y resulting in a shift of Ce3+’s 5d-4f emission corresponding to 
yellow-green spectral region. People’s eyes and brain work together to blend human perception of separate bands of blue color from 
chips and yellow color from phosphors into a white light that may be illuminating the object viewed [7,51]. In order to improve the 
light source quality of wLEDs based on YAG:Ce, many efforts have been paid optimize the luminescent center ion and the structure of 
host. For instance, the YAG, can be written as A3B2C3O12, where A, B, and C represent three different lattice positions, and the intensity 
crystal field strength in the dodecahedral sites of YAG directly depends on the R3+-O2− cation–anion distances. As the ionic radius of 
R3+ increases, the corresponding cation–anion distances become smaller, and the crystal field strength is larger [52–55]. As shown in 
Fig. 3a and b, the substitution of Gd3+ for Y3+ results in red shift by increasing the crystal field splitting effect for the ionic radius of 
Gd3+ (0.1053 nm) is larger than that of Y3+ (0.1019 nm) [56,57]. Similarly, the substitution of Tb3+ with larger ionic radius (0.104 
nm) for Y3+ can play a similar role in tuning the emission spectrum of light [54,55]. The above way only substitute cations in 
single-site, and there are other way to substitute cations is double-site substitution. The existed research has demonstrated that when 
Mg2+–Si4+/Ge4+ as ion pairs substituting for Al(1)3+– Al(2)3+ are synchronously incorporated into the YAG:Ce host lattice, the 5d 
level is lowered, and the emission peak shifts to longer wavelength [50,58,59]. However, the sites of substitution are disputed, and 
there are another theory that the Y3+-Al3+ are substituted by M2+-Si4+ (M = Ba, Sr, Ca, Mg), and red-shift increases with the decrease 
of M2+ radius [60]. But one thing is certain, that is, the Ce3+–O2– bond length is decreased, resulting in redshift according to the 
following equation: 

Dq =
1
6

Ze2 r4

R5 (1)  

where Dq is a measure of the energy level separation, Z is the anion charge, e is the electron charge, r is the radius of the d wavelength, 
and R is the bond length [58]. Interestingly, interstitial defects caused by carbon atoms also can shorten the Ce3+–O2– bond length, 

Table 1 
Characteristics of three types wLEDs.  

Feature Blue LED + yellow phosphor UV-LED + RGB phosphor RGB LED 

CRI Moderate High High 
CCT High Low Low 
CCT uniformity Low High Low 
Structure Simple Simple Complicated 
Cost Low Low High 
Efficiency High Low High  
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leading to a larger crystal field splitting of 5d orbital of the Ce3+ atom and bigger 5d centroid shift [61]. 
Based on the energy transfer from Ce3+ to red light emitting activators, such as Mn2+ [45,62,63], Pr3+ [64],Cr3+ [65], etc., can also 

supplement the red component of the spectrum. Mn2+ is a common red-light emitting activator, the energy transfer process is briefly 
described with the example of Mn2+. As shown in Fig. 3c and d, the energy transfer process can achieve from Ce3+ to neighboring Mn2+

via non-radiation transition because the lowest 5 d1 energy level of Ce3+ is a little higher than the 4T1 of Mn2+. And then the 4T1 excited 
electrons transfer back to 6A1 ground state, which emits three bands at 528, 590, and 745 nm supplementing the red light, and the CCT 
of wLED can decrease from 4044 K to 3152 K [63]. 

