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Abstract: Tissue inhibitor of metalloproteinase 3 (TIMP3) is a protease with high expression levels
in the heart and plays an essential role in extracellular matrix turnover by maintaining equilibrium
with matrix metalloproteinases. Considerable data in experimental models have demonstrated a
protective role of TIMP3 in coronary artery disease (CAD) and myocardial infarction (MI). However,
causality remains unexplored in population studies. Here, we sought to decipher the potential
causality between TIMP3 and CAD/MI using the Mendelian randomization (MR) method. We
extracted summary−level datasets for TIMP3 and CAD/MI from the genome−wide association
studies performed in the KORA study and CARDIoGRAMplusC4D consortium, respectively. Seven
independent SNPs were obtained as instrumental variables for TIMP3. The MR analyses were
replicated using FinnGen datasets, and the main results were combined in meta−analyses. Elevated
genetically predicted serum TIMP3 levels were causally associated with a lower risk of CAD [odds
ratio (OR), 0.97; 95% confidence interval (CI), 0.95, 0.98; p = 5.29 × 10−5] and MI (OR, 0.96; 95% CI,
0.95, 0.98; p = 3.85 × 10−5). The association patterns persisted in the meta−analyses combining the
different datasets (CAD: OR, 0.97; 95% CI, 0.96, 0.99; p = 4.37 × 10−5; MI: OR, 0.97; 95% CI, 0.96, 0.99;
p = 9.96 × 10−5) and was broadly consistent across a set of complementary analyses. Evidence of
heterogeneity and horizontal pleiotropy was limited for all associations considered. In conclusion,
this MR study supports inverse causal associations between serum TIMP3 and the risk of CAD
and MI. Strategies for raising TIMP3 levels may offer new avenues for the prevention strategies of
atherosclerotic cardiovascular diseases.

Keywords: Mendelian randomization; causal association; TIMP3; coronary artery disease;
myocardial infarction

1. Introduction

Coronary artery disease (CAD) refers to a complex heart condition that often leads to
ischemic heart disease and myocardial infarction (MI). Globally, deaths caused by CAD
and MI have increased significantly in the past few decades, despite a set of risk factors
having been identified such as smoking, hypertension, and dyslipidemia [1,2]. Recognition
of the protective factors for CAD and MI may offer new avenues for better preventive and
treatment strategies.

Tissue inhibitors of metalloproteinases (TIMPs), consisting of TIMP1, TIMP2, TIMP3,
and TIMP4, are endogenous protein regulators of matrix metalloproteinases (MMPs) [3].
The MMPs/TIMPs balance plays a critical role in extracellular matrix (ECM) turnover
and tissue fibrosis. Among the four TIMPs, TIMP3 is unique due to its broader inhibitory
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spectrum against metalloproteinases and tight binding to ECM [4–6]. More importantly,
its involvement in cardiovascular diseases has been widely reported. TIMP3 was highly
expressed in heart tissue [7] but was remarkably downregulated in the animal MI models
as well as in human subjects with ischemic cardiomyopathy [8,9]. TIMP3−deficient mice
exhibited compromised cardiac function, maladaptive cardiac remodeling, and higher
mortality after MI by coronary ligation than wild−type controls [10,11]. Moreover, the
targeted overexpression of TIMP3 by adenovirus or injectable hydrogels attenuated infarct
expansion and improved cardiac function after MI in animal models [8,12]. However, it
remains unestablished whether these observations can be translated into prevention or
treatment strategies in clinical settings; few clinical studies have investigated the potential
effect of TIMP3 on CAD or MI. Data from large−scale randomized controlled trials (RCT)
may shed light on this issue but at a relatively high cost.

As one of the epidemiological methods, Mendelian randomization (MR) has flourished
in recent years. Its core idea is to use genetic variants that follow the Mendelian law of
heredity as proxies for the traits of interest [13,14]. Therefore, MR creates a similar scenario
to RCT where residual confounders and reverse causality are largely avoided and causal
association is determined [13,14]. A two−sample MR design relies on the genetic datasets
of two independent populations for exposure and outcome. To further our knowledge of
the potential protective effect of TIMP3 on atherosclerotic cardiovascular diseases (CVDs)
in the European population, we applied a two−sample MR approach with replication of
the main analysis using different datasets and a set of complementary methods.

