
R E V I EW A R T I C L E

The role of endoplasmic reticulum stress in astrocytes

Savannah G. Sims1 | Rylee N. Cisney1 | Marissa M. Lipscomb1 |

Gordon P. Meares1,2,3

1Department of Microbiology, Immunology,

and Cell Biology, West Virginia University,

Morgantown, West Virginia, USA

2Department of Neuroscience, West Virginia

University, Morgantown, West Virginia, USA

3Rockefeller Neuroscience Institute,

Morgantown, West Virginia, USA

Correspondence

Gordon P. Meares, West Virginia University

School of Medicine, 64 Medical Center Drive,

HSC North 2084, Morgantown, WV 26506,

USA.

Email: gpmeares@hsc.wvu.edu

Funding information

National Institute of Neurological Disorders

and Stroke, Grant/Award Numbers:

1F31NS113482, 5R01NS099304

Abstract

Astrocytes are glial cells that support neurological function in the central nervous system

(CNS), in part, by providing structural support for neuronal synapses and blood vessels,

participating in electrical and chemical transmission, and providing trophic support via

soluble factors. Dysregulation of astrocyte function contributes to neurological decline in

CNS diseases. Neurological diseases are highly heterogeneous but share common fea-

tures of cellular stress including the accumulation of misfolded proteins. Endoplasmic

reticulum (ER) stress has been reported in nearly all neurological and neurodegenerative

diseases. ER stress occurs when there is an accumulation of misfolded proteins in the ER

lumen and the protein folding demand of the ER is overwhelmed. ER stress initiates the

unfolded protein response (UPR) to restore homeostasis by abating protein translation

and, if the cell is irreparably damaged, initiating apoptosis. Although protein aggregation

and misfolding in neurological disease has been well described, cell-specific contributions

of ER stress and the UPR in physiological and disease states are poorly understood.

Recent work has revealed a role for active UPR signaling that may drive astrocytes

toward a maladaptive phenotype in various model systems. In response to ER stress,

astrocytes produce inflammatory mediators, have reduced trophic support, and can

transmit ER stress to other cells. This review will discuss the current known contributions

and consequences of activated UPR signaling in astrocytes.
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1 | INTRODUCTION

1.1 | Endoplasmic reticulum stress and the
unfolded protein response

Secreted and membrane bound proteins are translated and processed in

the endoplasmic reticulum (ER). Within the ER, proteins mature by fold-

ing into the proper tertiary and quaternary structure and acquire neces-

sary post-translational modifications. The ER is also critical for

membrane lipid production and for the regulation of intracellular Ca2+

(Schwarz & Blower, 2016). Often, proteins within the ER fail to fold into

the correct form. Fortunately, the cell has intrinsic quality control mech-

anisms that eliminate misfolded proteins, such as chaperone-mediated

folding (Kim et al., 2013) and ER associated degradation (ERAD)

(Christianson & Ye, 2014; Hampton, 2002). However, when these con-

trol mechanisms are overwhelmed, misfolded proteins accumulate in

the ER lumen. The aberrant accumulation of misfolded proteins and

concomitant induction of ER stress has been observed in many diseases

and cell types (Oakes & Papa, 2015; Schröder & Kaufman, 2005). ER

stress occurs when a cell can no longer keep up with the demand to fold
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proteins due to the number of misfolded proteins in the ER lumen. ER

stress initiates a highly conserved adaptive mechanism called the

unfolded protein response (UPR). The intracellular signaling stimulated

by ER stress is aimed at restoring homeostasis; however, if the stress is

not alleviated, prolonged ER stress can drive cell death and inflammation

which may contribute to pathology (Oakes & Papa, 2015).

ER stress can occur transiently in physiological conditions when

there is an increased demand for protein secretion, or in pathogenic

states where ER stress occurs due to genetic mutations, oxidative

stress, ischemia, or other maladaptive cellular states. Physiological ER

stress has been best characterized in cells harboring high secretory

capacities such as pancreatic β cells and antibody-producing B cells

(Brozzi et al., 2016; Fonseca et al., 2011; Gao et al., 2012; Iwakoshi

et al., 2003; Lipson et al., 2008; Ma & Hendershot, 2004; Zhang

et al., 2005). Although UPR activation is necessary to maintain

homeostasis and clearly plays a role in homeostatic processes, tight

regulation of the UPR is paramount for maintaining cellular health.

Persistent activation of the UPR is reported in multiple diseases,

including diabetes, cancer, and neurodegeneration (Clarke et al., 2014;

Hetz & Mollereau, 2014; Scheuner & Kaufman, 2008).

There are three known proteins which sense the accumulation of

misfolded proteins and transmit distinct signals to the cytosol and

nucleus to modify transcriptional and translational programs to cope

with ER stress. These trans-ER membrane proteins are inositol requiring

enzyme 1 (IRE1), protein kinase R-like ER kinase (PERK) and activating

transcription factor (ATF) 6. These enzymes are maintained in their inac-

tive state through interaction with the ER-resident protein chaperone

glucose regulated protein (GRP) 78 (also known as binding immunoglob-

ulin protein [BiP]) (Bertolotti et al., 2000). GRP78 binds broadly to

hydrophobic residues that are exposed by misfolded proteins (Flynn

et al., 1991). Excess misfolded proteins recruit GRP78 away from the

luminal domains of PERK, IRE1, and ATF6 allowing activation (Bertolotti

et al., 2000; Shen et al., 2002). PERK and IRE1 can also directly interact

with misfolded proteins which contributes to its activation via a ligand-

receptor type interaction (Gardner & Walter, 2011; Karagöz et al., 2017;

Wang et al., 2016, 2018; Zhou et al., 2006). Figure 1 provides an over-

view of the UPR signal transducing molecules.

