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Background: Chromatin falls into one of two major subtypes: closed heterochromatin
and euchromatin which is accessible, transcriptionally active, and occupied by
transcription factors (TFs). The most widely used approach to interrogate differences in
the chromatin state landscape is the Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq). While library generation is relatively inexpensive, sequencing
depth requirements can make this assay cost-prohibitive for some laboratories.

Findings: Here, we benchmark data from Beijing Genomics Institute’s (BGI) DNBSEQ-
G400 low-cost sequencer against data from a standard Illumina instrument (HiSeqX10).
For comparisons, the same bulk ATAC-seq libraries generated from pluripotent stem cells
(PSCs) and fibroblasts were sequenced on both platforms. Both instruments generate
sequencing reads with comparable mapping rates and genomic context. However,
DNBSEQ-G400 data contained a significantly higher number of small, sub-
nucleosomal reads (>30% increase) and a reduced number of bi-nucleosomal reads
(>75% decrease), which resulted in narrower peak bases and improved peak calling,
enabling the identification of 4% more differentially accessible regions between PSCs and
fibroblasts. The ability to identify master TFs that underpin the PSC state relative to
fibroblasts (via HOMER, HINT-ATAC, TOBIAS), namely, foot-printing capacity, were highly
similar between data generated on both platforms. Integrative analysis with transcriptional
data equally enabled direct recovery of three published 3-factor combinations that have
been shown to induce pluripotency.

Conclusion:Other than a small increase in peak calling sensitivity for DNBSEQ-G400 data
(BGI), both platforms enable comparable levels of open chromatin identification for ATAC-
seq library sequencing, yielding similar analytical outcomes, albeit at low-data generation
costs in the case of the BGI instrument.
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INTRODUCTION

The Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq) is the most extensively used method to identify
accessible chromatin regions, on a genome-wide level. ATAC-seq
identifies accessible DNA regions by probing open chromatin with a
hyperactive Tn5 transposase, which inserts sequencing adapters into
open regions of the genome (Buenrostro et al., 2013; Corces et al.,
2017). However, transcription factors (TFs) bound to otherwise
nucleosome-free DNA prevent the enzyme from cleaving, leaving
small regions, referred to as TF footprints, where sequencing read
depth suddenly drops within regions of high coverage (Corces et al.,
2017). Accordingly, ATAC-seq data can identify regions of increased
accessibility and map bound TFs that can be inferred via motif
prediction (Heinz et al., 2010; Janky et al., 2014; Naval-Sánchez et al.,
2015; Li et al., 2019; Bentsen et al., 2020). Differentially accessible
regions between two cell states, therefore, provide information about
the TFs that underlie differences in cell identity. Complementary
RNA-seq data can confirmwhich of these TFs are expressed and give
information about gene regulatory networks under their control. In
addition, functional regulatory elements that underpin specific cell
states, namely, promoters, enhancers, and insulators, lie within
accessible chromatin and their identification is also key to
unraveling gene regulatory programs governing cell identity
across development and disease (Minnoye et al., 2021).

Following the technique’s initial development in 2013, an
improved version of the assay was established in 2017. The so-
called OMNI-ATAC-seq workflow (Corces et al., 2017) generates
chromatin state data with a high percentage of usable reads and
low levels of mitochondrial DNA contamination (<5% of reads
compared to ~50% for the original workflow). Unlike the
standard ATAC-seq protocol (Buenrostro et al., 2013), OMNI
ATAC-seq (Corces et al., 2017) has also substantially improved
signal-to-background ratio and the information content (~4-fold
more unique fragments mapping to peaks), critical advantages for
the identification of TF footprints.

To date, most ATAC-seq and OMNI-ATAC-seq analyses have
been performed almost exclusively using Illumina sequencing
platforms and it is unknown whether assay results are sequencer
dependent. The Beijing Genomics Institute (BGI) is offering
alternative sequencing solutions, namely, their proprietary
DNBSEQ platforms, that enable sequencing at drastically reduced
costs compared to Illumina platforms. The technology underlying
the BGI platforms combines DNA nanoball (DNB) nanoarrays with
polymerase-based stepwise sequencing (DNBseq) (Senabouth et al.,
2020). Here, we benchmark BGI’s DNBSEQ-G400 instrument
against Illumina’s HiSeqX10 platform for performance in the
sequencing of ATAC-seq libraries. Approximate costs for
generating 600–800 million reads (=300–400 million read pairs)
at 100 bp with the DNBSEQ-G400 instrument are $650 USD when
performed as a sequencing service at BGI. Conversion of Illumina
libraries into nanoball libraries is provided as a free-of-charge service.
Conversely, approximate costs for generating 600–800 million reads
(=300–400million read pairs) at 150 bp via Illumina’s HiSeqX10 are
$1600 USD. While BGI platforms have been evaluated to be
comparative in performance to Illumina platforms for sequencing
of RNA-seq libraries (Fehlmann et al., 2016; Zhu et al., 2018;

Natarajan et al., 2019; Senabouth et al., 2020) and whole-genome
DNA libraries (Mak et al., 2017; Kim et al., 2021; Zhu et al., 2021), to
date no study has compared Illumina and BGI platforms for their
ability to sequence ATAC-seq libraries and recover the accessible
cellular chromatin landscape.

For benchmarking, we used bulk OMNI-ATAC libraries from
mouse Embryonic Stem Cells (mESC) and Mouse Embryonic
Fibroblasts (MEFs), with their well-characterized molecular
differences. We compared sequencing quality metrics, a
number of regions identified as accessible per cell type,
differential peak calling, and importantly, the ability to identify
known master TFs driving PSC cell-type identity.

Our data show that BGI’s DNBSEQ-G400 instrument is a
good option to sequence ATAC-seq libraries with overall similar
outcome and accuracy (with a trend toward improved sensitivity
for BGI data relative to Illumina’s HiSeqX10 platform), albeit at a
lower cost.

RESULTS

To compare the capabilities of BGI’s DNBSEQ-G400 instrument
with Illumina’s HiSeqX10 platform to generate OMNI-ATAC-
seq data, we used six versus six sequencing libraries from MEFs
and mESCs as our case study (Figure 1A). We chose these two
cell identities for benchmarking because differences between
them have been well studied following Yamaka’s seminal
discovery of induced pluripotent stem cells (iPSC) (Takahashi
and Yamanaka, 2006), with most possible TFs that can enable
pluripotency induction and/or underpin the pluripotent state
relative to fibroblasts arguably now known.