2. Materials and Methods
2.1. Study Design

Single−nucleotide polymorphisms (SNPs) were selected as the instrumental variables
(IVs) for circulating TIMP3 from a genome−wide association study (GWAS) dataset [15].
Their associations with CAD and MI were made available in another GWAS meta-
analysis [16]. Three key assumptions of the two−sample MR design were fulfilled in
this study (Figure 1) [17]. This study followed the Strengthening the Reporting of Observa-
tional Studies in Epidemiology Using Mendelian Randomization (STROBE−MR) statement
(Table S1) [18].
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Figure 1. Schematic diagram of the present Mendelian randomization study. SNPs, single−nucleotide
polymorphisms; TIMP3, tissue inhibitors of matrix metalloproteinase 3; CAD, coronary artery
disease; MI, myocardial infarction; KORA, Cooperative Health Research in the Region of Augsburg;
CARDIoGRAMplusC4D, Coronary Artery Disease Genome−Wide Replication and Meta−Analysis
plus the Coronary Artery Disease Genetics; IVW, inverse−variance weighted; MR−PRESSO, MR
Pleiotropy Residual Sum and Outlier.
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All the datasets used in this study are publicly available. Ethical permits and written
informed consent were provided in their original studies.

2.2. Data Sources and IV Selection

We selected SNPs associated with TIMP3 from the Cooperative Health Research in the
Region of Augsburg (KORA) study that investigated blood samples from 997 individuals
of European ancestry (adjusted for age, gender, and body mass index) [15]. The associ-
ations of these SNPs with CAD and MI were available in a large GWAS meta−analysis
conducted by the Coronary Artery Disease Genome−Wide Replication and Meta−Analysis
plus the Coronary Artery Disease Genetics (CARDIoGRAMplusC4D) consortium. The
meta−analysis comprised 48 RCTs and population−based studies and included 184,305
individuals (CAD: 60,801 cases; MI: 43,676 cases), predominantly (77%) of European de-
scent (Table 1) [16]. CAD was diagnosed based on a broad standard that included MI, acute
coronary syndrome, chronic stable angina, and coronary stenosis >50% [16]. Additionally,
we replicated the analyses using the outcome datasets from the FinnGen consortium, which
consisted of 25,707 CAD cases and 15,787 MI cases (Table 1) [19]. Here, CAD was defined
by the International Classification of Diseases (ICD)−8, code 410 or 4110; ICD−9, code
410 or 4110; and ICD−10, code I20.0, I21, or I22. MI was diagnosed by ICD−8, code 410;
ICD−9, code 410; and ICD−10, code I21 or I22.

Table 1. Detailed information of studies and datasets used for analyses.

Data Source Phenotype Sample Size Cases Population Adjustment

KORA study TIMP3 997 / European Age, gender, and body mass
index

CARDIoGRAMplusC4D
CAD 184,305 60,801

77% European Not reported
MI 184,305 43,676

FinnGen
CAD 260,405 25,707

European Age, sex, and up to 20 genetic
principal componentsMI 238,338 15,787

KORA, Cooperative Health Research in the Region of Augsburg; CARDIoGRAMplusC4D, Coronary Artery
Disease Genome−Wide Replication and Meta−Analysis plus the Coronary Artery Disease Genetics; CAD,
coronary artery disease; MI, myocardial infarction.

In total, 41 SNPs associated with TIMP3 at a p level of <1 × 10−5 were provided in the
KORA study [15]. Here, valid IVs were selected under the following quality−control steps.
First, we set a genome−wide significance at p < 5 × 10−8, leaving 33 SNPs that satisfied
the first key assumption (relevance assumption). Then, we performed a clumping process
(r2, 0.1; clumping window, 10,000 kb) [20] with reference to the 1000 genomes European
panel [21] to avoid the influence of linkage disequilibrium. For the third key assumption
(exclusion restriction assumption), we performed the MR Steiger filtering test to identify
the SNPs suggestive of causality in the reverse direction [22] and remove these SNPs, if any
(Table S2). In addition, the phenotypes associated with these SNPs were searched across
PhenoScanner V2 [23]. Here, we found that none of these IVs were significantly associated
(p < 5 × 10−8) with potential confounders (i.e., risk factors for CAD/MI). Finally, as shown
in Table S3, 7 SNPs were chosen as the IVs for the subsequent MR analyses. All these SNPs
carried a minor allele frequency (MAF) higher than 0.01, suggesting minor statistical bias
from low confidence.