IRE1 is the most evolutionarily conserved UPR initiator and con-

tains both kinase and endoribonuclease domains. Following release of

GRP78, IRE1 oligomerizes in the ER membrane facilitating trans-

autophosphorylation of IRE1 which increases RNase activity (Lee

et al., 2008; Ron & Hubbard, 2008; Sidrauski & Walter, 1997). IRE1

then splices the mRNA of x-box-binding protein (XBP1) to remove a

small stop codon-containing intron which allows translation of the

functional transcription factor leading to expression of genes

encoding molecular chaperones and ERAD. Further, the activation of

IRE1 kinase can promote stress signaling pathways such as c-Jun

N-terminal kinase (JNK) and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) (Calfon et al., 2002; Urano

et al., 2000; Zha et al., 2015). Additionally, the RNase activity of IRE1

F IGURE 1 The canonical unfolded protein response (UPR) is activated by three trans-endoplasmic reticulum (ER) membrane sensors: IRE1,
PERK, and ATF6. Figure was created in Biorender
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mediates regulated IRE1-dependent decay (RIDD) in which a subset

of ER-targeted mRNAs are degraded (Hollien & Weissman, 2006;

Moore & Hollien, 2015). Collectively, IRE1 drives XBP-1-dependent

gene expression that includes ER chaperones and, through RNA deg-

radation, reduces nascent polypeptide entry into the ER to reduce the

folding demand (Hollien & Weissman, 2006; Lee et al., 2003).

PERK is a trans-ER membrane serine/threonine kinase which is acti-

vated by misfolded proteins in the ER lumen. Following release of

GRP78, PERK dimerizes and trans- and auto-phosphorylates to increase

its kinase activity (Bertolotti et al., 2000; Harding et al., 1999). PERK

phosphorylates the eukaryotic initiation factor (eIF) 2α which leads to

binding and inhibition of the guanine nucleotide exchange factor (GEF)

eIF2B. This prevents formation of the complex needed to load the 43S

ribosome with methionine, thus preventing translation initiation

(Harding et al., 1999; Jackson et al., 2010). Under these conditions,

some proteins are selectively translated. For example, activating tran-

scription factor (ATF) 4 is translated when eIF2α is phosphorylated.

ATF4 translation can lead to expression of CHOP (encoded by the gene

ddit3). In many cases, CHOP acts as a proapoptotic factor. Overall,

PERK activation reduces the protein load on the ER, and if mechanisms

fail to restore homeostasis, initiate cell death.

ATF6 is a transmembrane glycoprotein that is a member of the

basic leucine-zipper proteins (bZIP) transcription factor family. Upon the

accumulation of misfolded proteins and disassociation of GRP78, ATF6

localizes to the Golgi apparatus where is cleaved by site-1 and site-2

proteases (Ye et al., 2000), revealing a nuclear localization sequence.

Subsequently, ATF6 translocates to the nucleus and binds promoter

sequences to increase gene expression of ER protein chaperones and

UPR regulators to increase folding capacity of the ER (Haze et al., 1999).

Overall, IRE1, PERK, and ATF6 are activated in response to the

accumulation of misfolded proteins within the ER lumen to promote

efficient protein folding through the upregulation of protein chaper-

ones and by reducing the folding burden on the ER by eliminating

influx of mRNA and polypeptides. If these mechanisms are insuffi-

cient, persistent UPR activation will promote apoptosis to eliminate

the irreparably damaged cell.

1.2 | UPR and astrocytes

The UPR is activated transiently to restore homeostasis, however, chronic

UPR activation has been implicated in central nervous system (CNS) dis-

eases including, but not limited to, Alzheimer's disease (AD), multiple scle-

rosis (MS), traumatic brain injury (TBI), stroke, prion disease, Parkinson's

disease (PD), and Huntington's disease (HD) (Alberdi et al., 2013; Bell

et al., 2016; Chen et al., 2016; Clayton & Popko, 2016; Duran-Aniotz

et al., 2017; Halliday et al., 2017; Halliday & Mallucci, 2014; Hoozemans

et al., 2012; Leitman et al., 2013; Ma et al., 2013; Moreno et al., 2012,

2013; Smith et al., 2020; Sun et al., 2015; Torres et al., 2010). Many of

these CNS disorders include components of misfolded or aggregated pro-

teins. However, the UPR has been primarily studied in neurons and oligo-

dendrocytes (recently reviewed in [Clayton & Popko, 2016; Lin &

Stone, 2020; Martinez et al., 2018]).

Astrocytes comprise a large portion of the CNS and are vital for

proper neuronal survival and function (Aoki et al., 2001; Brenner

et al., 2001). Historically, astrocytes were considered a homogenous

population that primarily played a role in structural support to the

CNS, however, technical advances and meticulous experimentation

have shown that astrocytes are a heterogeneous and dynamic popula-

tion of CNS-resident cells, playing important roles in both homeosta-

sis and disease (Batiuk et al., 2020; Clarke et al., 2021; Khakh &

Deneen, 2019). For example, astrocytes support synapse formation

and function through both physical interactions and secreted mole-

cules (Clarke & Barres, 2013). Astrocytes play a role in synaptic prun-

ing during development, which is essential for proper neural

development (Stevens et al., 2007). Astrocytes also support synaptic

function by regulating ion homeostasis (Ca2+, Cl�, K+), water trans-

port, and neurotransmitter reuptake and recycling (Sofroniew &

Vinters, 2010; Verkhratsky & Nedergaard, 2018).

In addition to their supportive role, astrocytes respond to insult

and injury, can promote neurotoxicity, and direct CNS inflammation

by promoting microglial activation and leukocyte trafficking. Inflam-

mation, particularly proinflammatory cytokines such as interleukin

(IL)-6, IL-1, tumor necrosis factor (TNF)-α, and the complement sys-

tem, play an important role in neurological diseases and are associated

with worsened neurological outcomes (Becher et al., 2017; Glass

et al., 2010; Han et al., 2021; Heneka et al., 2014; Skaper et al., 2018).