In addition, phosphors with nitride as hosts are promising candidates for wLED [42,49,66]. These materials mainly are obtained by 
introducing N into the crystal structure of silicates or aluminosilicates, which can meet the needs of wLED for color conversion, because 
their coordination environment with strong rigidity, diverse structure and high covalency can reach strong absorption of blue light and 
long wavelength emission and high-quantum efficiency [49]. As reported, some phosphors belonging to nitridosilicate and nitri-
doaluminosilicate, such as Ca8–xMg7Si9N22:xCe3+ [42], (La,Ca)3Si6N11:Ce3+ [67], Ca4SiAl3N7:Ce3+ [49], Ba5Si11Al7N25: Eu2+ [66], 
can be effectively excited by the blue chip and emit a strong broadband yellow light. Ca4SiAl3N7:Ce3+ has more red light components 
than YAG:Ce3+ accounting for 64 %, and wLED based on it has a CRI of 89.6 and a CCT of 4068 K (Fig. 3e and f) [49]. Compared with 
the PL spectrum of YAG:Ce3+, the Li2SrSi2N4:Ce3+ spectrum shows a broader emission band due to the two sites in Li2SrSi2N4 for Ce3+

to occupy reflected in Fig. 3g and h [68]. Apart from excellent optical performances, the thermal stability of these phosphors can meet 
requirement of wLEDs due to the highly condensed three-dimensional network structure based on Si(Al)N4 tetrahedra and the stable 
chemical bonding between the atoms. Ba5Si11Al7N25: Eu2+ phosphor, as an example, can remain >90 % of the initial intensity at 83 K 
at 473 K and the quenching temperature is about 700 K [66]. But the harsh synthesis condition requiring high temperature and 
pressure, hinders its development progress. It is key to explore phosphors with nitride as hosts phosphors that can be synthesized at 
lower temperature and atmospheric pressure with high efficiency and stable emission. 

4.1.2. Red-emitting phosphors pumped by blue LED 
Adding red phosphor excited by blue light is a direct and effective way to supplement the red component of wLED light, which can 

also reduce CCT and improve CRI [2,71]. Therefore, the study of red phosphor for wLED has attracted extensive attention in recent 
years. Eu2+ and Mn4+ are the most commonly used red luminous centers. A comparison of some recently reported red-emitting 
phosphors is shown in Table 3. The first generation of red phosphors are Eu2+ activated sulfides represented by CaS and SrS [72]. 
Although they can make up for the deficiency of red light, these sulfide phosphors cannot be commercialized because they are hy-
groscopic and will produce toxic gases during the hydrolysis process. At present Eu2+ doped nitride phosphors are the most mature red 
materials with high quantum efficiency and high quenching temperature [73]. Compared with the traditional oxide matrix, the nitride 
matrix has a more excellent effect in rearranging electron cloud, which can split the 5d energy level, ultimately leading to a smaller 
4f-5d energy level difference to achieve a better match between phosphors and blue LED chips (Fig. 4a–c) [74]. However, the 
preparations of nitride phosphors are in harsh conditions, usually requiring high temperature >1700 ◦C and high pressure >0.9 MPa 
[75]. Mn4+, a transition metal ion, has been regarded as a promising red emission luminescence center, which is doped in oxides [76], 
fluorides [2,44,77] and oxyfluoride [46,47] matrix to obtain red phosphors showing good luminescence properties and playing an 
important role in improving the CRI of wLEDs. The ground state energy level of Mn4+ is 4A2. When it is excited, 4A2 transitions to 
excited states including 4T1 and 4T2, and then produces 2E→4A2 radiation transitions, which lead to red emission (Fig. 4d–f). Fluoride 
matrix with Mn4+ doping has the characteristics of mild synthesis conditions, low crystallization temperature, and strong absorption of 
blue light. And K2SiF6:Mn4+ and K2TiF6:Mn4+ as the typical example, have been commercialized [32,46]. However, toxic hydrofluoric 
acid is used in the preparation process, and the phosphor is unstable in high humidity environment. After water absorption, 
decomposition reaction will generate MnO2 covering phosphors and toxic HF gas as follows, which reduces the color stability of wLEDs 
and pollute the environment [44]. Some researchers focused on improving the water resistance of phosphors, including surface coating 
to isolate water [43,77], or optimizing the crystal field of matrix to improve the stability of Mn4+ [44]. As shown in Fig. 4g, a 
Mn4+-activated fluoride red phosphor, K2TiF6:Mn4+(KTF), moisture resistance of which became better after superhydrophobic surface 
modification with octadecyltrimethoxysilane, can maintain at 83.9 % or 84.3 % of luminous efficiency after being dispersed in water 
for 2 h or aged at high temperature (358 K) and high humidity (85 %) atmosphere (HTHH) for 240 h, respectively. The moisture 
resistance can also be optimized from the perspective of crystal field of matrix. For example, the moisture and thermal stability of 

Table 2 
Typical luminescent materials and its devices.  