2.3. Statistical Analysis

As displayed in Figure 1, the inverse−variance weighting (IVW) approach in the
fixed−effect model was utilized as the primary statistical model where SNP−specific
Wald−ratio estimates were pooled [24]. This conventional MR approach provides convinc-
ing results when all the IVs are valid and do not exhibit pleiotropic effects (from IVs to
CAD/MI, bypassing TIMP3). Consequently, a set of complementary analyses were applied
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in scenarios with different states of pleiotropy, including the IVW in the random−effects
model [25], weighted median [26], MR−Egger [27], and MR Pleiotropy Residual Sum
and Outlier (MR−PRESSO) [28] methods. The IVW in the random−effects model can
yield more reliable estimates in the presence of high heterogeneity among SNPs [29]. The
weighted median method assumes that more than 50% of the weights are derived from
valid IVs [26]. The MR−Egger analysis can identify unbalanced, horizontal pleiotropy
through its intercept test [30]. Also, this approach allows causal estimates to be generated
after correction for pleiotropic effects, albeit with impaired statistical power [27]. We addi-
tionally used the MR−PRESSO method to identify pleiotropic outliers. This method returns
relatively unbiased estimates after excluding outlier SNPs if present [28]. Heterogeneity
among IVs was tested by calculating Cochran’s Q and I2 statistics in the IVW model. In
addition to the MR−Egger analysis, horizontal pleiotropy was further explored using the
MR−PRESSO global test [28] and Phenoscanner V2 (as mentioned above). Scatter plots
describing the causal effects of genetically predicted TIMP3 on CAD and MI were also
provided.

MR estimates across CARDIoGRAMplusC4D and FinnGen were combined using
meta−analyses in the fixed−effect model. Phenotypic variance in TIMP3 explained by
each IV (R2) was calculated using a commonly used formula: R2 = 2 × EAF × (1 − EAF) ×
betaˆ2/(2 × EAF × (1 − EAF) × betaˆ2) + 2 × EAF × (1 − EAF) × se × N × betaˆ2).
Here, EAF, beta, se, and N represent the effect allele frequency, effect size, standard er-
ror, and sample size, respectively [31,32]. Power calculations were performed with the
online tool mRnd based on the outcome sample size, proportion of cases, R2 sum, and a
type I error rate of 0.05 (Table S4) [33]. Given the multiple analyses, associations with a
Bonferroni−corrected p−value of <0.0125 were considered significant. The odds ratios
(ORs) of the associations were scaled to per log increase in genetically determined TIMP3
levels. All the MR analyses in this study were conducted in software R (version 4.1.0) [34]
with R packages including TwoSampleMR [35] and MR−PRESSO [28].

3. Results

The results for the MR Steiger filtering test are demonstrated in Table S2. All 7
TIMP3−associated genetic variants explained more variance in TIMP3 than in CAD or
MI, suggesting causality in the expected direction (Table S2). These SNPs collectively
explained 12.8% of the phenotype variance of TIMP3 (Table S3). No sample overlap was
found between the data sources for TIMP3 and CAD/MI (Table 1).

In the fixed−effect IVW model, the per log increase in the circulating TIMP3 levels
conferred a protective effect on CAD (OR, 0.97; 95% confidence interval (CI), 0.95, 0.98;
p = 5.29 × 10−5) and MI (OR, 0.96; 95% CI, 0.95, 0.98; p = 3.85 × 10−5) based on the
CARDIoGRAMplusC4D datasets (Figures 2 and 3). The estimates based on the FinnGen
datasets were each positive, albeit with a reduced magnitude and noticeably wider CIs
(Figures 2 and 3). The protective effects were supported by a meta−analysis combining
the CARDIoGRAMplusC4D and FinnGen datasets (CAD: OR, 0.97; 95% CI, 0.96, 0.99;
p = 4.37 × 10−5; MI: OR, 0.97; 95% CI, 0.96, 0.99; p = 9.96 × 10−5; Figures 2 and 3). The
robustness of the main results was reinforced by a series of complementary analyses of
the different assumptions, where causality was oriented in the same direction as the main
analysis (Table 2). Cautions were warranted here since several associations did not reach
the Bonferroni−corrected p−value of 0.0125 (Table 2).
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Figure 3. Scatter plot of the MR estimates for the association of serum TIMP3 levels with risk of
CAD and MI based on CARDIoGRAMplusC4D (A,B) and FinnGen (C,D). TIMP3, tissue inhibitors
of matrix metalloproteinase 3; CAD, coronary artery disease; MI, myocardial infarction; CARDIo-
GRAMplusC4D, Coronary Artery Disease Genome−Wide Replication and Meta−Analysis plus the
Coronary Artery Disease Genetics; MR−PRESSO, MR Pleiotropy Residual Sum and Outlier. Dots
refer to SNPs.

