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Human kallikrein-related peptidases (KLKs) are a subgroup of serine proteases that participate in proteolytic pathways and control
protein levels in normal physiology as well as in several pathological conditions. Their complex network of stimulatory and
inhibitory interactions may induce inflammatory and immune responses and contribute to the neoplastic phenotype through the
regulation of several cellular processes, such as proliferation, survival, migration, and invasion. This family of proteases, which
includes one of the most useful cancer biomarkers, kallikrein-related peptidase 3 or PSA, also has a protective effect against cancer
promoting apoptosis or counteracting angiogenesis and cell proliferation. Therefore, they represent attractive therapeutic targets
andmay have important applications in clinical oncology. Despite being intensively studied,many gaps in our knowledge on several
molecular aspects of KLK functions still exist.This review aims to summarize recent data on their involvement in different processes
related to health and disease, in particular those directly or indirectly linked to the neoplastic process.

1. Introduction

Human kallikrein-related peptidases (KLKs) are a subgroup
of serine proteases that have important roles in regulating
normal physiological functions, such as immune response,
skin desquamation, enamel formation, and semen liquefac-
tion, and the corresponding pathological conditions.There is
growing evidence in the literature supporting the view that
KLKs are also implicated in tumorigenesis by activating pro-
teolytic processes associated with the neoplastic phenotype.
The potential mechanisms involved include the modulation
of growth factor bioavailability and activation of hormone
and protease-activated receptors (PARs) resulting in prolif-
erative signaling pathways, the degradation of extracellular
matrix, cleavage of junction proteins and induction of an
epithelial-mesenchymal transition (EMT) phenotype leading
to increased tumor cell migration and invasion, and the
modulation of interactions between cancer cells and their

microenvironment promoting angiogenesis and other protu-
morigenic processes (reviewed by [1–3]).

The potential of KLKs as cancer markers has been
suggested for several members of this protease family [2, 4–
6], particularly for kallikrein-related peptidase 3 or prostate-
specific antigen (PSA) [7]. PSA is well accepted for assessing
recurrence risk in patients with prostate cancer, but its predic-
tive power for diagnosis has been questioned, since several
factors other than malignancy may be associated with its
high levels in serum, such as preanalytical variables, benign
diseases, and drugs [8, 9]. Biomarker panels combining PSA
and other promisingmarkers, includingmembers of the KLK
family, are expected to improve prostate cancer screening and
reduce unnecessary treatments, a strategy that may also be
used for detection andmonitoring of other malignancies and
nonmalignant diseases.

In this paper, we review the current knowledge about
the evolution and functions of human kallikrein-related
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peptidases, their substrates, and their role in health and
disease, particularly in the context of cancer.

2. The Human Degradome

Protein synthesis is essential for living, metabolically active
cells, but its counterpart, protein degradation, is no less
important. Proteolytic mechanisms driven by proteases
maintain appropriate protein levels and recognize and
degrade the misfolded or mislocalized ones. In addition
to acting in nonspecific catabolism, proteases are involved
in selective cleavages and activations, modulating protein-
protein interactions and contributing to cell signaling both
as catalytic units and as multicatalytic complexes. Due to
their broad-spectrum actions, proteases play critical roles in
regulating normal biological processes, including DNA repli-
cation and transcription, cell proliferation, differentiation,
and apoptosis. When altered, they may facilitate the devel-
opment of pathological conditions such as inflammatory and
degenerative disorders (reviewed by [10]). The importance of
these hydrolytic enzymes is reflected by the number of genes
already identified in several mammalian species, with more
than 500 in human and primates and even more in rodents
[11–14].

The complete set of human proteases—named the human
degradome—is distributed in aspartic-, threonine-, cysteine-,
serine-, and metalloprotease classes according to the chemi-
cal group involved in their catalytic activity [15, 16], and the
latter three are themost populated classes [10].Their substrate
cleavage patternsmay be specific for a single peptide, as in the
case of proteases involved in signaling pathways, or common
for a broad range of peptides, which is well exemplified
by digestive enzymes [17]. Otherwise, inactive proteases or
pseudoproteases bind to their cognate substrate without
cleaving them, thus exerting a regulatory function [18].

Detailed information on proteases in prokaryotes and
eukaryotes, protease families, pseudogenes, the sequences
derived from endogenous retroviruses, 3D structures, sub-
strates, and proteolytic events has been accumulated in differ-
ent databases such as MEROPS [19] and Degradome [20].