Astrocytes are key directors of inflammation within the CNS. It is well

established that astrocytes undergo transcriptional and phenotypical

changes in response to injury, called astrogliosis (Sofroniew &

Vinters, 2010). During astrogliosis, astrocytes are more proliferative,

glial fibrillary acidic protein (GFAP) expression increases, signaling

molecules and cytokines are upregulated, the extracellular matrix

remodels, and changes in ability of astrocytes to properly regulate

synapses and the blood brain barrier (BBB) occur. Reactive astrocytes

can have differential roles depending on the injury or disease. For

example, reactive astrocytes worsen AD, but during ischemia or spinal

cord injury, reactive astrocytes promote overall neural recovery (Bao

et al., 2012; Choudhury & Ding, 2016; Faulkner et al., 2004; Hamby &

Sofroniew, 2010; Li et al., 2014; Reichenbach et al., 2019; Shimada

et al., 2011; Sofroniew, 2009; Voskuhl et al., 2009).

Perturbations in astrocyte function are now implicated in many

neurological diseases including PD, AD, ischemic stroke, epilepsy, and

ALS (Sofroniew & Vinters, 2010). This highlights the importance of

astrocytes in maintaining and directing neurological function. How-

ever, the mechanisms by which cellular stressors initiate astrocyte

dysfunction that contributes to disease are not well understood.

Recently, single cell RNA sequencing (scRNAseq) revealed that sub-

populations of astrocytes that are expanded during experimental

autoimmune encephalomyelitis (EAE) have increased UPR signaling,

suggesting that the UPR is associated with EAE (Wheeler et al., 2020).

Additionally, overexpression of spliced XBP1 in astrocyte-like glial

cells in Caenorhabditis elegans extends life span (Frakes et al., 2020).

Astrocytes express all the initiating sensors of the UPR (IRE1, PERK,

and ATF6) and express the ER stress sensitive molecule, old astrocyte

specifically induced substance (OASIS). Further, astrocytes are largely
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TABLE 1 Endoplasmic reticulum (ER) stress-induced changes in astrocytes

Factor

Increased ("), decreased
(#), no change (—) Method Reference

Cytokines

IL-1α/β — ELISA (Meares et al., 2014)

IL-6 " ELISA and qPCR (Guthrie et al., 2016; Meares et al., 2014; Sims &

Meares, 2019)

IFN-γ — ELISA (Meares et al., 2014)

TNF-α — ELISA (Guthrie et al., 2016; Meares et al., 2014)

MCSF " ELISA (Meares et al., 2014)

LIF " ELISA and qPCR (Sanchez et al., 2019)

IL-11 "/— qPCR/ELISA (Sanchez et al., 2019)

OSM "/— qPCR/ELISA (Guthrie et al., 2016; Sanchez et al., 2019; Sims &

Meares, 2019)

Chemokines

CXCL1 " ELISA and qPCR (Meares et al., 2014; Sims & Meares, 2019)

CXCL9 — ELISA (Meares et al., 2014)

CXCL10 " ELISA and qPCR (Meares et al., 2014; Smith et al., 2020)

CCL2 " ELISA (Guthrie et al., 2016; Meares et al., 2014; Sims &

Meares, 2019)

CCL3 " ELISA (Meares et al., 2014)

CCL4 " ELISA (Meares et al., 2014)

CCL5 — ELISA (Meares et al., 2014)

CCL11 " ELISA (Meares et al., 2014)

CCL20 " qPCR (Guthrie et al., 2016; Meares et al., 2014)

Growth factors/ECM proteins

VEGF " ELISA (Meares et al., 2014)

CNTF # ELISA, qPCR (Sanchez et al., 2019)

BDNF — RNAseq (Sims & Meares, 2019)

GDNF — RNAseq (Sims & Meares, 2019)

Collagen # LC/MS (Smith et al., 2020)

Fibronectin # LC/MS (Smith et al., 2020)

Glypican-4 # LC/MS (Smith et al., 2020)

Complement

C1qa # RNAseq (Sims & Meares, 2019)

C3 " qPCR/RNA scope (Smith et al., 2020)

Serping1 # qPCR (Smith et al., 2020)

Gliosis markers

Vimentin " qPCR (Smith et al., 2020)

Lcn2 " qPCR (Smith et al., 2020)

Serpina3n # qPCR (Smith et al., 2020)

CD109 # qPCR (Smith et al., 2020)

Stress related

GADD45α " qPCR (Sims & Meares, 2019)

TRIB3 " qPCR (Guthrie et al., 2016; Sims & Meares, 2019)

ERO1B " qPCR (Sims & Meares, 2019)

ATF6 " qPCR (Sims & Meares, 2019)

ATF4 " qPCR/immunoblot (Sims & Meares, 2019; Smith et al., 2020)

CHOP (ddit3) " Immunoblot (Sims & Meares, 2019)
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resistant to aberrant ER stress-induced cell death (Meares

et al., 2014). GRP78 is important in protecting astrocytes as shown by

overexpression in the in vitro stroke model of oxygen glucose depriva-

tion (Ouyang et al., 2011).

Astrocytes have been demonstrated to express many cytokines,

chemokines, and reactive species that contribute to the inflammatory

environment of the CNS (Farina et al., 2007). Table 1 describes mole-

cules that have been demonstrated to be induced by ER stress in

astrocytes. Further, the UPR has been explicitly linked to initiating

inflammation in other cells types. For example, UPR activation aug-

ments inflammatory responses stimulated by the bacterial cell wall

component lipopolysaccharide (LPS) and can directly drive activation

of the acute phase response (Martinon & Glimcher, 2011; Zhang

et al., 2006). Taken together, accumulating evidence suggests that

chronic ER stress and UPR signaling in astrocytes may play a patho-

logical role in neurological disease.