Strategy Materials Emission/nm wLED performance Reference 

CCT/K CRI 

Adding red-emitting materials Cs2NbOF5:Mn4+ 631.5 3168 90 [46] 
Li3Na3Al2F12:Mn4+ 629 3874 90.6 [2] 
K2TiF6:Mn4+ 580–660 2736 87.3 [43] 
K3TaO2F4:Mn4+ 630 3488 90.0 [47] 
SrLiAl3N4:Eu2+ 650 2875 91.1 [48] 
CD 620 3827 92.7 [29] 

Optimizing yellow-emitting materials Ca4SiAl3N7:Ce3+ 568 4068 89.6 [49] 
Ce:Y2.99(MgxAl5-2xSix)O12 571 4384 81 [50] 
CaY2Al4SiO12:Ce3+,Mn2+ 543, 616, 750 5460 90.5 [45]  
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K2Ge0.6Ti0.4F6:Mn4+ under cation substitution can keep 71 % or 83 % of the original luminescence intensity after immersing in 
deionized water for 180 min or treated under 423 K, and a wLED with high CRI of 92.4, low CCT of 3113 K and high luminous ef-
ficiency of 123.1 lm/W can be obtained by encapsulating it with commercial yellow phosphors on blue chip [44]. In that work, the 
mechanism was explained that the moisture stability of phosphors are significantly enhanced under the synergistic effects of the two 
following reasons: the expanded unit cell caused elongation of Mn–F bond by substituting the Ge4+ (r = 0.53 Å) site with Ti4+(r = 0.60 
Å) promotes the dissociation of [MnF6]2− and then enhance the reaction between [MnF6]2− and H2O (Fig. 4h), meanwhile, the 
complex with inner orbital hybridization [TiF6]2‒ based on the six empty d2sp3 hybridization orbitals is more stable than that of the 
outer orbital hybridization [GeF6]2‒ based on the six empty sp3d2 hybridization orbitals. In recent years, developing novel green 

Fig. 3. a) Schematic energy diagram of Ce3+ in YAG, TAG, and GAG (Reprinted with permission from Ref. [69], copyright 2017, Royal Society of 
Chemistry), b) emission spectra of Ce:(Y,Gd)AG ceramics with different Gd3+ ions substitution (Reprinted with permission from Ref. [70], copyright 
2019, Elsevier), c) schematic illustration of the energy transfer process in YAG:Ce,Mn, d) PL spectra of YAG:Ce,Mn under 460 nm excitation 
(Reprinted with permission from Ref. [63], copyright 2020, Junrong Ling et al.), e,f) EL spectrum of Ca4SiAl3N7:Ce3+ based WLED(e) and YAG:Ce3+

based WLED(f) with 460 nm blue LED chip as excitation source (Reprinted with permission from Ref. [49], copyright 2023, Elsevier), g,h) the 
energy level diagram(g) and the Gaussian peaks fitting for PL spectrum(h) of Ce3+-doped Li2SrSi2N4 phosphor (Reprinted with permission from ref. 
[66], copyright 2018, Royal Society of Chemistry). (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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Table 3 
Typical red phosphors.  