3. The Serine Protease Group

Approximately one-third of proteolytic enzymes are serine
proteases, usually endopeptidases. These enzymes use the
serine residue present in their active site as a nucleophile
to attack the peptide bond of the substrate [21]. In humans,
many serine proteases are involved in extra- and intracellular
processesmainly related to fooddigestion, blood coagulation,
and immunity (reviewed by [1, 22]). Although these processes
are essential for the purposes of catabolism or selective
cleavages required for cell signaling, serine protease activity
(as well as that of other proteases) is potentially devastating,
and several cellular mechanisms were selected to modulate
and keep them within limits. For example, they are stored as
inactive zymogens or inside granules and can access the sub-
strates only through controlled actions. In addition, serpins,
a superfamily of serine protease inhibitors, antagonize their

activities inmanymetabolic pathways, arresting the proteases
into an irreversible complex (reviewed by [1]).

Although tightly controlled, several serine proteases have
been associated with human diseases. For example, high
granzyme levels (granule-secreted enzymes found in cyto-
toxic T cells and natural killer cells) have been observed in
chronic inflammatory diseases such as rheumatoid arthritis
[23], asthma [24], diabetes [25], atherosclerosis [26], and
chronic obstructive pulmonary [27] and cardiovascular dis-
eases [28].They have also been implicated in susceptibility to
skin tearing and disorganized collagen as observed in chronic
wounds and aged/sun-damaged skin (reviewed by [29]). The
role of granzymes in these conditions resides in their ability to
cleave many substrates, inducing apoptosis through caspase-
dependent and caspase-independent pathways [30]. Their
potential to create or destroy autoimmune epitopes [31] and
be improperly regulated in chronic wounds or released non-
specifically from immune cell into extracellular spaces also
contributes to chronic inflammation or extracellular matrix
disorganization [27, 32].

Increased levels of neutrophil proteases such as elastase,
cathepsin G, and myeloblastin have also been correlated
with the severity of cystic fibrosis and chronic obstructive
pulmonary disease [33]. Similarly, tryptase and chymase, two
serine proteases stored in mast cell granules, take part in the
pathophysiology of asthma [34], psoriasis [35], atherothrom-
bosis [36], and fibrotic [37] and inflammatory kidney diseases
[38].

With respect to cancer, several serine proteases have been
linked to tumor development and progression by activating
proteolytic processes that are associated with the neoplastic
phenotype (reviewed by [1]). Specifically, a family of serine
proteases expressed and secreted in many tissues participates
in complex networks of cell signaling pathways that are
related to cancer [4–7]. One of the most useful cancer
biomarkers in clinical medicine is kallikrein-related pepti-
dase 3 or PSA, which is a member of this family (reviewed
by [7]), and there is evidence that other KLKs are also dereg-
ulated in cancer and other diseases [4, 39–147] as summarized
in Table 1.

4. The Human Kallikreins

Human kallikreins, initially detected at high levels in pan-
creas, kallikreas in Greek, include plasma and tissue serine
proteases, which are two categories that differ in molecular
weight, substrate specificity, and gene structure. The unique
plasma kallikrein (PKK) is a glycoprotein encoded by the
KLKB1 gene on chromosome region 4q35 and is predomi-
nantly synthesized in the liver as an inactive precursor. After
activation by the coagulation factor XII, PKK cleaves high
molecularweight kininogen to release bradykinin, amediator
of blood coagulation, inflammation, blood pressure, and
thrombosis risk [148].

4.1. Kallikrein-Related Peptidases at DNA Level: Genomic
Organization and Evolutionary Aspects. The 15 tissue kallik-
reins or kallikrein-related peptidases (KLKs) are encoded
by genes that are tightly clustered in an approximately
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Table 1: Kallikrein-related peptidases. Gene expression pattern, SNPs, and promoter methylation related to cancer and other diseases. CSF =
cerebrospinal fluid.