2 | IRE1 IN ASTROCYTES

IRE1 signaling has been linked to cell death and inflammation in the

CNS. Evidence of active IRE1 signaling has been reported in post-

mortem human tissue in clinically confirmed cases of AD, HD, and gli-

oma in addition to many mouse in vivo and in vitro disease models. In

an immortalized astrocytic cell line, SVGA, cells infected with HIV-1

require IRE1 signaling to activate JNK and activator protein (AP)-1 to

induce cell death (Shah et al., 2016). Further, nitric oxide (NO) has also

been demonstrated to activate IRE1-dependent signaling in human

glioma cell lines. Treating human astrocytoma (CRT-MG) cells with an

NO donor and the ER stress inducer, thapsigargin, increased apoptosis

that coincided with IRE1 nuclease activity, IRE1/TRAF2 complex for-

mation, and p-JNK1/2 levels, implying that treatment of NO subse-

quently activates the IRE1-α/TRAF2/JNK pathway. IRE1 knockdown

confirmed that intracellular NO affects IRE1-dependent phosphoryla-

tion of CREB in human glioma cells (Kim et al., 2010). Together, this

suggests pathogenic stimuli (viral infection and reactive nitrogen spe-

cies) can activate the IRE1 arm of the UPR and contribute to cell

death in in vitro astrocytoma cell lines.

In vivo evidence suggests that IRE1 signaling in astrocytes is

associated with the neurodegenerative diseases AD and MS. In brain

tissue from AD patients, phosphorylated IRE1 is increased and corre-

lates with disease severity based on Braak Staging, a pathology-based

characterization of AD (Braak et al., 2003; Braak & Braak, 1991;

Duran-Aniotz et al., 2017). To investigate the role of IRE1 in a mouse

model of AD, IRE1 was deleted in the nervous system using Nestin-

cre and crossed with the 5XFAD genetic model of AD. Genetic

deletion of the RNase domain of IRE1 significantly reduced amyloid

deposition and astrocyte activation. Further, deficiency of IRE1 sig-

naling improved synaptic function and long-term potentiation,

suggesting restored memory and learning capacity of the mice. This

led to the amelioration of disease hallmarks including Aβ1-42 produc-

tion, amyloid plaque deposition, and cognitive deficits. Additionally,

deletion of IRE1 reduced astrogliosis, based on GFAP staining, in the

5XFAD hippocampus. In this case, attenuation of gliosis may be

through a direct effect on astrocytes or due to reduced overall dis-

ease burden (Duran-Aniotz et al., 2017). Further AD studies are

needed to delineate the astrocyte-specific contributions of IRE1

signaling.

In a large pharmacogenetic screen to identify signaling pathways

involved in pathogenic neuroinflammation in MS, astrocytes were

stimulated in vitro with TNF-α and IL-1β, two cytokines known to be

associated with the pathogenesis of EAE and MS. Here, Wheeler et. al

determined that IRE1 is phosphorylated and XBP1 was spliced,

suggesting activation of IRE1 signaling during astrocyte-mediated

neuroinflammation. To confirm this in vivo, this study used cell-spe-

cific lentiviral delivery of short hairpin (sh)—RNA targeting the gene

that encodes for IRE1 (ern1) to knockdown expression in astrocytes

during active EAE, which reduced disease severity. These studies

demonstrated that abrogating expression of IRE1 under control of the

astrocyte selective GFAP promoter ameliorated EAE disease course

and reduced inflammatory mediators produced by astrocytes

(Wheeler et al., 2019). This suggests that IRE1 signaling in astrocytes

is pathogenic in the murine EAE model of MS.

These studies, collectively, imply that IRE1 signaling in astrocytes

can be activated by various stimuli and that activated IRE1 can inte-

grate with many signaling pathways that promote inflammation or cell

death.

3 | PERK IN ASTROCYTES

Activated PERK signaling has been reported in a variety of neurologi-

cal diseases including AD, MS, prion disease, neurotropic viral infec-

tion, and ALS (Hoozemans et al., 2012; Ito et al., 2009; Moreno

TABLE 1 (Continued)

Factor

Increased ("), decreased
(#), no change (—) Method Reference

PERK " qPCR (Sims & Meares, 2019)

GADD34 " Immunoblot (Smith et al., 2020)

Lipoproteins

Apolipoprotein E # LC/MS (Smith et al., 2020)

Low density lipoprotein in receptor

related protein 1

# LC/MS (Smith et al., 2020)
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et al., 2013; Nijholt et al., 2012). Using immunocytochemistry to ana-

lyze brain tissue of human MS samples, the UPR proteins GRP78,

XBP-1, and CHOP were increased in acute MS lesions (Mháille

et al., 2008). In models of prion disease, neuronal cell lines were

infected with PrP, the misfolded protein associated with prion disease.

Prion infected neurons were more susceptible to cell death, and

targeting PERK signaling in in vivo models of prion disease is protec-

tive (Moreno et al., 2012, 2013; Torres et al., 2010). Some reports

show that prolonged expression of CHOP is pro-apoptotic, but this

has not directly been demonstrated in primary astrocytes or in vivo

models (Kawahara et al., 2001; Oyadomari et al., 2001). However, the

Venezuelan equine encephalomyelitis virus (VEEV) induces apoptosis

of the astrocyte-like glioblastoma cell line (U87Mg) through CHOP

expression that is activated by PERK (Baer et al., 2016). PERK knock-

down in primary astrocytes reduces viral load of VEEV, but there is no

difference in viral load between U87Mg cells with or without PERK

expression (Dahal et al., 2021).

Further, evidence of activated PERK signaling in astrocytes has

been reported in neuropathological studies of human AD and PD

brains (Hoozemans et al., 2012; Nijholt et al., 2011). Additional studies

have established that PERK is phosphorylated in glial cells in brains

from tauopathy-associated dementias (Nijholt et al., 2012). In a 2014

study, Devi and Ohno examined the role of a hemizygous PERK

knockout crossed to the genetic AD model, 5XFAD. Genetic

PERK ablation reduces phosphorylated eIF2α and ATF4. PERK

haploinsufficiency in 5XFAD mice partially rescued memory loss in a

behavioral fear conditioning model. These cognitive improvements

coincided with a reduction in amyloid-β plaque burden in hippocampal

and cortical regions of 5XFAD mice. Importantly, the maladaptive

effects of PERK signaling were specific to onset of AD; there were no

measured cognitive changes in unaffected PERK+/� mice compared

to control animals (Devi & Ohno, 2014).