To obtain cells of the highest purity as input for the OMNI-
ATAC-seq assay, we performed fluorescence-activated cell
sorting (FACS), to isolated THY1+ cells from fibroblast
cultures and THY1-/SSEA1+/EPCAM+ cells from mESC
cultures [cell surface marker profiles commonly used for their
purification (Nefzger et al., 2014; Firas et al., 2014)]. OMNI-
ATAC-seq libraries were generated for both cell types from three
biological replicate samples each (Figure 1A). Half of the DNA
from the resulting six sequencing libraries (3x MEFs, 3x mESCs)
were used for sequencing on Illumina’s HiSeqX10 instrument.
The remainder of the same six sequencing libraries were
converted to nanoball libraries to enable sequencing on BGI’s
DNBSEQ-G400 platform (Figure 1A). Accordingly, our study is
directly comparing sequencing outcomes for libraries stemming
from the same six OMNI-ATAC-seq reactions on different
platforms. For data generation, one lane yielding 600–800
million reads (300–400 million read pairs) was used for each
technology (Figure 1A).

Comparable Quality Metrics for Both
Platforms but Differences in Insert
Fragment Size
The total number of reads generated for the six libraries (for three
MEF and three mESC samples) ranged from 98 to 124 million
reads and from 91 to 164 million reads for the Illumina and BGI
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FIGURE 1 | Genomic context and insert size distribution of sequenced reads. (A) Schematic overview of experimental setup (e.g., Omni-ATACseq library
generation from three biological replicate samples for MEFs andmESCs each). (B) Enrichment of sequencing fragments at transcriptional start sites (TSS, ±1 Kb) for data
from both platforms (n = 3, biological replicates). The color scale indicates the number of reads mapping to each TSS across the genome. (C) Representative plots
depicting insert size distribution for data from the different sequencing platforms; a black line indicates the boundary between sub- and mono/poly-nucleosomal
reads with relative % values indicated above. (D)Quantification of percentage of bi-nucleosomal reads in Illumina versus BGI data for MEFs and mESCs (n = 3, biological
replicates, Student’s t-test, two-tailed, unpaired). (E)Quantification of the percentage of sub-nucleosomal reads in Illumina versus BGI data for MEFs and mESCs (n = 3,
biological replicates, Student’s t-test, two-tailed, unpaired). (F) Peak calling was performed (MACS2), followed by visualization of peak numbers (averaged across the
three biological replicates) with their associated p-values. (G) Genomic context of reads from each sample group (averaged across the three biological replicates). (H)
Unsupervised clustering of all samples based on Euclidean distance on the number of counts within open-regions (n = 3 biological replicates) minimal distance = 0, mean
distance = 315, and maximal distance = 540.
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sequencing platforms, respectively (Table 1; Supplementary
Table 1). Considering that the libraries were sequenced on the
DNBSEQ-G400 in paired-end 100 bpmode and on the HiSeqX10
in paired-end 150 bp mode, the HiSeqX10 data was down-
sampled to 100 bp for best comparison. Mapping and library
quality metrics, namely, the percentage of initially mapped reads,
percentage of PCR duplicates, and percentage of mitochondrial
DNA, resulted in highly similar numbers between both
sequencing platforms (Table 1; Supplementary Table 1).
Thus, the nanoball library conversion step required for
sequencing the Illumina libraries on the BGI instrument did
not considerably affect the proportion of PCR duplicates in the
data. The final number of usable reads with a quality score greater
than 10 (Q10), corresponding to a base call accuracy of 90%,
yielded 70 million reads on average for the MEF libraries for both
sequencing platforms (64–76 million) and of 57 million (47–65
million) and 52 million (49–56 million) reads on average for the
mESC libraries for the BGI and Illumina platform, respectively
(Table 1; Supplementary Table 1). To remove the potential
impact of sequencing depth on the comparative analyses,
however minor, we randomly down-sampled all datasets
(irrespective of sequencing platform) to 60 million reads for
MEFs and 45 million reads for mESCs before further processing.

ATAC-seq libraries capture accessible chromatin, which is
enriched for active regulatory regions, namely, promoters.
Therefore, Transcription Start Site (TSS) enrichment is used to
assess a signal-to-background ratio. All six libraries present a
clear and comparable overrepresentation of reads specific to TSS
regions (Figure 1B; Supplementary Table 1).

The insert size distribution shows the DNA fragment length
recovered through sequencing. Considering that Tn5
transposases bind to accessible DNA, this produces a
downward ladder profile with nucleosome-free/sub-
nucleosomal regions (<147 bp), followed by mono-
nucleosomal (180–247 bp) and di-nucleosomal regions
(315–473 bp) (Buenrostro et al., 2013). Comparative analysis
of insert size distributions between BGI and Illumina
sequencing platforms shows a larger insert size in Illumina
data. When plotting the insert size distribution of the
recovered sequencing fragments, an apparent increase in
shorter fragments and a decrease in the proportion of larger
fragments can be observed for BGI-derived data (Figure 1C).
Quantification of this insert size bias for biological replicates of
mESCs and MEFs showed that collectively Illumina-derived data

contains significantly more di-nucleosomal reads (on average 2.6-
fold higher proportion of bi-nucleosomal reads across both cell
types relative to BGI data) (Figure 1D; Supplementary Table 2).
Conversely BGI data recovered significantly more nucleosome-
free reads (on average 1.3-fold more sub-nucleosomal reads
relative to Illumina data) (Figure 1E; Supplementary
Table 2). This shows a fragment size bias of BGI-derived data
relative to the Illumina instrument.

To verify that truncation of the Illumina data from paired-end
150 bp–100 bp was not responsible for the observed insert size
bias, we also compared BGI-derived data at 100 bp paired-end
with the untruncated Illumina data at 150 bp paired-end. Our
results demonstrate that truncation of Illumina data had a
negligible effect on reads mapping quality (Supplementary
Table 1). Likewise, the insert size bias between Illumina and
BGI-derived data could be observed (Supplementary Figures
1A,B; Supplementary Table 2), demonstrating that truncation of
the Illumina reads did not affect key data metrics. Therefore, all
additional analyses in this study were performed with the down-
scaled Illumina data at 100 bp paired-end.