Disease Kallikrein Factor Observation Reference

Alzheimer’s disease
KLKs 6 (CSF), 10 Increased expression

[39–42]KLKs 6 (brain,
blood), 7 Decreased expression

Amelogenesis imperfecta KLK4 Mutation Disease-causing mutation [43–45]

Aneurism
KLK6 Decreased expression Suggestion of unfavorable

prognosis
[46, 47]

KLK8 SNP Suggestion of unfavorable
prognosis

Asthma KLK3 SNP [48]
Atopic dermatitis KLK5 Decreased expression [49, 50]

Bipolar disease KLK8 SNP Suggestion of unfavorable
prognosis [51]

Coronary artery disease KLK1 SNP Controversial prognosis [52, 53]
KLK1 Increased expression Predictor of disease

Kidney disease
Lupus nephritis KLK1 SNP Disease-associated SNP

Acute kidney injury KLK1 SNP Suggestion of unfavorable
prognosis [54–56]

Diabetic nephropathy KLK1 Increased expression Tubular inflammation
Multiple sclerosis KLK6 Increased expression Advanced disease [57–59]
Dementia with Lewy bodies KLK6 Decreased expression Suggestion of diagnostic marker [60]

Other neurodegenerative diseases KLKs 1, 5, 6, 7,
and 9 Increased expression Suggestion of disease-associated

marker [61–63]

Other skin diseases
KLKs

5–8, 10–13, and
15

Increased expression Suggestion of unfavorable
prognosis

[64–73]

Netherton syndrome KLK5 Increased expression Suggestion of unfavorable
prognosis

Psoriasis
KLK8 Increased expression Suggestion of unfavorable

prognosis [74, 75]
KLKs 6, 8, 10,

and 13 Increased expression Severity of skin lesions

Parkinson’s disease KLK6 Increased expression Disease-associated marker [76]

Sjogren disease KLK11 Increased expression Suggestion of disease-associated
marker [77]

Breast cancer

KLKs 2, 4 SNP Breast cancer risk

KLK3 SNP Association with less
aggressiveness

KLKs 5, 10, and
14 Increased expression Potential diagnostic biomarkers

KLKs 6, 12
variant 3, and 15 Increased expression Suggestion of favorable prognosis [4, 47, 78–83]

KLKs 3, 8, and
12 Decreased expression Suggestion of favorable prognosis

KLKs 5, 7 Increased expression Suggestion of unfavorable
prognosis

KLK10 Methylation Suggestion of favorable prognosis
Cervix cancer KLK7 Increased expression Controversial prognosis [84, 85]

Colorectal cancer KLKs 4, 6, 7, and
10 Increased expression Suggestion of unfavorable

prognosis [86–90]
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Table 1: Continued.

Disease Kallikrein Factor Observation Reference

Gastric cancer

KLKs 6, 7, and
10 Increased expression Suggestion of unfavorable

prognosis
KLK13 Increased expression Suggestion of favorable prognosis [90–95]

KLK11 Decreased expression Suggestion of unfavorable
prognosis

Head and neck cancer
KLK10 Methylation Suggestion of unfavorable

prognosis
[96–99]

KLKs 4–8, 10 Increased expression Suggestion of unfavorable
prognosis

Intracranial tumor KLKs 6–8 Increased expression Controversial prognosis [100, 101]

Lung cancer

KLK10 Methylation

[102–106]
KLKs 5–7 Increased expression Suggestion of unfavorable

prognosis
KLKs 11, 13, and

14 Increased expression Diagnostic marker

KLKs 8, 12 Decreased expression Suggestion of unfavorable
prognosis

Melanoma
KLKs 6, 8, and

13 Increased expression [107, 108]
KLK7 Increased expression Suggestion of favorable prognosis

Ovarian cancer

KLKs 4, 6 Increased expression Advanced stage
KLKs 8–10,
11, 13, and 14 Increased expression Suggestion of favorable prognosis

KLKs 5, 7 Increased expression Suggestion of unfavorable
prognosis

[47, 78, 109–
125]

KLK10, KLKP1 SNP

KLKs 3, 15 SNP Suggestion of unfavorable
prognosis

Pancreatic cancer KLK7 Increased expression Controversial prognosis [126]

Prostate cancer

KLK3 Increased expression Disease monitoring and
recurrent prediction

[47, 78, 127–
147]

KLKs 1, 2, 4, and
15 Increased expression

KLKP1 Decreased expression
KLK7 Increased expression Controversial prognosis

KLK11 Decreased expression Suggestion of unfavorable
prognosis

KLKs 2, 3, 4, and
10 SNP Suggestion of unfavorable

prognosis
KLK12 SNP Cancer predisposition

KLKs 4, 14, and
15 SNP Suggestion of unfavorable

prognosis

300 kb sequence of the 19q13.33–13.41 chromosome region,
all containing 5 coding exons with comparable lengths and
sequence homology [149, 150]. A pseudogene (KLKP1) has
also been assigned to this region [151], as well as multiple
repetitive elements such as ALU, Tigger2, MER8, and MSR1
[152].The large contiguous humanKLK gene cluster is limited
by theACPT (testicular acid phosphatase) gene and the Siglec
(sialic acid-binding immunoglobulin-like lectin) family of
genes at centromeric and telomeric positions, respectively,

and other less characterized genes (SNORD88C, C19orf48,
MGC45922, and CTU1) (Figure 1).