In sporadic ALS and in the transgenic ALS mouse model that

expresses mutant superoxide dismutase (SOD)G93A, immunohisto-

chemistry staining of spinal cords demonstrated that many astrocytes,

along with other cell types, expressed CHOP, suggesting that PERK

signaling is activated in astrocytes in ALS (Ito et al., 2009). Another

study modeling ALS in mice demonstrated that astrocytes are acti-

vated, as quantified by GFAP immunofluorescence staining. Here,

mice expressing wild type human SOD, which has been reported to

spontaneously aggregate and model spontaneous ALS, were exposed

to the pharmacological inhibitor of N-linked glycosylation

(tunicamycin) to induce UPR activation, which was shown to increase

SOD1 aggregation. Importantly, wild type littermates did not have a

significant increase in GFAP staining upon tunicamycin treatment

(Medinas et al., 2018). This suggests that SOD aggregation and UPR

activation enhance GFAP expression, which is associated with a reac-

tive astrocyte phenotype, in a murine ALS model.

PERK is also active in models of acute brain injury. In the TBI

model of controlled closed cortical impact, PERK is phosphorylated

and colocalizes with GFAP, a marker of reactive astrocytes. In vitro

analyses identified that the calcineurin isoform β (CNβ) can interact

with PERK to drive its oligomerization and downstream activation of

the UPR, independent of CNβ phosphatase activity. Here, the authors

found that CNβ loss is detrimental in TBI and photothrombotic stroke

models. In stroke, this is associated with reduced phosphorylation of

eIF2α and increased GFAP expression. Additionally, overexpression

of CNβ attenuated astrocyte toxicity from oxidative and hypoxic

insults through a PERK dependent mechanism (Chen et al., 2016). This

suggests a potential role for PERK signaling in promoting astrocyte

survival after acute injury. These findings are consistent with other

reports using the blast injury model of TBI in which GFAP expression

is induced upon injury and is reduced when treated with the phospha-

tase inhibitor salubrinal to maintain eIF2α phosphorylation (Logsdon

et al., 2016). Salubrinal reduced impulsive-like behavior induced by

repeated blast injury, suggesting that prolonging eIF2α phosphoryla-

tion in acute injury models may be protective (Logsdon et al., 2016).

Similarly, p-eIF2α, GRP78, and CHOP expression is increased post TBI

and these markers of ER stress colocalize with GFAP-positive astro-

cytes and multiple other cell types. Here, salubrinal improved motor

function and spatial defects as tested by the Morris Water Maze

post-TBI (Wang et al., 2019). Although these studies did not directly

define functional mechanisms in astrocytes, they provide evidence of

reactive astrocyte activation and ER stress during acute neuronal

injury. Importantly, while enhancing or maintaining eIF2α phosphory-

lation immediately after injury provides protection, reversing the

p-eIF2α-mediated translational block using the eIF2B agonist ISRIB

during the chronic phase (4 weeks post injury) improves cognitive

function (Chou et al., 2017). These studies indicate that PERK signal-

ing, and potentially other eIF2α kinases, have differential effects dur-

ing the acute and chronic phases following cerebral injury. The role of

PERK signaling in astrocytes in either phase is unknown and warrants

additional astrocyte-specific loss- or gain-of-function studies.

Additionally, vanishing white matter disease (VWM) demonstrates

the importance of downstream PERK signaling in astrocytes. VWM is

a leukoencephalopathy in which dysfunctional astrocytes are thought

to drive pathogenesis (Bugiani et al., 2018). VWM is caused by an

autosomal recessive mutation in eIF2B, which reduce function and

cause prolonged suppression of protein translation in response to

stimuli that promote eIF2α phosphorylation (Dooves et al., 2016;

Moon & Parker, 2018). This highlights a role for phosphorylated

eIF2α-driven translational repression in preserving astrocyte homeo-

stasis and directly links signaling components downstream of PERK to

neurological disease.

To date, multiple reports link UPR-dependent PERK signaling in

astrocytes to inflammatory gene expression and/or neurotoxicity

(Guthrie et al., 2016; Meares et al., 2014; Smith et al., 2020; Sprenkle

et al., 2017). ER stress-inducing pharmacological agents thapsigargin

and tunicamycin promote phosphorylation of eIF2α in primary murine

astrocytes (Guthrie et al., 2016; Sims & Meares, 2019; Smith

et al., 2020; Sprenkle et al., 2019). A 2014 study demonstrated that

gene expression of inflammatory markers (IL-6, CCL2), astrocyte

markers (GFAP, OASIS), and ER stress-related genes (GRP78, CHOP,

PERK, ATF4) are upregulated throughout the course of EAE in brain

and spinal cord tissue. Downstream markers of PERK activation such

as phosphorylation of eIF2α and CHOP expression are exhibited in
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thapsigargin-treated astrocytes concomitantly with upregulation of

IL-6, CCL2, and CCL20. Additionally, ER stress augmented IL-6

expression induced by IL-6 or oncostatin M (OSM) in a PERK-

dependent fashion. This suggests that astrocytes may contribute to

the UPR and inflammatory response seen in CNS tissue during EAE. It

is important to note that these inflammatory proteins are induced at

the protein level even under conditions of phosphorylated eIF2α,

which functions to attenuate translation, demonstrating that these

proteins are translated during UPR activation (Meares et al., 2014).

PERK is an important driver of inflammatory gene expression in

astrocytes in response to ER stress. A partial (heterozygous) or com-

plete (homozygous) genetic loss of PERK in primary astrocytes was

associated with a lower astrocyte-driven expression of as IL-6, CCL2,

and CCL20 analyzed by qPCR or ELISA. Further, primary astrocytes

treated with thapsigargin and a PERK inhibitor, GSK2606414, reduced

production of cytokines and chemokines measured by ELISA. This

demonstrates that PERK activation contributes to both transcriptional

and translational activation of inflammatory mediators in astrocytes

(Guthrie et al., 2016). Therefore, unresolved UPR activation may con-

tribute to prolonged, aberrant inflammatory activation via PERK sig-

naling that may contribute to the non-resolving nature of neurological

diseases.