Light Emitting Activators Host Materials Excitation 
/nm 

Emission 
/nm 

Reference 

Mn4+ Oxyfluoride Cs2NbOF5:Mn4+ 467 631.5 [46] 
K3TaO2F4:Mn4+ 360, 460 630 [47] 
LiAl4O6F:Mn4+ 150–550 662 [81] 

Fluoride Li3Na3Al2F12:Mn4+ 467 629 [2] 
K2TiF6:Mn4+ 462 580–660 [43] 
K2Si1–xF6:xMn4+ 450 630 [78] 
Na3GaF6:Mn4+ 467 626 [82] 
K2LiAlF6:Mn4+ 300–500 635 [83] 

Oxides CaAl2Si2O8:Mn4+, Mg2+ 330 652 [76] 
SrMgAl10-yGayO17:Mn4+ 340 661 [80] 
Sr4Al14− xGaxO25:Mn4+ 450 665 [84] 
Li2MgTiO4:Mn4+ 476 676 [85] 

Eu2+ Nitride SrLiAl3N4:Eu2+ 400–600 650 [48] 
CaAlSiN3:Eu2+ 460 550–800 [86] 
Sr2Si5N8:Eu2+ 421 616 [87] 

Sulfide (Sr,Zn)S:Eu2+ 400–500 606 [88] 
SrS:Eu2+ 430–500 609 [89]  

Fig. 4. a-c) The crystal structure(a), configurational coordinate diagram of the ground state of Eu2+ and the excited states of Eu2+(b), PL and PLE 
spectrum(c) of Ca5Si2Al2N8: Eu2+ (Reprinted with permission from Ref. [74], copyright 2016, Elsevier), d-f) crystal structure(d), Tanabe–Sugano 
diagram for the 3 d3 electron configuration of Mn4+(e), PLE and PL spectra(f) of CaAl2Si2O8:Mn4+, Mg2+ (Reprinted with permission from Ref. [76], 
copyright 2023, John Wiley and Sons), g) TEM images of KTF modified and images of a drop of water on the modified KTF phosphors (Reprinted 
with permission from Ref. [43], copyright 2018, American Chemical Society), h) crystal structure of K2Ge1-xTixF6:Mn4+ phosphors(Reprinted with 
permission from Ref. [44], copyright 2023, Elsevier). 
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synthetic routes for the highly efficient fluorides with Mn4+ doping red phosphors is also a hot spot, and the main method is to reduce 
the use of toxic HF by replacing it with low-toxic NH4F/HCl or H3PO4/KHF2 [32,78]. When the oxide exhibiting better chemical 
stability is used as matrix, the luminous color of Mn4+ is located in the deep red emission region, which does not match the sensitive 
range of human eyes. Besides, compared to fluoride phosphors, the absorption of blue light of is less effective, which can’t perfectly 
satisfy the application for blue-excited wLEDs [79,80]. Red phosphors based on oxyfluorides not only have higher chemical stability 
than fluoride phosphors, but also has stronger blue light absorption than oxide phosphors [46]. 

4.1.3. Other frontier luminescent materials for wLEDs 
In recent years, semiconductor quantum dots, metal halide perovskites, and luminescent carbon dots with high quantum efficiency, 

adjustable luminous color and high color saturation are also becoming substitutes for rare earth doped phosphors [30,31,41,90–96]. 
Semiconductor quantum dots are composed of core material enclosed within a shell of another semiconductor material with a diameter 
of 2–10 nm as shown in Fig. 5a and b [97]. The size of QDs reflects the properties like optical property, absorbance and photo-
luminescence in dependent manner. In addition, the PL emission wavelength of the ternary alloyed QDs can be tuned via adjusting the 
chemical composition. For example, by means of altering chemical composition, the AIS/ZnS QDs synthesized via a 
microwave-assisted aqueous method exhibited tunable emission ranging from 540 to 622 nm (Fig. 5c) and yellow AIS/ZnS quantum 
dots with high PL QY of 58.27 % were applied on commercial blue InGaN chips for wLED with a CRI of 75.6 and a CCT of 4393 K 
(Fig. 5d) [91]. 