The colocation and sequence conservation in a wide vari-
ety of speciesmake this human tissue serine proteinase family
a very interesting target for evolutionary studies [153]. The
phylogenetic analysis of KLKs performed by the Maximum
Likelihood method [154], using the transcript isoforms of
15 KLK genes, the pseudogene-1 (KLKP1) sequence, and the
PRSS1 (trypsin 1) transcript sequence as an external group,
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Figure 1:KLK gene cluster and schematic representation of the humanKLK gene and protein structure. (a)KLK gene cluster on the 19q13.33–
13.41 chromosome region including the pseudogene KLKP1 and the transcriptional direction from centromere to telomere, except for KLK2
and KLK3, which have the opposite transcriptional direction. The classic KLK genes (KLKs 1–3) are turquoise, KLK4–KLK15 are medium
purple, and theΨ KLK1 processed pseudogene is silver; the arrowheads represent the neighboring genes: ACPT (testicular acid phosphatase)
and the Siglec (sialic acid-binding immunoglobulin-like lectin) gene family as well as other less characterized genes (SNORDs, C19orf48, and
CTU1). (b) The human KLK gene consists of 5 coding exons (orange boxes represent coding exons; silver boxes represent noncoding exons)
and their 4 intervening introns. The positions of the catalytic residues are highly conserved with the histidine (H), aspartic acid (D) 3, and
serine (S) codons on coding exons 2, 3, and 5, respectively.MostKLK genes demonstrate alternative splicing,which generates several transcript
variants. Alternative 3󸀠 splice sites or skipped exons (shown in green) result in short variants of KLKs 2, 3, 5, 8, and 12 genes. Alternative 5󸀠
splice sites or start sites (shown in blue) also generate short variants of KLKs 2, 3, 6, 7, 8, and 11 genes. Utilization of the alternative exon 6
generates a long transcript encoding a variant ofKLK12 gene (shown in blue). (c) KLK proteins are single-chain proteases that are synthesized
as preproenzymes and are proteolytically processed to pro-KLKs and secreted after removal of the terminal signal peptide (Pre). The KLK
sequence also includes a propeptide (Pro) that maintains the inactive state of the enzyme, as well as a serine protease domain.

reveals five major branches: (a) the classic KLKs (KLKs 1–3),
(b)KLKs 4, 5, 7, and 14 andKLKP1, (c)KLKs 9 and 11, (d)KLKs
8, 10, and 15, and (e) KLKs 12 and 13, and a separate branch
with KLK6. The tree (Figure 2) is similar in several aspects
to other phylogenetic analyses of this cluster [150, 153, 155–
157] but also includes the isoforms and reinforces the idea
that all KLK genes evolved from a single gene by successive
tandem duplications and genomic rearrangements facilitated
by repetitive elements.

The high similarity between KLK2 and KLK3 sequences
and the highest support value also suggest that they might
have formed by duplication later in evolution. The data
grouping KLK4/KLK5 and KLK9/KLK11 also corroborate

previous studies [153, 156]. The isolated position of KLK6 in
this phylogenetic tree, unlike the findings of other authors,
may explain the apparent distance of the remaining family
members in respect to normal and pathological functions.

4.2. Kallikrein-Related Peptidases at RNA Level: Transcrip-
tional Regulation Mechanisms. Kallikrein-related peptidase
expression is regulated at transcriptional, translational, and
posttranslational levels. At the transcriptional level, several
response elements (REs) have been identified in the KLK
promoters such as an estrogen-related receptor 𝛾 (ERR𝛾)
response element [158], a GATA bindingmotif inKLK1 [159],
and functional retinoic acid response elements (RAREs) in
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Figure 2: Phylogenetic relationships within the human tissue KLK gene family in humans. Phylogenetic analysis was performed using the
MEGA5 [205] and Maximum Likelihood methods based on the GTR model (General Time Reversible) [154] with Gamma distribution.
The bootstrap method was used (with 1000 data set replicates) to investigate node robustness [206]. The phylogenetic tree includes 15 KLK
transcripts, the pseudogene-1 (KLKP1) sequence, and the trypsin 1 gene sequence (PRSS1) [155, 156]. The sequences were obtained from the
NCBI Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/). Numbers indicate the percentage of 1000 bootstrap replicates
at each node in the consensus. Bootstrap value ≤95.