Cytokines such as IL-6, which is driven by PERK activation in

astrocytes, rely on Janus kinase (JAK)—Signal transducer and activator

of transcription (STAT) signaling to exert their effects. JAK–STAT sig-

naling has been directly linked to astrocyte-driven pathology in neu-

rodegeneration. STAT3 activation occurs in astrocytes in response to

acute injury and is required for astrocytes to form glial scars and take

on a reactive astrocyte phenotype (astrogliosis) (Wanner et al., 2013).

Astrocytes in models of AD, HD, and MS also express higher levels of

phosphorylated STAT3 (Ben Haim et al., 2015). Additionally, JAK inhi-

bition ameliorates disease progression in rodent models of PD and

MS (Liu et al., 2014; Qin et al., 2016).

PERK signaling activates downstream signaling in a JAK1 depen-

dent mechanism, and inhibiting JAK1 kinase activity reduced ER

stress-induced inflammatory gene expression. Importantly, JAK1 inhi-

bition does not impact all ER stress-induced gene expression. Further,

it has been shown that PERK activates JAK1 to drive a subset of gene

expression that is distinct from those induced by the JAK/STAT acti-

vating cytokine OSM (Sims & Meares, 2019). This demonstrates that

UPR signaling modulates inflammatory responses in a manner distinct

from traditional inflammatory signaling. Taken together, this evidence

suggests that PERK and JAK–STAT signaling in neurodegenerative

disease models may promote aberrant inflammation. Targeting PERK

signaling in astrocytes may be a mechanism to selectively attenuate

immune responses in neurological diseases.

Targeting the UPR to selectively attenuate inflammation is

supported by work in other cell types. For example, UPR signaling in

macrophages activates proinflammatory cytokine signaling via the

IRE1 pathway. Here, ER stress activates the nucleotide-binding oligo-

merization domain-containing protein (NOD) 1/2 and sXBP1 in an

IRE1 dependent manner. Contrary to macrophages, PERK drives IL-6

expression in astrocytes. This highlights that the UPR regulates

inflammation using distinct mechanisms in different cell types

(Keestra-Gounder et al., 2016; Martinon et al., 2010). ER stress-

induced IL-6 production in astrocytes differs from macrophages in

that it requires PERK and JAK1 but is independent of IRE1 and

nuclear factor-κB (NF-κB) (Guthrie et al., 2016; Meares et al., 2014).

Additionally, endothelial cells produce IL-6 in response to ER stress,

but here, this IL-6 expression is dependent on both ATF4 and sXBP1

(Gargalovic et al., 2006). ER stress induced IL-6 expression in astro-

cytes does not rely on ATF4 signaling, as demonstrated using siRNA-

mediated knockdown of ATF4 in primary astrocyte cultures (Sims &

Meares, 2019). This illustrates the need for more careful investiga-

tions regarding the nuances of UPR signaling in various cell types. For

example, the UPR in the CNS literature focuses heavily on neurons

and oligodendrocytes, however, these findings may not apply to

astrocytes. Although astrocytes induce IL-6 and other inflammatory

molecules in a PERK-dependent fashion, this is not the case for other

IL-6 family members. Importantly, ciliary neurotrophic factor (CNTF) is

downregulated upon ER stress induction in cultured astrocytes

(Sanchez et al., 2019). This suggests trophic support from

astrocytes can be restricted by the UPR. Indeed, it has been shown

that ER stressed astrocytes lose trophic support for neuronal synapse

formation (Smith et al., 2020).

Collectively, multiple studies have demonstrated that PERK sig-

naling promotes an astrocyte-driven inflammatory response. Although

inflammation provides a beneficial and restorative role, chronic inflam-

mation is thought to contribute to neurological disease. PERK signal-

ing in astrocytes may be a target to selectively attenuate damaging

inflammation while retaining beneficial inflammatory signaling in the

CNS. Further studies and conditional deletion of PERK and down-

stream signaling components in astrocytes are needed to solidify the

role in disease models.

4 | ATF6 AND OASIS IN ASTROCYTES

ATF6 and OASIS (CREB3L1) are bZIP transcription factors similarly

activated in response to ER stress. OASIS is a molecule primarily

expressed in astrocytes in the CNS. Upon activation, it is transported

to the Golgi apparatus, is cleaved, and the N-terminal domain pro-

motes expression of ERAD-associated genes (Kondo et al., 2005).

ATF6 is activated (cleaved) in embryonal astrocytes during differentia-

tion suggesting a role for ATF6 in astrocyte development (Saito

et al., 2012). OASIS is also important for astrocyte differentiation. In

mice lacking OASIS, astrocyte development was impaired. OASIS was

shown to bind the promoter of glial cells missing transcription factor

1 (Gcm1) and promote Gcm1 expression. Gcm1 may regulate GFAP

promoter methylation allowing transcriptional activation. The reduced

expression of Gcm1 in OASIS�/� mice may, in part, underlie the

reduced astrocyte differentiation (Saito et al., 2012). To date, few

studies have been performed examining the role of ATF6 in astrocytes

during disease states. In a murine model of ischemic stroke, middle

cerebral artery occlusion (MCAO), ATF6 knockout mice exhibited

reduced infarct area as analyzed by the metabolic stain triphenyl
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tetrazolium chloride (TTC). Concomitantly, ATF6α knockout mice had

reduced STAT3 activation and expression of GFAP in the ischemic

area of the brain 3 days post MCAO as measured by immunoblotting

(Yoshikawa et al., 2015). This study suggests that ATF6 is protective

during ischemia via an astrocyte-dependent mechanism.

OASIS activation has also been linked, in astrocytes, to AD dis-

ease mechanisms. Apolipoprotein E (ApoE) is a protein involved in

catabolizing triglycerides and the ApoE4 allele is strongly associated

with the development of AD, although causal associations between

ApoE4 and AD are not fully known, reviewed in Belloy et al. (2019).