Cochran’s Q and I2 statistics demonstrated a low heterogeneity degree among the
SNPs for the TIMP3–CAD and TIMP3–MI associations (PCochran’s Q > 0.0125 and I2 < 25%;
Table 3). No substantial horizontal pleiotropy was detected for both outcomes, as sug-
gested by the MR−Egger intercept p and MR−PRESSO global test p (Pintercept > 0.0125;
Pglobal test > 0.0125; Table 3). In addition, we found no pleiotropic SNP to be corrected
with the MR−PRESSO outlier test. This study had over 80% power to detect an OR of
1.039 (or 0.961) for CAD and 1.043 (or 0.957) for MI based on the CARDIoGRAMplusC4D
consortium, and an OR of 1.052 (or 0.948) for CAD and 1.065 (or 0.935) for MI based on the
FinnGen consortium (Table S4).
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Table 2. Association of genetically predicted circulating TIMP3 levels with CAD and MI risk in
complementary analyses.

Data Source Outcome SNPs, n Method OR 95% CI p−Value

CARDIoGRAMplusC4D CAD

7 IVW (random−effects) 0.97 0.96, 0.97 7.26 × 10−38

7 Weighted median 0.97 0.95, 0.99 8.30 × 10−3

7 MR−Egger 0.97 0.94, 1.01 0.204

7 MR−PRESSO * 0.97 0.96, 0.97 1.36 × 10−5

CARDIoGRAMplusC4D MI

7 IVW (random−effects) 0.96 0.95, 0.97 4.49 × 10−13

7 Weighted median 0.96 0.94, 0.99 7.58 × 10−3

7 MR−Egger 0.97 0.93, 1.01 0.208

7 MR−PRESSO * 0.96 0.95, 0.97 3.53 × 10−4

FinnGen CAD

7 IVW (random−effects) 0.98 0.96, 1.01 0.226

7 Weighted median 0.97 0.94, 1.00 0.027

7 MR−Egger 0.96 0.91, 1.02 0.252

7 MR−PRESSO * 0.98 0.96, 1.01 0.272

FinnGen MI

7 IVW (random−effects) 0.99 0.96, 1.02 0.469

7 Weighted median 0.98 0.94, 1.01 0.166

7 MR−Egger 0.98 0.91, 1.04 0.503

7 MR−PRESSO * 0.99 0.96, 1.02 0.497

CARDIoGRAMplusC4D, Coronary Artery Disease Genome−Wide Replication and Meta−analysis plus the Coro-
nary Artery Disease Genetics; CAD, coronary artery disease; MI, myocardial infarction; SNPs, single−nucleotide
polymorphisms; IVW, inverse−variance weighted; MR−Egger, Mendelian randomization−Egger; MR−PRESSO,
MR−pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval. * No outliers detected.

Table 3. Evaluation of heterogeneity and directional pleiotropy using different methods.

Data Source Outcome
Heterogeneity Pleiotropy

I2 (%) Cochran’s Q p MR−Egger Intercept p MR−PRESSO Global Test p

CARDIoGRAMplusC4D
CAD 0 0.925 0.722 0.997

MI 0 0.997 0.761 0.946

FinnGen
CAD 18 0.315 0.432 0.319

MI 4 0.395 0.660 0.367

CARDIoGRAMplusC4D, Coronary Artery Disease Genome−Wide Replication and Meta−analysis plus the Coro-
nary Artery Disease Genetics; CAD, coronary artery disease; MI, myocardial infarction; MR−Egger, Mendelian
randomization−Egger; MR−PRESSO, MR−pleiotropy residual sum and outlier.

4. Discussion

In this study, we used the two−sample MR framework by applying public data
from different GWAS to decipher the causality between TIMP3 and the risk of CAD
and MI. We provided genetic evidence showing that increased circulating TIMP3 levels
lead to a lower risk of CAD and MI. The positive results remained broadly concordant
across a set of complementary analyses. No heterogeneity or horizontal pleiotropy was
detected. Although replication studies using clinical study designs are necessary, our
findings suggested that targeting higher levels of TIMP3 may have implications for better
primary preventive strategies for these conditions.