KLK10 [160]. Due to the importance of KLK3 expression in
prostate cancer, a number of REs have already been described
for its promoter, including Sp1/Sp3 [161] and WT1 transcrip-
tion factor-binding sites [162], a putative p53 RE [163], an
XBE (X-factor-binding element that binds specifically to the
NF-kappaB p65 subunit) in the AREc (androgen response
element enhancer core) [164], and androgen-responsive ele-
ments (AREs), the last of whichwere also present in theKLK2
promoter (reviewed by [127, 165]).

KLK gene expression can also be regulated by epigenetic
mechanisms, including histone modifications such as DNA
methylation as well asmicroRNAs (reviewed by [166]), which
can affect normal cell physiology and facilitate tumorigenesis
if altered. In fact, aberrant promoter methylation leading to

KLK10 downregulation has been described in acute lym-
phoblastic leukemia [167] as well as in breast [168], gastric
[91], and prostate cancer [169]. Similarly, abnormal histone
acetylation at KLK2 and KLK3 sequences and deregulated
expression of miRNAs targeting KLK genes have also been
reported in kidney, prostate, and breast cancer cell lines
(reviewed by [166]).

In addition to epigenetic events, polymorphisms in regu-
latory sequences can potentially alter RNA transcription rates
and protein levels, as was observed for the homozygous G
base substitution (rs266882) in the androgen response ele-
ment (ARE-1) of the KLK3 promoter [170] and for polymor-
phic alleles in the 5󸀠-flanking region of the KLK1 gene [171].
KLK gene activity is likewise affected by polymorphisms in
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Figure 3: Schematic representation of KLK functions related to physiological and pathological conditions. KLKs are involved in several
normal processes including blood pressure, coagulation, semen liquefaction, and skin desquamation and can also protect against cardiac
injury and ischemia. These proteases may also participate in skin inflammation, neurodegeneration, and autoimmune diseases.

the coding region or in the 3󸀠-UTR and downstream
sequences of the KLK1, KLK2, KLK3, and KLK7 genes
(reviewed by [47]).

According to the NCBI Reference Sequence Database
(accessed in November 20, 2014), with the exceptions of
KLK1, KLK4, KLK9, KLK13, and KLK14, human KLK genes
havemultiple isoforms.The alternative transcripts apparently
are species specific [155], and a number of them are cancer
specific (reviewed by [172]), which supports the idea that they
are constantly evolving.The diversity of these isoforms, espe-
cially those with no peptidase catalytic motifs, may indicate
a type of activity control, for example, by competing for the
same substrates or performing different tissue-specific func-
tions [155].

4.3. Kallikrein-Related Peptidases at Protein Level. The KLKs
are proteins of 230 amino acids and 28 to 33 kDa, although
some small isoforms reach only 3 kDa.Their standard tertiary
structure consists of two juxtaposed six-stranded antiparallel
𝛽-barrels and two 𝛼-helices with the active site between the
barrels [173, 174]. They are synthesized as preproenzymes,
which are proteolytically processed to pro-KLKs and secreted
after removal of the terminal signal peptide. Their ability
to release kinins was initially viewed as the definition of
a true kallikrein. However, besides plasma kallikrein, only
KLK1 has the ability to cleave kininogen (in this case, low
molecular weight kininogen) to release kinin. The tissue
kallikrein-kinin system can protect against cardiac injury
and ischemia/reperfusion-induced cardiomyocyte apoptosis
as well as against oxidative stress-induced renal cell apoptosis
via stimulation of kinin B2 receptor-Akt [175]. Otherwise,
this system appears to be involved in the development of
lupus nephritis by increasing local tissue damage triggered by
autoimmune inflammation [176] (Figure 3).