Primary astrocytes expressing mutant APOE, to model human ApoE4,

exhibit reduced ApoE expression and increased UPR activation,

including cleavage of OASIS and genes downstream of the IRE1 and

PERK pathways. This suggests that ApoE can induce cleavage of

OASIS in astrocytes and activate the UPR in astrocytes and promote

neuronal toxicity (Zhong et al., 2009). Collectively, there are limited

studies on the role of ATF6 and OASIS, however, these studies dem-

onstrate that activation must be well-regulated for proper astrocyte

function.

4.1 | Non-cell autonomous effects of ER stressed
astrocytes

In a 2017 study, Sprenkle et al was the first to describe that astro-

cytes can transmit ER stress to other cell types. A phenomenon that

was previously described in cancer cells and termed transmissible ER

stress (TERS) (Mahadevan et al., 2012). This suggested that UPR acti-

vation in astrocytes can induce UPR signaling in neighboring cells. In

this study, astrocyte conditioned media (ACM) collected from astro-

cytes treated with the ER stress-inducing agent thapsigargin or

tunicamycin was transferred to HT-22 hippocampal neuronal cells.

The cells that were exposed to thapsigargin treated ACM exhibited

higher gene expression and protein levels of GRP78, spliced XBP1,

and CHOP, indicating that astrocytes secrete a soluble factor that

stimulates an ER stress response. Further, this study showed that neu-

rons experiencing ER stress also secrete a molecule that induces ER

stress in cultures of neurons, astrocytes, and microglia (Sprenkle

et al., 2019). This study identified that UPR activation can be transmit-

ted between cells of the nervous system. These studies are consistent

with previous work that demonstrated that ER stress is also trans-

missible between cancer or myocardial cells and macrophages,

which also respond to ER stress by producing inflammatory mole-

cules, albeit these mechanisms are distinct from those identified in

astrocytes (Mahadevan et al., 2011; Sanchez et al., 2019; Zhang

et al., 2017). ER stressed astrocytes, through a PERK-dependent

process, also increase microglial expression of IL-1β and IL-6

(Meares et al., 2014). Independently of PERK, ER stressed astro-

cytes reduce microglial expression of arginase, CD206 and insulin

like growth factor 1 (Guthrie et al., 2016). Together, these data

indicate that in response to ER stress, astrocytes can shift

microglia to an inflammatory phenotype. Additionally, Wheeler

and colleagues demonstrated that XBP1 knockdown in astrocytes

decreases the number of monocytes that traffic to the CNS during

EAE. Macrophages that trafficked to the CNS during EAE in the

GFAP-driven XBP1 knockdown had reduced expression of inflam-

matory genes involved in IL-6 signaling, NF-κB signaling, and che-

mokine signaling. Similarly, microglia in the astrocyte specific

XBP1 knockdown had reduced proinflammatory gene expression

in comparison to EAE animals with XBP1 expression astrocytes

(Wheeler et al., 2019).

ACM from healthy astrocytes is known to support syn-

aptogenesis (Allen et al., 2012; Baldwin & Eroglu, 2017; Hughes

et al., 2010). To determine if UPR activation impacts the ability of

astrocytes to support synapses, Mallucci and colleagues collected

ACM from thapsigargin-treated astrocytes. By immunostaining pre

and post synaptic terminals, ACM from UPR activated astrocytes

was shown to reduce synaptogenesis. Further, inhibiting PERK

pharmacologically restored the ability of ACM to promote synapse

formation, suggesting that UPR activation via PERK inhibits

astrocyte-mediated neurotrophic functions. Further, this study

tested if targeting PERK-eIF2α signaling in vivo could be neuro-

protective. Using mice that over express prion protein (PrP) and suc-

cumb to prion infection. Astrocyte specific lentiviral overexpression

of GADD34, an eIF2α-specific phosphatase, was markedly protec-

tive in prion-infected mice. GADD34 overexpression (to reduce

PERK signaling) in astrocytes prevented neurodegeneration in the

hippocampus, had an increased number of pyramidal neurons,

reduced astrocyte reactivity based on morphology and GFAP

staining, and extended the life span of these mice in comparison to

control PrP animals. This study shows both in vitro and in vivo that

UPR activation via the PERK pathway alters the transcriptome and

secreted molecules of astrocytes and this is linked to a reduction in

neuronal synapse formation (Smith et al., 2020). These studies

expand upon and corroborate the previous findings that PERK inhi-

bition is protective in prion infection (Halliday et al., 2017;

Halliday & Mallucci, 2014; Moreno et al., 2012, 2013). Further, this

suggests that UPR-activated astrocytes have pathogenic roles in

prion infection and identifies PERK signaling as a central driver in

this process.

Consistent with the notion that astrocytes have a significant role

in directing the milieu of the inflammatory environment in the CNS,

viral infections have also shown to induce the UPR in astrocytes, lead-

ing to pathogenic non-cell-autonomous astrocyte dependent pathol-

ogy. The HIV protein Tat has been shown to induce ER stress in

astrocytes leading to GFAP-dependent neurotoxicity (Fan &

He, 2016). Inflammation and expression of the human endogenous

retrovirus protein, syncytin-1, promote ER stress in astrocytes in MS

(Deslauriers et al., 2011). This study demonstrated that ER stress pro-

teins were upregulated in MS patient brains, along with the human

endogenous retrovirus protein (HERV) syncytin-1. Syncytin-1 induces

splicing of XBP1 and leads to downstream inflammation. These mech-

anisms were confirmed by transfecting primary human fetal astrocytes

with syncinctin-1. This induced splicing of XBP1, indicating that the

IRE1 pathway is activated. Further, Nos2 was concomitantly

upregulated and contributed to oligodendrocyte toxicity in the EAE
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model. Together, this suggests that IRE1 signaling is stimulated by the

HERV protein syncytin-1 to initiate a sXBP1-dependent nitric oxide

and neuroinflammatory response.

Additionally, Zika virus has been shown to activate the UPR in

astrocytes. ZIKV infection of astrocytes caused an over expression of

UPR-related genes BiP, XBP1, CHOP, and growth arrest and DNA

damage-inducible protein (GADD) 34, Under these conditions, cell

viability was decreased, RNA metabolism genes and micro-RNAs were

downregulated, however, astrocyte-derived soluble factors glial cell

line-derived neurotrophic factor (GDNF) and neuronal growth factor

(NGF) were upregulated, highlighting that some molecules were still

being translated under ER stress conditions (Kozak et al., 2017).