Identification of More Peaks in BGI-Derived
Data due to Narrower Peak Bases
To evaluate the impact of sequencing platforms on ATAC-seq
datasets, we performed peak calling for each sample. For both
mESCs and fibroblasts, BGI-derived data identified as many or
more peaks relative to Illumina-derived data (Figure 1F). As
expected for OMNI-ATAC-seq data >50% of all mapped reads
fell within TSS or distal peaks (Figure 1G) at virtually identical
levels for data derived from either platform (Figure 1G;
Supplementary Table 1). Mapping rates to the TSS were
comparable across 250 bp, 500 bp, and 1 kb windows
between Illumina and BGI-derived data (Figure 1G).
Unsupervised clustering of the data (based on a merged
peak set from all samples) showed cell-type-specific
clustering for mESCs and fibroblasts but did not reveal
subgroups based on sequencing technology, indicating an
overall highly similar data structure (Figure 1H). Indeed,
each of the 2 × 3 MEF and 2 × 3 mESC samples clustered
closest to their respective biological replicate, indicating that
the differences introduced by the two sequencing platforms
were more subtle than the differences between the biological
replicates themselves (Figure 1H).

TABLE 1 | Averaged mapping statistics and quality metrics from the analysis of MEF and mESC libraries sequenced on Illumina’s HiSeqX10 and BGI’s DNBSEQ-G400
instrument. Metrics include a percentage of starting reads that mapped against the mouse reference genome, the percentage of the starting reads with identical
sequence considered to be PCR duplicates, the percentage of starting reads that mapped uniquely against the reference genome, the percentage of sequencing reads that
mapped against the mitochondrial genome, and the percentage of reads that were usable, defined as uniquely mapped against genomic reference genome, deduplicated
and not falling in the mitochondrial genome.

Sequencing
platform

Cell type Initial number of reads % Mapped % Duplicates %Uniquely mapped %Mitochondrial reads % Usable reads

BGI MEFS 105,689,537 96.42 24.11 67.76 0.57 67.20
Illumina MEFS 108,340,454 96.90 26.92 65.93 0.53 65.40
BGI mESCS 129,503,922 97.28 45.09 46.60 0.95 45.65
Illumina mESCS 109,009,327 97.15 41.48 50.13 1.09 49.04
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By visual inspection, data sets from both platforms produced
highly similar peak landscapes as exemplified for the gene locus of
Actb (Figure 2A). Therefore, we computationally quantified high
confidence, reproducible peaks clearly above background levels in

each data set. To this end, we only retained peaks where a peak
was called in at least two of its three biological replicate samples
with a stringent quality cut-off of above three scores per million (a
normalized score value that corrects the original peak calling

FIGURE 2 |Comparison of peaks identified in data from both platforms. (A) Tracks from all samples at the locus of the Actb housekeeping gene. (B)Computational
workflow to identify high-confidence peaks across the samples of one experimental group (e.g., for three biological MEF replicate samples sequenced on the Illumina
platform). (C) Venn diagram for high-confidence peaks (across the biological replicates) identified in mESC data sequenced on Illumina and BGI platform. (D,E) Peak
scores of Illumina and BGI specific peaks relative to the scores of all peaks in the data set and relative to peaks shared by data sets. (F,G) Tracks of representative
Illumina and BGI specific peaks. (H) Genomic context of high-confidence mESC peaks (displayed for all peaks, peaks that are shared/overlap between both data sets,
and high-confidence peaks only identified in the Illumina or BGI data set).
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scores for sample sequencing depth and quality). This resulted in
a total of 55,071 and 58,813 peaks for MEFs and 60,956 and
62,270 peaks for mESCs for Illumina and BGI, respectively, and a
total of 61,981 and 67,063 peaks in MEFS and mESCS identified
by at least one sequencing platform (Figures 2B,C;
Supplementary Figure 2A).

Out of the high-confidence peaks identified for MEFs, 83.14%
overlapped between both platforms (Supplementary Figure 2A);
while 82.87% of peaks identified for mESC overlapped between
the BGI and Illumina data sets (Figure 2C). The number of peaks
only identified by the BGI sequencer resulted in 7,051 and 6,375
peaks for MEFs and mESCs and representing 11.39% and 9.51%
of total peaks. On the other hand, peaks only identified by the
Illumina sequencer numbered 3,384 and 5,116 peaks,
representing 5.47% and 7.63% of total peaks for MEFs and
mESC, respectively.

We investigated the original peak scores of the classified peaks
(all peaks, shared peaks, and BGI and Illumina-specific peaks as
per Figures 2B, C and Supplementary Figures 2B,C). Peaks
found in data from both platforms had on average a higher-peak
score compared to BGI and Illumina-specific peaks (Figures
2D–G; Supplementary Figures 2B–E). Conversely, BGI and
Illumina-specific peaks had lower average peak scores.
Importantly they tended to be called in data from both
sequencing platforms, but due to lower peak scores, they did
not make our stringent cut-offs for high confidence and
reproducibility across biological replicates for one of the
platform’s data (Figures 2D–G; Supplementary Figures
2B–E). BGI platform-specific peaks (unlike Illumina-specific
peaks) tended to occur at increased frequency in distal
elements (Figure 2H; Supplementary Figure 2F) at the
expense of exonic elements in relation to the element mapping
of all the peaks collectively detected in both data sets (Figure 2H;
Supplementary Figure 2F).

Cumulatively, we were able to recover 1,314 more high-
confidence peaks for MEFs and 3,742 more peaks for mESCs
in the case of the BGI data set. This is likely related to differences
in insert size distribution, with a higher percentage of small
fragments in BGI data (Figures 1C–E; Supplementary
Table 2), which we believe leads to slightly sharper peak
bases. In support of this, BGI-specific high-confidence peaks
on average had both increased peak height and narrower peak
bases relative to Illumina data (Supplementary Figure 3).
Conversely, Illumina-specific peaks only had higher peak
summits, while displaying broader peak bases compared to the
matching BGI data peaks (Supplementary Figure 3). To provide
direct evidence that differences in insert size affect peak calling
quality, we individually mapped sub-nucleosomal reads or a
matched number of bi-nucleosomal reads (mESC samples) to
the reference genome followed by peak calling. While the number
of peaks called for pure sub-nucleosomal reads or pure bi-
nucleosomal reads was comparable, on average peaks derived
from sub-nucleosomal reads had more significant p-values
(Supplementary Figure 4A) and a considerably sharper peak
shape (Supplementary Figure 4B). This supports the notion that
the use of data with a higher proportion of sub-nucleosomal reads
can be advantageous in a peak calling context.