As mentioned above, KLK promoters have several hor-
mone response elements, and their expression can be reg-
ulated by steroid hormones [177]. Therefore, KLK levels in
different tissues are dependent not only on the presence
of specific transcriptional and translational regulators, but
also on proteolytic mechanisms, as previously referred to in
the degradome section. Shaw and Diamandis [178] detected
distinct expression profiles for several kallikrein-related pep-
tidases: KLK1 was highly expressed in the pancreas and
salivary gland, KLKs 2, 3 (also observed in seminal plasma),
and 11 were highly expressed in the prostate, KLK5 was
expressed in the skin, KLK6was expressed in the brain, KLK9
was expressed in the heart, and KLK12 was expressed in
several anatomical sites. KLKs 4, 8, 14, and 15 exhibited amore
homogeneous profile or were not detected in various tissues.
Komatsu et al. [179] analyzed the skin stratum corneum and
identified the presence of many KLKs (KLKs 5–8, 10, 11,
13, and 14). Generally, expression patterns are compatible
with their origins—duplicate genes have similar expression
patterns in the same tissues, and coexpression patterns are
compatible with their physiological functions [153].

5. Kallikrein-Related Peptidases and Their
Relationship to Health and Disease

5.1. Normal Physiological Processes and Nonmalignant Dis-
eases. Similar to what has been observed for other pro-
teases, several regulatory mechanisms protect tissues from
harmful proteolysis by KLKs. In addition to controlled
proenzyme activation and endogenous inhibitors (such as
𝛼
2
-macroglobulin and serpins), there are also inactivating

cleavages and allosteric regulation (reviewed by [165]). Regu-
latory steps may be performed by other proteases including
members of the KLK family, which are supported by their
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coexpression in the same tissue. For example, a KLK cascade
including KLK2, KLK14, and probably other KLKs activates
pro-KLK3 to generate the mature proteinase that directly
cleaves the semenogelins SgI and SgII resulting in seminal
clot liquefaction and spermatozoa release [180]. Recently,
Yoon et al. [181] observed that MMP-20, which is usually
expressed only in dental enamel, processes the prosequence
of nine different KLKs and may be a nonspecific activator of
the KLK family in pathological conditions.

Another proteolytic cascade has been described for the
skin desquamation process in which KLK5 may be autoacti-
vated or activated by KLK14 at neutral pH and then process
KLK7, regulating skin desquamation. This cascade may start
by KLK6 autoactivation following the cleavage of KLK11,
which in turn activates KLK14. Although not completely
understood, skin desquamation also depends on other pro-
teases, including cathepsins, aspartic proteases, urokinase,
plasmin, and the inflammatory metalloproteinases. Because
KLK regulation is critical for proper desquamation, various
endogenous inhibitors participate as attenuators of their
activities, mainly LEKTI (serine protease inhibitor Kazal-
type 5), a protein encoded by the SPINK5 gene. Other factors
such as an acidic environment and UV irradiation (and
resulting inflammation) may inhibit LEKTI, also contribut-
ing to increasedKLKexpression and enhanced desquamation
[64]. The lack of LEKTI expression in Netherton syndrome,
a rare genetic skin disease characterized by congenital
ichthyosis and severe allergic manifestations, indeed results
in increased proteolytic activities of KLK5 and KLK7, which
trigger an inflammatory process by activating protease-
activated receptor-2 (PAR-2) and stimulating cytokine pro-
duction [70] (Figure 3).

KLK deregulation is also observed in several other patho-
logical conditions, of which neurodegenerative disorders are
good examples (Figure 3). Alzheimer’s disease (AD) and
Parkinson’s disease (PD) are the most prevalent human neu-
rodegenerative disorders. Both are caused by the aggregation
of proteins: AD is characterized by extracellular deposits of
amyloid𝛽 (A𝛽) and intraneuronal aggregates of tau protein in
specific brain regions, andPD is characterized by intracellular
neuronal deposits (Lewy bodies and neurites) formed by
insoluble 𝛼-synuclein [182, 183].

There is convincing evidence from the literature on
Alzheimer’s disease that KLK6, themost abundant kallikrein-
related peptidase in the central nervous system, cleaves the
amyloid precursor protein (APP), a transmembrane glyco-
protein from which A𝛽 derives. The proteolytic activity of
KLK6 against APP and substrates in the extracellular matrix
and perineuronal net places this peptidase as a potential
component of AD pathogenesis. KLK6 expression is reduced
in brain tissues, aswell as in cerebrospinal fluid ofADpatients
[42, 184, 185], but the mechanisms behind these findings and
their functional consequences are not yet known. Actually,
other enzymes (𝛼-, 𝛽-, and 𝛾-secretases) cleave APP in
different sites and generate several fragments; some of them
are aggregation-prone [183]. KLKsmay, for example, promote
a bias toward synthesis of these toxic fragments by 𝛽- and 𝛾-
secretases.