However, these results are associated with UPR activation, and direct

evidence for the non-cell autonomous action of UPR signaling in

astrocytes still requires investigation. These results lay the ground-

work for further studies examining the role of ZIKV and other neuro-

trophic viral infections in astrocytes.

In summary, astrocytes play a critical role at directing the over-

all CNS environment due to their close physical and trophic connec-

tion to other CNS cells as well as blood vessels. UPR activation is

emerging as an important process by which astrocytes influence the

survival, activation and function of other CNS resident and infiltrat-

ing cells.

5 | DISCUSSION AND PERSPECTIVES

The UPR has been studied in a multitude of disease states and cell

types, however, the astrocyte-specific roles of the UPR is a relatively

new field. ER stress has been primarily characterized in the CNS

focusing on neurons and oligodendrocytes (Hetz & Saxena, 2017;

Sprenkle et al., 2017). As more studies are performed, it is evident that

UPR activation has diverse roles in each CNS cell type. A working

model is proposed in Figure 2. For example, EAE is ameliorated by

PERK activation in oligodendrocytes, but PERK knockdown in astro-

cytes had no effect on the development of EAE (Lin et al., 2007;

Wheeler et al., 2019). Although the UPR is known to activate path-

ways that have been associated with apoptosis, there is little evidence

that UPR signaling in astrocytes induces cell death. Instead, UPR-

activated astrocytes are posited to be in a unique position to contrib-

ute to the inflammatory environment of the CNS because astrocytes

are the most populous glial cell, can be neurotoxic, and direct CNS

inflammation by promoting microglial activation and leukocyte traf-

ficking (Clarke et al., 2018; Liddelow et al., 2017; Meares et al., 2012).

Inflammatory and reactive astrocytes are attributed to neurotoxicity

in many disease models. Understanding how astrocytes are fine-tuned

to produce these neurotoxic responses is of vital importance; neuro-

nal loss cannot be overcome and leads to motor and cognitive decline.

F IGURE 2 Proposed mechanisms by which endoplasmic reticulum stress signaling in astrocytes impacts the overall central nervous system
(CNS) environment. Here, we propose a model where astrocytes experience endoplasmic reticulum stress during disease states, activating the
unfolded protein response (UPR). UPR-related molecules are upregulated in astrocytes, concomitant with inflammatory genes. Further, UPR-
activated astrocytes have reduced capacity to support neuronal synapses and activated UPR in astrocytes is associated with increased synaptic
loss and lower numbers of neurons during disease. Further, astrocytes have the capacity to “transmit” endoplasmic reticulum (ER) stress to other
neuronal cell types including other astrocytes, microglia, and neurons. Figure was created in Biorender
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Here, we provide evidence that UPR signaling could substantially con-

tribute to astrocyte-driven neuronal dysfunction. To gain complete

understanding of the UPR in the CNS, more advanced cell-specific

studies must be completed. Gain and loss of function studies in vivo

in astrocyte conditional models are underway and will provide a

wealth of information on the functional role of ER stress signaling in

astrocytes.

Targeting UPR signaling in astrocytes has been tested in select

models of neurological diseases. For example, IRE1 knockdown in

astrocytes is protective in the EAE model of MS (Wheeler

et al., 2019). Therefore, IRE1 signaling may be pathogenic in neuro-

logical diseases that are associated with excessive neu-

roinflammation. Astrocyte-specific overexpression of GADD34, an

eIF2α-specific phosphatase, is protective in prion disease (Smith

et al., 2020), consistent with studies using small molecules to target

PERK signaling (Moreno et al., 2013). These studies suggest a path-

ogenic role for PERK signaling in astrocytes in diseases driven by

protein misfolding. Together, with in vitro evidence that PERK sig-

naling in astrocytes promotes inflammation and that ER stress is

transmissible (Guthrie et al., 2016; Meares et al., 2014; Sanchez

et al., 2019; Sims & Meares, 2019; Smith et al., 2020; Sprenkle

et al., 2017), these studies suggest that UPR signaling in astrocytes

may profoundly impact multiple neurological diseases. Additional

studies using astrocyte-selective Cre drivers such GFAP-Cre (Garcia

et al., 2004; Gregorian et al., 2009) and ALDH1L1-CreERT2

(Srinivasan et al., 2016) to target specific UPR components in addi-

tional disease models of neural injury and neurodegeneration will

ultimately define ER stress signaling in astrocytes and its impact on

disease.

Further, recent studies have established that substantial regional

heterogeneity of astrocytes exists (Matias et al., 2019). Currently,

astrocyte specific UPR signaling has not been characterized or com-

pared across regional locations of the CNS. The location and composi-

tion of misfolded proteins is known to vary among each

neurodegenerative disease. Therefore, this prompts the possibility

that UPR signaling in astrocytes can greatly differ based on location,

disease state or stage.

Critically, limited therapies and cures exist for most neurological

diseases. Therefore, it is logical to assume that identifying novel thera-

peutic targets to regulate disease-associated signaling cascades is vital

for the design of effective treatments. Considering the well-

established association of protein aggregation and accumulation in

neurological disorders and the recent advances in astrocyte biology,

understanding how astrocytes experiencing ER stress influence the

CNS environment may be a critical link in understanding signaling

pathways that contribute to neurological dysfunction. ER stress has

been linked to neurotoxicity in models of neurodegeneration. How-

ever, neurotoxicity may be the result of multiple unconfirmed mecha-

nisms including: (1) initiation of apoptosis by the UPR in neurons,

(2) loss of supportive function in other CNS cells, such as glia, (3) UPR

signaling in glial cells have a gain of neurotoxic function, or (4) a com-

bination of these possibilities. Altogether, an accumulation of evi-

dence suggests that the duration, cell type, and inflammatory

environment of the CNS dictates the consequences of active UPR

signaling.
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