Comparable Motif Enrichment and TF
Foot-Printing Performance for Data From
Both Platforms
In addition to the identification of regulatory elements through
open chromatin regions, another key use of ATAC-seq data is the
identification of TFs that underpin the differences between cell
states of interest (Neto et al., 2017; Dobreva et al., 2018; Alexandre
et al., 2021). Methods for this include motif enrichment analysis
[e.g., HOMER (Heinz et al., 2010)], operating on peaks that are
more accessible in the cell states of interest to infer over-
represented TF motifs. Computational pipelines have also been
devised recently to assess whether TF binding sites within open
chromatin regions are physically occupied in a site-specific
manner [e.g., HINT-ATAC (Li et al., 2019), TOBIAS (Bentsen
et al., 2020)]. As the fibroblast to pluripotent stem cell transition is
well characterized, with most if not all key TFs that underpin the
pluripotent state known, this is an ideal system for benchmarking
analyses. To identify motifs of TF with increased activity in
mESCs relative to fibroblasts, we determined peaks with
higher accessibility in mESCs relative to MEFS and used them
for motif enrichment analysis (HOMER, known motifs) using
peaks with higher accessibility in MEFs as background peak set
(Figures 3A,B).

The top 25 non-redundant TF motifs (ranked by false
discovery rate [FDR]; Supplementary Table 3) were integrated
with a transcriptional data set already present in the laboratory
for mESCs and MEFs (note: transcriptional data was sequenced
on an Illumina platform as our study’s focus is the comparison of
ATAC-seq data from different platforms). Key TFs that underpin
the mESC identity are expected to be both robustly expressed in
mESCs (>2 log2-transformed counts per million [log2CPM]) and
at higher levels than in MEFs. To visualize the expression levels of
each TF within the top 25 non-redundant motifs, their log2CPM
values in both cell types were graphed against each other (Figures
3C,D). For both Illumina or BGI derived data, the top five TFs
(re-ranked by expression differences between MEFs and mESCs)
were Pou5f1 (=Oct4), Sox2, Esrrb, Nr5a2, and Klf4, containing
three published 3-factor combinations (Pou5f1/Sox2/Klf4;
Pou5f1/Esrrb/Klf4; Nr5a2/Sox2/Klf4) that have been shown to
enable pluripotency induction (Nakagawa et al., 2008; Feng et al.,
2009; Heng et al., 2010). This indicates a comparable ability for
data from both platforms to directly recover known
reprogramming factors based on motif enrichment analysis.

In addition to predicting TF activity changes via motif
enrichment analysis, ATAC-seq data, especially in the case of
OMNI-ATAC-seq data, due to its low background levels, can also
be used to assess whether TFBS within open chromatin are
occupied by generating aggregate foot-print profiles across all
the binding sites of specific TFs of interest. Since TF occupied
sites are protected from Tn5 adapter insertion, occupied sites
display a local drop in Tn5 insertion events, which can be
visualized via aggregate profiles across all scanned TFBS
within open chromatin regions (e.g., after correction for Tn5
cleavage bias using a position dependency model as per the
HINT-ATAC pipeline (Li et al., 2019)). We assessed data from
both instruments for their ability to visualize aggregate
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FIGURE 3 | Motif enrichment analysis to recover TF that underpins the mESC identity. (A,B) Volcano plots for differentially accessible peaks between MEFs and
mESCs were identified for data from both platforms (n = 3 biological replicates). (C,D) The top 25 motifs identified by HOMER with higher enrichment in mESC specific
regions were integrated with transcriptional data for mESCs and MEFs (n = 3 biological replicates) to visualize expression differences of linked TFs across both cell types.
The top fivemotifs (re-ranked by expression differences) are indicated in red. Both data sets recovered the same five TF (indicated in red) containing three published
3-factor combinations previously demonstrated to enable pluripotency induction (Pou5f1, Sox2, Klf4; Pou5f1, Esrrb, Klf4, Nr5a2, Sox2, Klf4). (E–L) Aggregate TF
footprint profiles for CTCF, Pou5f1, Sox2, and Esrrb for both Illumina and BGI ATACseq data sets (profiles are based on the merged data of three biological replicates).
The number of TFBS used to generate each aggregate is indicated in the bottom left corner of each plot and is based on PMW scanned sites that intersect with a
sample’s open chromatin regions.
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FIGURE 4 | Foot-printing analysis with Hint-ATAC pipeline to recover TF that underpins the mESC identity. (A,B) TF activity changes quantified by Hint-ATAC
pipeline for mESC vs. MEFs, position of Pou5f1, Nanog, and Sox2 are indicated in red (analysis is based on the merged data of three biological replicates as HINT-ATAC
does not accept replicate data). (C,D) The top 40 motifs identified by Hint-ATAC with higher activity in mESC were integrated with transcriptional data for mESCs and
MEFs (n = 3 biological replicates) to visualize expression differences of linked TFs across both cell types. The top three motifs (re-ranked by expression differences)
are indicated in red. (E–L) Representative aggregate accessibility profiles of TFBS with evidence for occupancy in the cell types for CTCF, Pou5f1, Sox2, and Nanog
(profiles are based on the merged data of three biological replicates). The number of TFBS used to generate each aggregate is indicated in the bottom left corner of each
plot and is based on PMW scanned sites (with evidence for occupancy in one of the cell types) that intersect with a sample’s open chromatin regions.
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FIGURE 5 | Foot-printing analysis with TOBIAS pipeline to recover TF that underpins the mESC identity. (A,B) TF binding changes quantified by TOBIAS pipeline
are visualized in the form of volcano plots (analysis is based on themerged data of three biological replicates as TOBIAS does not accept replicate data). (C,D) The top 40
motifs identified by TOBIAS with higher binding activity in mESC were integrated with transcriptional data for mESCs and MEFs (n = 3 biological replicates) to visualize
expression differences of these TFs across both cell types. The top five to six motifs (re-ranked by expression differences) are indicated in red containing three
published 3-factor combinations previously demonstrated to enable pluripotency induction (Pou5f1, Sox2, Klf4; Pou5f1, Esrrb, Klf4; Nr5a2, Sox2, and Klf4). (E–L)
Representative aggregate accessibility profiles of TFBS with evidence for occupancy in one of the cell types for CTCF, Pou5f1, Sox2, and Nanog (profiles are based on
the merged data of three biological replicates). The number of TFBS used to generate each aggregate is indicated in the bottom left corner of each plot that intersect with
a sample’s open chromatin regions.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9003239