Perovskite are organic–inorganic or all-inorganic materials with the form of ABX3, and their electronic and optoelectronic prop-
erties are tightly related to and thus can be tuned to be ideal materials for wLED by the size, shape, surface, structure and component 
[98–100]. For example, CsGeBr3 demonstrated the capability to emit white light under UV radiation and the device fabricated by 

Fig. 5. a) Schematic illustration for the synthesis of thick shell InP/ZnS/ZnS QDs, b) TEM image of InP/ZnS and InP/ZnS/ZnS QDs (Reprinted with 
permission from Ref. [97], copyright 2020, John Wiley and Sons) c) PL spectra (λex = 460 nm) of AIS/ZnS QDs, d) Emission spectrum of the LED 
based on AIS/ZnS QDs (Reprinted with permission from Ref. [91], copyright 2020, Elsevier). 
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CsGeBr3 combined with red-emitting MOF:Eu3+ phosphors can exhibit a commendable CRI of 92 and a CCT of 3020 K [96]. In another 
work, Zhang et al. develop the synthesis of heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots via a room temperature in situ 
transformation route [98]. The CsPbX3-PbS quantum dots show uniform size distribution as the TEM images shown in Fig. 6a and 
exhibit tunable dual emission feature with the visible and near-infrared photoluminescence (PL) as the PL spectra shown in Fig. 6b 
[98]. As one of rising stars in luminescent materials, the shortcomings of the traditional perovskites that limiting their practical ap-
plications, including the poor environmental, thermal, and optical stability, are being overcome gradually by controlling the 
composition between cations and halides or by replacing/doping cations at A- and B-sites with other metal cations, and so on [94]. 
Besides, more environmentally friendly lead-free halide perovskites make the practical application more likely [101]. 

The emerging carbon dots that can be easily prepared by green procedures have recently been demonstrated to be a superior color 
converter for realizing wLEDs excited by blue chips, which not only maintains the excellent luminescence performance of quantum 
dots, but also has the advantages of low toxicity, low cost and wide source of raw materials [102,103]. For instance, Shen et al. develop 
an in situ solvothermal process for synthesizing CDs using reaction mixture of urea, trisodium citrate and DMF, as shown in Fig. 7a 
[92]. The CDs show uniform distribution with an average particle diameter of 4.5 nm (Fig. 7b) and wLEDs devices with CCT of 4492 K 
can be achieved in the CDs based LEDs approaching to the coordinate (0.33, 0.33) of pure white light (Fig. 7c) [92]. In another work, a 
kind of CD powder with high PL QY of 65 % in the range of 500–620 nm was synthesized by a simple one-pot microwave heating 
method, and wLED with high luminous efficiencies (>90 lm⋅W− 1) were realized using the CDs [93]. However, considering the high 
cost and difficulty to largely produce of these frontier luminescent materials, rare earth doped phosphor is still the main material to 
achieve wLEDs. Therefore, producing high-quality luminescent materials on a large scale remains challenging [104]. 

Although adding red phosphors has a more obvious effect on reducing the value of CCT compared to optimizing the existing yellow 
luminescent materials, the uneven grain size and specific gravity of phosphors make inhomogeneous color and intensity distribution in 
the whole system, which also reduces the conversion efficiency of phosphors. As a result, among these Optimization Strategies of 
tuning the emission spectrum of phosphors, optimizing the luminescent center ion or the structure of host of YAG:Ce is the simplest 
because this kind of phosphor with good performance can be obtained only by using cheap oxides as raw materials for high tem-
perature calcination. While the high temperature and pressure environment required for the preparation of nitride phosphor requires 
higher performance of the equipment. Frontier luminescent materials with excellent performance, including semiconductor quantum 
dots, metal halide perovskites, and luminescent carbon dots, are prepared by colloidal and hydrothermal synthesis mainly, large-scale 
preparation of which is difficult and costly. 