MMPs have been widely recognized as a regulator for the balance of ECM degenera-
tion and synthesis during wound healing post−MI [36]. It is not only a biomarker but also
a key driver in the development of MI and post−MI remodeling [36]. This has prompted
investigators to explore whether the inhibitors of MMPs (MMPi) can prevent atherosclerosis
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and MI and mitigate MI injury. For example, it was reported that RXP470.1 (a selective
MMP−12i) slowed atherosclerotic plaque development [37] in mice; rabbits randomized
to CP−471,474 (a broad−spectrum MMPi) exhibited attenuated ventricular remodeling
post−MI [38]; and TIMP3, an endogenous and broad−spectrum MMPi, allowed smaller
atherosclerotic plaques [39] and reduced infarct expansion after MI [8] in animal models.
However, clinical trials regarding the potential effects of MMPi on CAD or MI were limited.
Only one oral MMP inhibitor (PG−116800) was tested with RCT (PREMIER, Prevention
of Myocardial Infarction Early Remodeling), where 253 subjects with MI and heart failure
were enrolled and were randomly assigned PG−116800 or a placebo for three months [40].
The trial revealed that PG−116800 could not attenuate left ventricular dysfunction or
clinical outcomes [40]. This could be attributed to the insufficient dose or the fact that
this treatment strategy is inherently ineffective in humans after the onset of MI, despite
being effective in animal studies. On the other hand, it would be interesting to figure
out whether MMPi exerts a protective effect contributing to a lower risk of CAD and MI
through population studies. This MR analysis sought to illustrate this issue by utilizing
datasets from GWASs of the European population. The MR design and enlarged sample
size of the GWASs strengthened the causal inference. Here, our approach revealed a causal
association between TIMP3 and the risk of CAD and MI. Given that atherosclerosis is the
pathophysiological mechanism of CAD and MI, our results corroborate the findings from
the basic research showing a protective effect of TIMP3 on atherosclerosis [39,41]. These
findings enhance the basis for further studies to evaluate the clinical relevance of rising
TIMP3 levels for preventing CAD and MI.

The increased inflammatory level is one of the well−established players in the onset of
atherosclerosis and the development of atherosclerotic CVDs. It was reported that TIMP3
knockout led to the accumulation of macrophages in the aortic root, pro−inflammatory
macrophage polarization, and increased serum levels of inflammatory marker (MCP1) [42].
Mice with TIMP3 deficiency exhibited increased TNF−a activity in the myocardium before
and after MI by coronary ligation [11]. In addition to targeting inflammation, TIMP3
exerts its protective effect against atherosclerosis by regulating endothelial function and
extracellular matrix remodeling. Inhibition of multiple proteases, such as MMP 2/9 and
disintegrin metalloproteinase (ADAM) 10/17, have been implicated in the protection af-
forded by TIMP3 [43,44]. Treatment with broad−spectrum MMPi can primarily ameliorate
the cardiac injuries observed in animal models with TIMP3 deficiency [10,45].

The MR framework is one of the significant strengths of this study, which reduces
common biases in observational studies such as residual confounders and reverse causality.
Secondly, no heterogeneity or horizontal pleiotropy was found for all outcomes considered
using sensitive analyses including MR−Egger regression as well as the MR−PRESSO
global test. The MR Steiger test and Phenosacanner V2 were used with no pleiotropic SNPs
detected as well. Therefore, the risk of pleiotropic effects should be minimal in this study.
The meta−analyses that combined the MR estimates based on different datasets further
strengthened the causal inference.

However, limitations still exist and need consideration. First, the potential nonlinear
associations between TIMP3 and CAD/MI were not assessed since this study was based
on summary−level data. Second, the statistical power for the main analyses did not reach
a threshold of 80%. This could be due to the slight variance of TIMP3 explained by the
selected IVs. Therefore, cautions are warranted for the interpretation of the results. Third,
a low degree of heterogeneity existed in the meta−analyses of the main results, which
could be attributed to the different definitions of CAD and MI between the CARDIoGRAM-
plusC4D and FinnGen consortium. Moreover, population stratification may introduce
bias since the CardiogramplusC4D consortium included individuals of non−European
(approximately 23%) descent. In addition, there is limited generalizability of the results
to other populations. Finally, accumulating evidence from basic research suggested that
TIMP3 exerted a protective effect against cardiac injury post−MI [8,12,46]. However, this
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study cannot evaluate the prognostic impact of TIMP3 on MI due to the MR design. Future
longitudinal research may shed light on this issue.

5. Conclusions

This MR study found genetic evidence showing that higher serum TIMP3 levels can
lead to a lower tendency to suffer from CAD and MI. These findings suggest that prevention
strategies to replenish TIMP3 may provide a protective outcome in atherosclerotic CVDs.
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