Naval-Sanchez et al. DNBSEQ-G400 Instrument Benchmarking for ATACseq

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


accessibility profiles across TFBS determined via position weight
matrix (PWM) scanning in the absence of filtering for occupied
sites via site-specific foot-printing (note: the HINT-ATAC
pipeline was used to correct for Tn5 cleavage bias for these
initial analyses). Aggregate profiles for ubiquitous TF CTCF
binding sites showed comparable profiles across both cell types
and platforms, while aggregate footprints for Pou5f1, Sox2, and
Esrrb showed, as expected, higher occupancy status in mESCs
relative to MEFs (Figures 3E–L). The only observable difference
between data from both platforms was that marginally more
TFBS intersected with accessible chromatin and were, therefore,
used for visualization for BGI data as more peaks could be called
for data from this platform (Figures 3E–L, e.g., 19540 vs. 20997
TFBS for Pou5f1 for Illumina and BGI data, respectively).

Pipelines like HINT-ATAC (Li et al., 2019) or TOBIAS
(Bentsen et al., 2020) can also be used to infer whether a
TFBS, at a specific genomic locus, is occupied or not based on
the absence or presence of local Tn5 insertion events. HINT-
ATAC determines global differences in TF activity between two
cell states by restricting analysis of aggregate footprinting to TFBS
with evidence for physical occupancy in one of the cell states (Li
et al., 2019). HINT-ATAC then quantifies differences in TF
activity based on differences in depth of aggregate footprints.
Conversely, the TOBIAS pipeline merely determines the
probability that specific sites are occupied or not and then
compares differential binding between biological conditions
(Bentsen et al., 2020). Using both pipelines, we quantified TF
activity/binding differences between mESCs and MEFs. This was
followed by transcriptional integration (as per Figures 3C,D) of
the top 40 non-redundant TF candidates with higher activity in
mESCs (Supplementary Tables 4, 5).

The top three TFs recovered by the HINT-ATAC pipeline (re-
ranked by expression differences between MEFs and mESCs) are
known reprogramming factors capable of inducing pluripotency
together (Pou5f1, Sox2, and Nanog (Yu et al., 2007), and these
factors were retrieved for data from both platforms (Figures
4A–D). As expected, aggregate profiles for TFBS, filtered for
binding sites with evidence for physical occupancy by HINT-
ATAC had lower background levels for data from both platforms
(i.e., Pou5f1 and Nanog TFs are not expressed in MEFs and as
such their TFBS should not be occupied) (Figures 4E–L).

In contrast to HINT-ATAC, transcriptional integration of the
top 40 TFs with higher binding activity in mESC determined by
TOBIAS (Supplementary Table 5; Figures 5A,B) retrieved
among the top six factors (re-ranked by expression differences
betweenMEFs andmESCs) Pou5f1, Sox2, Esrrb, Nr5a2, and Klf4.
These factors were also recovered by HOMER (Figures 3C,D)
and contained three published 3-factor combinations each shown
to induce pluripotency (Heng et al., 2010; Feng et al., 2009).
Pou5f1, Sox2, Esrrb, Nr5a2, and Klf4 were equally detected
through data from both platforms. In addition, BGI data
recovered Nanog, another known reprogramming factor (Yu
et al., 2007) among its top six candidates, indicative of a slight
increase in sensitivity when using this data type.

While the TOBIAS pipeline was better at recovering verified
reprogramming factors through its top 40 candidates (Figures
5C,D) compared to HINT-ATAC (Figures 4C,D), interestingly

HINT-ATAC produced sharper aggregate foot-printing profiles
(Figures 4E–L) compared to TOBIAS (Figures 5E–L).

Finally, we assessed how data generated by both sequencing
platforms performed at recovering ChiP-seq-verified TFBS from
published ENCODE data. Our assessment showed comparable
enrichment of TFBS for CTCF, Pou5f1, and Nanog (ChiP-seq-
verified in mESC) and CTCF (ChiP-seq-verified in MEFs) in
open chromatin, with a consistent trend for improved
performance in BGI derived data (Supplementary Figure 5).

Collectively, our analyses indicate that data from both
platforms can be used for TF foot-printing-based analyses at
overall comparable levels.

DISCUSSION

ATAC-seq-based chromatin state accessibility studies are widely
used for epigenetic characterization on a bulk and single-cell level
(Minnoye et al., 2021). Despite the importance of this assay, no
investigation has been conducted to compare the performance of
the highly economical BGI sequencing technology relative to the
generally employed Illumina technology for this critical library
type. Here we complement published knowledge about BGI
sequencing technology by showing that it cannot only generate
data for RNA-seq (Senabouth et al., 2020; Natarajan et al., 2019)
and whole-genome DNA libraries (Mak et al., 2017; Zhu et al.,
2021) but also for ATAC-seq libraries at levels comparable to an
Illumina platform. More specifically BGI’s DNBSEQ-G400
instrument enabled the generation of chromatin accessibility
data that could be used to identify master TFs that underpin
cell identity, with motif enrichment, TF aggregate and de novo
foot-printing capabilities equivalent to data from an Illumina
platform. The only noteworthy difference was that the same
libraries sequenced on either platform displayed differences in
insert fragment size distribution. This is in accordance with a
previous study comparing both technologies for whole-genome
sequencing performance (Mak et al., 2017), which also observed
that BGI instruments were biased toward recovering reads with
shorter insert sizes. We conjecture that either the nanoball library
conversion step or preferential clustering of nanoballs with
shorter inserts on DNBSEQ-G400 lanes results in a higher
proportion of shorter fragments being sequenced relative to
the Illumina instrument. Enrichment of DNBSEQ-G400-
derived data for sub-nucleosomal reads resulted in slightly
narrower peak bases, which enabled marginally better peak
calling and the identification of >4% more differentially
accessible peaks between MEFs and mESCs. While this
increase in peak calling sensitivity had no noticeable effect on
data interpretation, it is possible that the DNBSEQ-G400
platform might significantly outperform the Illumina
instrument in the case of under-tagmented ATAC-seq samples
where recovery of more sub-nucleosomal reads at the expense of
larger fragments could have a marked effect on data quality. It is
also conceivable that new techniques, such as CUT&Tag (Kaya-
Okur et al., 2019), increasingly performed instead of ChiP-Seq,
and also based on Tn5-mediated DNA fragment insertion, might
benefit from sequencing on the DNBSEQ-G400, in particular
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when targeting TFs where the recovery of short fragments is of
particular interest.