4.2. Tuning the scattering processes of light 

In commercial wLEDs, the yellow-emitting phosphors were mixed with transparent encapsulating material and then dispersed in a 
cup reflector or directly coated on the LED chip surface. Due to the simplicity of preparation, the latter direct coating method can 
achieve mass production, but it suffers from propagation energy losses for the large difference of RI between semiconductor chips and 
encapsulating materials and it has been shown that nearly 60 % re-emitted yellow rays are backscattered to the LED chip, which 
seriously decreases the luminous flux [105]. In addition, this direct coating method results in poor quality in angular CCT and the 
unwanted phenomenon such as “yellow ring”. The scattering effect can strongly influence the optical path and weaken the CCT de-
viation in wLEDs. More importantly, it can increase the amount of received photons passing through layers of packages, which is 
crucial for the luminous efficiency of wLEDs [106]. There mainly are two methods to tuning the scattering of light, and adjusting 
structure of the wLEDs is an effective method to enhance the uniformity of CCT [27]. Besides, it has been discovered that scattering 
capability of nanoparticles not only enable better utilization of blue light which increased the luminous flux, but help to reduce 
angle-dependent CCT deviation in recent years [106–108]. 

Fig. 6. a) TEM images and b) PL spectra of the CsPbX3-PbS (Reprinted with permission from Ref. [98], copyright 2020, American Chemi-
cal Society). 
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4.2.1. Adjusting structure of the wLED 
The remote phosphor coating method, separating the LED chip from the phosphor layer, can improve luminous efficacy by reducing 

the phosphor layer backscattering light reabsorbed by the blue LED chip [27,109]. Kuo et al. use Monte Carlo method to simulate both 
of conventional remote phosphor and patterned remote phosphor structures as shown in Fig. 8 [105]. Most of large angle of blue rays 
and backscattering yellow rays exit the package via the window region, ensuring the intensity ratio of yellow to blue rays with good 
constancy as compared to the conventional remote structure in larger divergent angle as shown in Fig. 8a and it can also concluded 

Fig. 7. a) Proposed in situ formation process of fluorescent CDs phosphors, b) TEM image of the NCDs in aqueous solution c) the emission spectrum 
of blue chip and LED based on CDs (Reprinted with permission from Ref. [92], copyright 2018, Elsevier). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. a) The ray tracing simulation results, b) angular-dependent CCT(b) of two phosphor distribution structures (Reprinted with permission from 
Ref. [105], copyright 2011, Optical Society of America). 
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from the measurement data that the angular-dependent CCT of patterned remote phosphor structure was more uniform in larger angle 
distribution (Fig. 8b) [105]. For devices with textured sidewalls, the scattering probability of photons at the GaN/air interface is 
increased and the light extraction efficiency is enhanced since photons are allowed to find escape cones in the horizontal direction 
[110–112]. Compared with conventional LED without specific designs, LED with 45◦ sidewalls and a backside reflector can achieve 
significant improvement of 55.8 %, 49.3 %, 47.2 %, and 55.4 % in the light output power, luminous flux, external quantum efficiency, 
and wall-plug efficiency respectively [110]. Besides, LED with a hybrid structure incorporating a microhole array, 45◦ sidewalls, and 
an appropriate SiO2 nanoparticle/microsphere passivation layer, shows 50.6 %, 50.9 %, 48.4 %, and 49.9 % enhancements in light 
output power, luminous flux, luminous efficacy, and wall-plug efficiency. The passivation layer play an important role in reducing 
reverse-biased leakage current, leading to substantial enhancements in optical properties while LED without any degradation in 
electrical performance [112]. In general, adjusting structure of the wLED can achieve a higher luminous flux and more uniform CCT by 
the increased scattering probability and opportunity to find photons escape cones. 