Besides KLK6, the kallikrein-related peptidases 7 and 10
show decreased and increased levels, respectively, in cere-
brospinal fluid of AD patients [39]. Recently, Shropshire and
collaborators observed that KLK7 is able to cleave the core
of A𝛽 in vitro, inhibiting A𝛽 aggregation and reducing neu-
ronal toxicity [186]. This result may open new opportunities
towards treatments for AD.

Several studies on Parkinson’s disease have implicated
KLK6 in the degradation of intracellular 𝛼-synuclein [187].
Recent data suggested that secreted 𝛼-synuclein is also
involved in the development of PD by affecting neuronal cell
viability [188] and activating inflammatory response [189].
Although still controversial with respect to the intracellular
type, KLK6 inefficiency in 𝛼-synuclein degradation seems to
contribute to PD pathogenesis, probably due to an altered
trafficking of KLK6 [187, 190] or to the resistance of certain
forms of 𝛼-synuclein to KLK6-proteolysis [76, 191].

Multiple sclerosis (MS) is another example of neurode-
generative disorder in which KLK6 levels are altered. In MS
patients, KLK6 is abundantly expressed and cleaves myelin
proteins, resulting in demyelination and oligodendrogliopa-
thy [192].

Asmay be noted fromAD, PD, andMS data, KLK6 seems
to be important for the neuronal homeostasis and survival.
However, other kallikrein-related peptidases are probably
involved in these processes, as can be deduced from the data
on overexpression of KLK1 in epilepsy [193] and on the ability
of a set of KLKs (KLK1, KLKs 5–7, and KLK9) to promote
neural injury [62].

5.2. Malignant Diseases. As evidenced by the literature,
particularly in prostate cancer, KLKs participate in prote-
olytic pathways that contribute to the neoplastic process
(Figure 4). With respect to tumor growth, KLK1 facilitates
EGFR and ERK1/2 cascade activation, which is involved in
cell proliferation [194]. Similarly, KLK1, KLK2, and KLK3 can
regulate tumor growth through IGF-binding protein (IGFBP)
degradation, thereby allowing the release of the insulin-like
growth factors (IGFs) and proliferative signals. However, a
negative regulatory role for KLK3 in cancer has also been sug-
gested because this protease can activate latent transforming
growth factor-𝛽 (TGF𝛽), a known suppressor of growth and
promoter of apoptosis [2].

Recent data have demonstrated that kallikrein-related
peptidase 4 and its substrate, promyelocytic leukemia zinc
finger protein (PLZF), modulate androgen receptor (AR) and
mTOR signaling in prostate cells to regulate cell survival.
In fact, KLK4 negatively regulates PLZF, thus preventing
its binding and inhibition by AR, which keeps mTORC1
signaling active and ensures cell survival [195].

During neoplastic progression, different KLKs can reg-
ulate new vessel formation, which are essential to provide
oxygen and nutrients to proliferating cancerous cells. KLKs
1 and 4 stimulate angiogenesis by cleaving kininogen to kinin
or activating prometalloproteinases 2 and 9 to their active
forms, thereby potentiating extracellular matrix hydrolysis
and enabling endothelial cell migration and neovasculariza-
tion [196–198]. Other kallikrein-related peptidases (KLKs 2
and 4) can stimulate the urokinase plasminogen activator
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Figure 4: Kallikrein-related peptidases and cancer. KLKs participate in proteolytic pathways that contribute to the neoplastic process by
facilitating cell proliferation via growth factors and modulating cell survival through mTOR signaling. They can also regulate angiogenesis,
cell migration and invasion by angiogenic vascular endothelial growth factor (VEGF) secretion, metalloproteinase activation, extracellular
matrix (ECM) degradation, and epithelial-mesenchymal transition (EMT) induction. However, KLKs also have a protective effect against
cancer, promoting apoptosis or inhibiting angiogenesis and cell proliferation.

(uPA)/uPA receptor system, which also leads to metallopro-
teinase activation and extracellular matrix degradation [2].
KLK12 may then promote angiogenesis by the conversion
of the membrane-bound platelet-derived growth factor B
(PDGF-B) precursor into a soluble form that modulates
secretion of the angiogenic vascular endothelial growth factor
A (VEGF-A) [199]. Some KLKs, such as KLKs 3, 6, and 13,
have the opposite action by blocking VEGF and/or fibrob-
last growth factor 2 (FGF2) or generating angiostatin-like
fragments from plasminogen, which are potent inhibitors of
angiogenesis in vitro [2].