While not the main focus of our study, it is noteworthy that
integrative analysis of OMNI-ATACseq data (generated via both
platforms) with transcriptional data performed extremely well at
identifying master TFs that underpin the pluripotent cell identity
relative to the somatic state. The top non-redundant TF
candidates (re-ranked by expression differences between
mESCs and MEFS) put forward through both HOMER and
the TOBIAS pipeline contained each at least three published
three-factor combinations that can induce pluripotency (Heng
et al., 2010; Feng et al., 2009). Hence, the use of low-noise OMNI-
ATAC-seq data for quantification of global changes in TF activity,
in conjunction with basic RNA-seq data integration offers a
surprisingly effective and direct way to identify master
regulators known to drive the somatic to pluripotent cell state
transition compared to approaches using network-based analyses
(Jung et al., 2021; Kamaraj et al., 2016). Thus, we confirm that
chromatin state data is an excellent basis to recover
reprogramming factors (Hammelman et al., 2022) and in
addition demonstrate in this study that effective recovery
hinges on integration with RNAseq data. Another notable
observation was that aggregate foot-printing based on HINT-
ATAC produced clearer profiles relative to the TOBIAS pipeline,
indicating that HINT-ATAC’s PDMmight be better at correcting
for the Tn5 insertion bias. Since TOBIAS is basing its Tn5 insert
bias correction on background sequences, not part of the input
peak set, its performance might be improved by stringently
depleting small peaks from the background, which was not
done in this current study. Relative to HINT-ATAC, TOBIAS
was better at recovering known TFs that underpin the pluripotent
state, implying that its downstream quantification procedure for
differential TF binding might be more accurate. Future methods
based on correction of the Tn5 cleavage bias through a PDM (like
HINT-ATAC’s) followed by quantification of global TF binding
changes (like TOBIAS’ approach) might outperform current
pipelines.

Overall, our study concludes that DNBSEQ-G400 and
HiSeqX10-derived data enabled comparable levels of open
chromatin identification for the high-quality OMNI-ATACseq
libraries used in this current study, yielding similar analytical
outcomes, albeit at low sequencing costs in the case of the BGI
instrument.

MATERIALS AND METHODS

OMNI-ATACseq Library Preparation and
Sequencing
MEFs and mESCs (all C57/Bl6 background) were cultured as
previously described (Firas et al., 2014; Chen et al., 2018).
Experimental procedures were approved by the University of
Queensland Animal Ethics Committee and carried out in
accordance. Antibody labeling workflow and FACS isolation of
Thy1+ MEFs and Thy1-/Ssea1+/Epcam+ mESCs were also
detailed previously (Nefzger et al., 2015; Chy et al., 2017).
OMNI-ATACseq libraries were generated from FACS purified

cells according to the standard protocol (Corces et al., 2017).
Afterward, libraries were purified using a QIAGEN MinElute
PCR purification kit (QIAGEN, Cat#28004) followed by
Agencourt AMPure XP beads (Beckman Coulter, Cat#A63880)
according to the manufacturer’s recommendations. Library
fragments ranging from 150 to 700 bp were enriched and the
final elution volume was 21 ul. The finalized libraries were
provided to BGI for sequencing. HiSeqX10 sequencing was
performed in 150 bp PE mode followed by read trimming to
100 bp PE for analysis. In case of sequencing on the DNBSEQ-
G400 instrument, libraries were converted to nanoballs, as part of
BGI’s sequencings service, and sequenced according to
established workflows in 100 bp PE mode (Senabouth et al.,
2020).

ATAC-Seq Data Processing and Alignment
All sequencing data were analyzed using the GRCm38.p6/mm10
mouse reference genome. All genomic comparisons were
performed on the whole genome excluding chromosome Y.

ATAC-seq data processing and alignment were completed
using the Harvard pipeline (https://informatics.fas.harvard.edu/
atac-seq-guidelines.html). The GRCm38.p6/mm10 genome
primary assembly build used for alignment was obtained from
the ensemble database (http://asia/ensembl.org/Musc_musculus/
Info/Index; ftp://ftp.ensembl.org/pub/release-101/fasta/mus_
musculus/dna/Mus_musculus.GRCm38.dna.primary_assembly.
fa). All Illumina 150 bp fastq files were trimmed to 100 bp. Next,
all fastq files were trimmed to remove the Illumina Nextera
Transposase adapter sequence using Cutadapt v.2.4 with “-m
20” parameter (Martin, 2011). After trimming, FastQC v0.11.8
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
was used to check overall sequence quality and evaluate proper
adapter trimming. Bowtie2 (Langmead and Salzberg, 2012) was
used to align reads to the GRCm38.p6/mm10 mouse reference
genome using “-p 8, –very-sensitive” options. Picard tools (http://
broadinstitute.githyb.io/picard/) were used to mark and remove
duplicates using theMarkDuplicates tool with default options. All
subsequent analyses were performed on deduplicated reads.
Samtools (Li et al., 2009) was used to sort and obtain uniquely
mapped reads using “-b -q 10” options. Samtools were also used
to remove reads from the mitochondrial chromosome. Aligned,
deduplicated BAM files were down-sampled using picard tools
(http://broadinstitute.githyb.io/picard/) DownSamp with the
corresponding P parameter to obtain 60 million reads for
MEF samples and 45 million reads for mESC samples. Down-
sampled files were used for downstream analysis. For
visualization purposes, BAM files were converted to an index
binary format bigWig using bedtools (Quinlan, 2014).

Peak Calling
Peak calling was performed to ensure high-quality fixed-width
peaks in accordance with Corces et al. (2018). For each sample,
peak calling was performed using the MACS2 callpeak command
with the following parameters “-g mm –shift -100 –extsize
200 –nomodel –call-summits –nolambda –keep-dup all -p
0.01” (Zhang et al., 2008; Feng et al., 2012). Then, peak
summits were extended by 250 bp on both sides to a final
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width of 501 bp. Peaks were filtered for mm10 blacklisted regions
(Amemiya et al., 2019) (https://www.encodeproject.org/
annotations/ENCSR636HFF/).