4.2.2. Adding non-luminous nanoparticles to the encapsulant 
Adding a certain amount of non-luminous nanoparticles to the encapsulant also can improve CCT uniformity and luminous flux of 

wLEDs, such as ZrO2 [28,106,113], TiO2 [114], cellulose nanocrystals (CNC) [107], as summarized in Table 4, since the use of 
scattering additive in the encapsulant can significantly influence the optical path. As the angular-dependent emission intensity, 
CNC-embedded wLED structures can exhibit superior performance and produce high-quality white light at different viewing angles. It 
was found that adding 6 wt% of CNCs to wLED increases the luminous flux by around 33 %, reduces the CCT from 4220 to 3985 K, and 
reduces angular-dependent CCT variation from 270 to 224 K [107]. Besides, scattering additive with high refractive index (RI) can 
improve the light extraction efficiency of LEDs because it can bridge the gap of RI between the chips through encapsulant to the air as 
shown in Fig. 9a and b [113]. Fig. 9a shows schematic diagram of LED encapsulation and the light extraction models at the interface, 
which indicating that the value of refractive index is one of the most important parameter while evaluating the performance of the 
encapsulation material to make devices with high light extraction efficiency [113]. Our group have developed a kind of wLED 
exhibiting significant enhanced luminous flux (form 13.28 to 31.34) and decreased proportion of blue light(3.1 %–1.3 %), resulting in 
low correlated color temperature was obtain by introducing ultrasmall ZrO2 nanoparticles in commercial-grade silicone without any 
additional red phosphors (Fig. 9b) [28]. However, the commercial encapsulant are generally less compatible with nanoparticles 
leading to mass nanoparticles aggregate, which results in low transparency of light. Surface modification is an effective way to improve 
the dispersibility of particles [28,113,114]. As reported, the dispersibility of modified TiO2 particles was greater than that of the 
as-prepared TiO2 particles (1.6–2.5 times). Except that the luminous fluxes could be increased by 2.95%–11.79 % by adding TiO2 
particles in the encapsulant, which consistent with the above, the color uniformity will improve with the increasing dispersibility 
[114]. As a result, controlling the dispersion for nanoparticles in polymeric hosts to avoid the scattering of large aggregated particles 
and obtain optically transparent hybrid nanocomposites is crucial. Among these non-luminous nanoparticles, ZrO2 exhibits a 
remarkable light scattering ability with high refractive (n: 2.18 at 500 nm) and without any visible light absorption due to its large 
bandgap energy, improving the CCT uniformity and luminous flux of wLEDs [115]. 

5. Conclusion and outlook 

WLEDs has been widely used in daily lives and the property studies and preparation of the most commonly used phosphor YAG:Ce 
are nearly mature. Many scientists are devoted to exploring new materials or promoting the performance of existing luminescence 
materials to improve the performance of wLEDs toward energy-efficient, healthy and comfortable lighting. At present, a high CRI of 
more than 90 has been achieved by doping modification of YAG:Ce to make the original yellow phosphor emission wavelength 
redshift, and/or adding an appropriate amount of red phosphor into packaging materials. And the CCT uniformity and luminous flux 
are significantly improved by tuning the scattering of light, such as adjusting structure of the wLEDs, Adding a certain amount of non- 
luminous nanoparticles to the encapsulant. There are still the following points worth studying to optimize wLEDs: In view of tuning 
emission spectra, luminescent materials should be improved further, including a) improve the thermal stability of luminescent ma-
terials to ensure their stable performance in high power LED devices, b) enhance absorption of the material in the blue light region, that 
is, improve the light conversion efficiency of wLEDs pumped by blue chips, c) reduce the particle size of phosphors, which affect it’s 
deposition in the packaging materials, to improve the light uniformity, d) optimize the phosphor production process, reduce energy 
consumption, and reduce the use of toxic raw materials, e) develop green preparation methods, expand the production scale of frontier 
luminescent materials, and reduce costs. On the other hand, it is also necessary to make full use of non-luminous particles for better 
utilization of blue light to increase the luminous flux, reducing angle-dependent CCT deviation. To solve the problem of transparency 
reducing caused by nanoparticles aggregation, the dispersion for nanoparticles in polymeric hosts should be controlled to avoid the 
scattering of large aggregated particles and obtain optically transparent hybrid nanocomposites. 
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