Tumors have an increased acidic microenvironment
resulting from accelerated glycolysis and lactate accumula-
tion and thus low pH in the extracellular space [200]. Because
an acidic environment may block the kallikrein inhibitor
LEKTI, contributing to increased KLK expression and loss
of cellular adhesion in skin desquamation, it is reasonable to
consider a similar mechanism during neoplastic dissemina-
tion [201]. In fact, the metastatic process is associated with a
transition from tightly connected cells to cells with increased
motility, namely, the epithelial-mesenchymal transition,
where KLKs play important roles. For example, KLKs activate
latent TGF𝛽, which induces EMT, and are associated with
the loss of E-cadherin in tumor cells and thus with decreased
cell-cell adhesion [202].They also trigger extracellularmatrix
degradation via prometalloprotease activation and hence
promote tissue invasion [2].

These examples demonstrate how important kallikrein-
related peptidases are in tumor development and progression.

The biological processes in which they participate are related
to diseases other than cancer but are directly connected
with cancer pathways, including cell proliferation, adhesion,
inflammation, and apoptosis.

6. Therapeutic Relevance of KLKs

As discussed in previous sections, KLKs have been associated
with different pathologic processes, from skin diseases to
neurodegenerative disorders and cancer. The progress in our
knowledge on all members of this protein family, functions,
3D structures, substrates, and physiological roles, has pro-
vided opportunities to develop new therapeutic approaches
for different disorders.

KLKs are targeted by several types of inhibitors, including
small-molecule inhibitors, antibody-, protein-, and peptide-
based inhibitors, KLK-activated prodrugs, interfering RNAs,
and immunotherapeutic vaccines (reviewed by [3]). PROST-
VAC, for example, is a prostate cancer vaccine consisting of a
KLK3 recombinant vector that contains transgenes for three
T-cell costimulatory molecules (TRICOM). This vaccine has
demonstrated success in inhibiting, with few side effects, cell
proliferation and tumor growth and in improving overall
survival [203].

Prodrugs activated by KLKs are another strategy that
has been investigated. For instance, KLK3-activated peptides
have the ability to target the prostate since most KLK3 is
expressed in the gland whereas circulating KLK3 is normally
inactivated in plasma by endogenous inhibitors [204]. This
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drug has overcome the challenge of specificity, although
similar successful results are not always achieved.The reasons
for that include the fact that the active sites of members of
KLK family are conserved, which hampers drug design. The
resolution of 3D structure of KLKs should help in this regard.
However, KLKs also have overlapping and even opposing
actions, which certainly depend on the physiologic, tissue,
and disease context [203].

7. Conclusions

The KLK network is impressive. Its intricate signaling
pathways and protein interactions strongly show that this
group of proteases contributes to normal and pathological
metabolisms. However, despite being intensively studied,
there are many gaps in our knowledge on the molecular
aspects of the KLK family. For example, there is no doubt that
KLK expression deregulation participates in the development
of neurodegenerative disorders. But what exactly is its role?
Would it be a primary and direct one, promoting erroneously
protein degradation, which results in pathogenic fragments?
Or would it be one that implies cooperating with specific
secretases and other enzymes to generate toxic deposits?

In cancer, it is not clear whether KLKs alterations are
driver mutations or deleterious passenger mutations. The
fact that similar sets of KLKs are associated with different
tumor types and facilitate proliferation, migration, and other
cancer hallmarks aligns with driver mutations. Differently,
antiproliferative effects ofKLKs and similar regulatory factors
for differentmembers of this familymay argue in favor of ran-
dom passenger mutations. However, both statements are not
mutually exclusive and may occur simultaneously or sequen-
tially. In fact, the idea of sequential occurrence is interesting:
considering the complexity of human proteolytic system, it
is reasonable to assume that the expression of specific KLKs
may counteract the under- or overexpression of other KLKs
or enzymes or even that those KLKs are activated, one after
the other, to neutralize the expression of a driver mutation,
but without success. The analysis of KLK panels in large
sets of samples from diverse stages of the disease, including
premalignant phases, will probably help to reveal how the
expression profile evolves during the course of the disease.

Many questions are still unanswered and the scenario
is therefore incomplete. Many more data are necessary to
improve our understanding on the function, substrates, and
role of KLKs in health and disease in order to distinguish in
each case whether they are heroes, villains, or supporting
actors.
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