Consensus matrices were created similarly to the approach
described in Corces et al. (2018) consisting of a two-step process.
Firstly, overlapping peaks within the same sample (as a result of
the 250 bp peak summit extension) were handled using an
iterative removal approach. In other words, in the case of
overlapping peaks within the same sample, only the most
significant peak was kept. This process was performed in an
iterative manner so that each peak within a sample was
considered individually to be kept or removed based on their
overlap and significance score. This process resulted in a set of
fixed-width peaks per sample.

The remaining significance peak scores “[−log10 (p-value)]”
per sample were converted to score per million values by dividing
each individual peak score by the sum of all of the peak scores in
the given sample divided by 1 million. This normalized score per
million value corrects the original peak calling scores for sample
sequencing depth and quality, as higher quality samples yield a
higher number of peaks and higher significance scores overall.
Thus, scores per million allow the direct comparison of peaks
across biological replicates required for the second step of the
process.

Secondly, to generate consensus matrices across conditions
MEFs, mESCs, and sequencing platform (BGI or Illumina), we
generated a cumulative peak set per cell type and sequencing
platform, and then for peaks overlapping across samples only the
one with the highest score per million was maintained. Only
peaks with a score per million value ≥3 observed in at least two
samples (minimal overlap 50%) were further considered. This
resulted in a set of fixed-with, reproducible, high-quality peaks
per cell type and sequencing platform for MEFs of 58,813, and
55,071 for BGI and Illumina sequencing platforms and for mESCs
of 62,270 and 60, 956 for BGI and Illumina sequencing platforms,
respectively.

In addition, we also generated a cell-type-specific consensus
peak set representing reproducible peaks from MEFs and mESCs
found in either sequencing platform (BGI and Illumina). For this,
we re-normalized the score per million scores for each cell type
and platform-specific consensus peak set to avoid over-
representation of peaks from cell types with higher depth or
quality. Then, the iterative peak overlapping and removal
approach was performed resulting in a final peak set of 61,891
for MEFs and 67,063 for mESCs. These peak sets were used to
determine the percentage of peak overlap between sequencing
platforms per mESCS (Figure 2) and MEFS (Supplementary
Figure 2).

Lastly, we also generated a sequencing platform peak set
representing reproducible peaks from both cell types (mESCs
and MEFs). This final consensus peak set contained 91,355 and
87,028 for the BGI and Illumina sequencing platforms,
respectively. Peaks per sequencing platform were used to
obtain differential accessible regions between cell types per
sequencing platform followed by motif discovery (Figure 3).

ATAC-SeqDataQC -Transcription Start Site
Enrichment, Fragment Length Distribution,
FROT, FRIP
The fraction of reads overlapping TSS (FROT) is a measure of
signal-to-noise ratio and therefore data quality in ATAC-seq data
sets (Gorkin et al., 2020). We calculated FROT for each library as
the number of reads that map within 1 KB of protein-coding gene
annotation of the mouse genome (GRCm38), version M25
(Ensembl 100), divided by the total number of usable reads. In
addition, to visualize the TSS enrichment per profile, we made use
of deeptools v 3.3.1 computeMatrix reference-point. Next, the
TSS enrichment profiles were subsequently plotted using
deeptools plotHeatmap (Ramírez et al., 2014).

The fragment length distribution was plotted using Picard
tools ColectInsertSizeMetics (http://broadinstitute.github.io/
picard/), where the insert size is the distance between the R1
and R2 read pairs, indicating the size of the DNA fragment the
read pairs came from.

The fraction of reads in peaks (FRIP) was calculated as the
number of reads mapping in called peaks byMACS2 narrow peak
and peaks with a score per million ≥3 per sample. Peaks were
considered “distal” if they did not overlap ±1,000 bp from
annotated TSSs. Proximal peaks were considered as that
overlapping ±1,000 bp from annotated TSSs. Reads not
overlapping distal or proximal peaks were classified as “not in
peaks.”

Overlap With Genomic Features
Genomic features, exonic, intronic, 5′ UTR, 3′UTR, promoter,
and distal, were derived from the mouse genome (GRCm38),
versionM25 (Ensembl 100). Promoter regions were considered as
those within ±1,000 bp from annotated TSSs. Overlap of reads
with genomic features was determined using bedtools intersect
and considered to overlap if 40% of the reads fell within a
genomic feature category (Quinlan, 2014).

Differential Peak Score Analysis
For the cell-type-specific peak sets combining peaks from both
sequencing platforms with 61,891 for MEFs and 67,063 for
mESCs peaks, we gathered their original peak score given per
sequencing platform through the intersection with the platform-
specific peaks for Figures 2C–H and Supplementary Figure 2.
This analysis was performed with reproducible peaks with a score
per million ≥3 score per million in each sequencing platform and
the original dataset containing ≥0 score per million. The score per
million values for different peak categories, all, shared and
platform specific, BGI and Illumina were visualized. This
resulted in 1,227 and 753 peaks for Illumina and BGI data,
respectively not being called due to reproducibility stringency.

Differential Accessibility Analysis
The number of reads falling within accessible regions was
calculated using the package subread (Liao et al., 2019). Next,
differentially accessibility between conditions was evaluated using
the R package DESeq2 (Love et al., 2014).
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Motif Enrichment Within Differential
Accessible Regions
HOMER v 4.11 (Heinz et al., 2010) (http://homer.ucsd.edu/
homer/) motif discovery algorithm (findMotfisGenome.pl) was
used to determine motif enrichment (known motifs) in
differential accessible regions between cell types. The analyses
were performed using input regions with significantly higher
accessibility in one cell type (p-value < 0.05) and as a background
set “--bg” the regions with significantly higher accessibility in the
second cell type (p-value < 0.05) were used.

Foot-Printing Analysis Using HINT-ATAC
To identify bound transcription factor binding sites per cell type and
sequencing platform, we used the HINT-ATAC (Hmm-based
identification of transcription factor footprints) pipeline as
described (Li et al., 2019) within the set of high-quality peaks per
cell type and sequencing platform, corresponding to 58,813, and
55,071 regions forMEFs per BGI and Illumina sequencing platforms
and 62,270 and 60, 956 formESCS per BGI and Illumina sequencing
platforms, respectively. Since HINT-ATAC does not allow the use of
replicates, data for the three biological MEF and the three biological
mESC replicates were merged for analysis. The pipeline performs a
Tn5 bias correction of the ATAC alignment file using their position
dependency model (PDM) with a k = 8. The program rgt-hint
footprint with the following parameters “--atac-seq and --paired-end
--organism = mm10” was performed to identify the genomic
locations of the footprints per sample. Next, we matched motifs
falling within predicted footprints using the command “rgt-
motifanalysis matching”--organism = mm10′ using an extensive
collection of 2177 PWMS (Vierstra et al., 2020) gathered from the
HOCOMOCO v11 CORE collection for human and mouse, Jaspar
2018 Vertebrate CORE collection and Taipale 2103 HT-SELEX
(Jolma et al., 2013). This collection was used in accordance with
the ENCODE3 TF foot-printing analysis in human tissues and cell
types. Finally, to assess differential activity between cell types, we
performed “rgt-hint differential”, resulting in a list of the most
differentially active TFs and aggregate foot-printing plots per TF
motif. Aggregate plots from ATAC-seq accessible regions in the
absence of foot-printing were also generated using “rgt-motifanalysis
matching” and “rgt-hint differential” commands for the panels
presented in Figures 3E–L.

Foot-Printing Analysis Using TOBIAS
In addition to HINT-ATAC, we used another method to predict
transcription factor binding at footprint resolution, TOBIAS
(Transcription factor Occupancy prediction By Investigation of
ATAC-seq signal) (Bentsen et al., 2020). Like HINT-ATAC,
TOBIAS does not allow the use of replicate data, hence we
merged the three biological MEF and the three biological mESC
replicates for this analysis. Next, the same set of high-quality peaks
per cell type and sequencing platform was used for analysis,
corresponding to 58,813, and 55,071 regions for MEFs per BGI
and Illumina sequencing platforms and 62,270 and 60, 956 for
mESCS per BGI and Illumina sequencing platforms, respectively.
The TOBIAS framework initially corrects Tn5 cut signal bias
through the tool ATACorrect. In brief, it generates a dinucleotide

weight matrix representing the preference of Tn5 insertion using
mapped reads from closed chromatin and a background model by
shifting reads +100 bp. Finally, reads within open chromatin peaks
are corrected by estimating the number of cuts per base pair and
subtracting that number from the observed cuts. Here peaks per
platform across cell types were merged and the foot-printing
correction was performed in both cell type signals in accordance
with the TOBIAS procedure. Next, we performed ScoreBigwigwhich
considers regions’ accessibility and corrected the Tn5 signal to
provide a foot-printing score per region. Finally, the differential
binding between conditions was assessed using the tool
BINDETECT where we used the same collection of 2,177 PWMS
that was used in conjunction with the HINT-ATAC pipeline.

Transcriptional Data
RNA-seq libraries were generated and sequenced as previously
described (Sun et al., 2021). Raw reads were demultiplexed and
trimmed and checked for quality using Sabre (https://github.
com/serine/sabre), Cutadapt (Martin, 2011), and FASTQC
software (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Processed data were aligned to the mouse reference
genome (mm10) using the STAR aligner (version 2.5.2b) (Dobin
et al., 2013) with the following parameters --outSAMunmapped
Within --outFliterMatchNminOverLread 0.3 --outSAMunmapped
Within --outFilterMatchNminOverLread 0.3
--outFilterScoreMinOverLread 0.3 --twopassMode Basic.

The sorted BAM files were used for UMI collapsing using the
function mark dupes within the Je software (version 1.2)
(Girardot et al., 2016) with the following parameters M = 1
READ_NAME_REGEX = null. The featurecounts function within
the Subread package (version2.0.1) was used to count uniquely
mapped reads to exons (Liao et al., 2019).
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Supplementary Figure S1 | Insert size distribution for untruncated HiSeqX10 PE
150 bp data relative to DNBSEQ-G400 100 bp data. (A,B) Quantification of
percentage of sub-nucleosomal reads in Illumina versus BGI data for (A) MEFs
and (B) mESCs (n = 3, biological replicates, Student’s t-test, two-tailed, unpaired).
(C,D) Quantification of the percentage of bi-nucleosomal reads in Illumina versus
BGI data for (C) MEFs and (D)mESCs (n = 3, biological replicates, Student’s t-test,
two-tailed, unpaired).

Supplementary Figure S2 | Comparison of peaks identified in MEF data. (A) Venn
diagram for high confidence peaks (across the biological replicates) identified in MEF
data sequenced on Illumina and BGI platform (based on three biological replicates).
(B,C) Peak scores of Illumina and BGI specific peaks relative to the scores of all
peaks in the data set and peaks shared by data sets. (D,E) Tracks of representative
Illumina and BGI specific peaks. (F) Averaged genomic context of high confidence
MEF peaks (for all peaks, peaks that are shared/overlap between both data sets,
and high peaks only identified in the Illumina or BGI data set).

Supplementary Figure S3 | Visualisation of peak sharpness for all, shared, BGI and
Illumina specific peaks. Each plot shows the aggregate accessibility profiles of
shared, BGI and Illumina specific peaks for each of the three biological replicates.

Supplementary Figure S4 | Peak calling with separately mapped
subnucleosomal and bi-nucleosomal reads. (A) Number of separately
mapped sub-nucleosomal and bi-nucleosal mESC reads used for peak
calling, number of called peaks and their average p-value (based on one
biological replicate). (B) Visualisation of representative peaks derived from
un-fractioned data, separately mapped sub-nucleosomal reads and
separately mapped bi-nucleosomal reads. Score per million (a normalized
score value that corrects the original peak calling scores for sample
sequencing depth and quality) is indicated on the right-hand side of each peak.

Supplementary Figure S5 | ENCODE ChiP-seq signal recovery. Visualisation of
signal recovery/enrichment of known TFBS for CTCF, Pou5f1 and Nanog (ChiP-seq
verified in mESC) and CTCF (ChiP-seq verified in MEFs) in open chromatin for each
of the three biological replicates.

Supplementary Table S1 | Mapping statistics.

Supplementary Table S2 | Insert size distribution.

Supplementary Table S3 | Top 25 non-redundant motifs identified via HOMER.

Supplementary Table S4 | Top 40 non-redundant motifs identified via Hint-ATAC.

Supplementary Table S5 | Top 40 non-redundant motifs identified via TOBIAS.
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