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Simple Summary: This study analyzed the possibility of automatically detecting dairy cow behavior
by combining the use of a single triaxial accelerometer applied to the animal’s left flank with a
machine learning technique. This combination enabled the detection of posture and the main types
of behavior that are extremely useful in evaluating the animal’s welfare and health such as resting,
feeding, and rumination with a high degree of accuracy. The novelty of the study was the success
in reaching a high accuracy in detecting five different behaviors and the animal posture by using
a single sensor and allowing farmers to save money. To the best of our knowledge, this is the first
study that has successfully explored the feasibility of locating a sensor on the animal’s left flank,
showing the opportunity of automatically measuring some physiological parameters, such as those
ones related to respiration and rumen health, in a non-invasive way.

Abstract: The aim of the present study was to develop a model to identify posture and behavior
from data collected by a triaxial accelerometer located on the left flank of dairy cows and evaluate
its accuracy and precision. Twelve Italian Red-and-White lactating cows were equipped with an
accelerometer and observed on average for 136 ± 29 min per cow by two trained operators as a
reference. The acceleration data were grouped in time windows of 8 s overlapping by 33.0%, for
a total of 35,133 rows. For each row, 32 different features were extracted and used by machine
learning algorithms for the classification of posture and behavior. To build up a predictive model, the
dataset was split in training and testing datasets, characterized by 75.0 and 25.0% of the observations,
respectively. Four algorithms were tested: Random Forest, K Nearest Neighbors, Extreme Boosting
Algorithm (XGB), and Support Vector Machine. The XGB model showed the best accuracy (0.99)
and Cohen’s kappa (0.99) in predicting posture, whereas the Random Forest model had the highest
overall accuracy in predicting behaviors (0.76), showing a balanced accuracy from 0.96 for resting to
0.77 for moving. Overall, very accurate detection of the posture and resting behavior were achieved.

Keywords: ruminant; precision livestock farming; animal welfare; triaxial accelerometer

1. Introduction

Livestock farming has changed over the years, increasing the number of animals per
farm; this trend has drastically decreased the time that farmers and workers spend on
animal observation, housing control [1], and feed management [2]. In order to make up for
this lack, farmers are resorting to technology that helps them to guarantee a continuous
control of many factors, including housing conditions [3], feed quality and consistency [4,5],
and animal health [6,7]. With this regard, knowing the time spent by an animal standing
or lying, feeding or ruminating, are of critical importance to detect the onset of a disease
and assist in feeding and herd management [8,9]. Stangaferro and colleagues [7], for
example, highlighted that mastitis in dairy cows is associated with changes in rumination
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time and physical activity, underlining that analyzing data on behavior and posture can
help farmers and veterinarians in spotting changes from normality in a timely manner.
This capacity allows the detection of pathologies in their onset phase [10,11], limiting
production losses, preserving animal welfare [8] and contributing to ameliorate consumer
perceptions of farming practice [12]. Measuring lying, standing, and ruminating bouts and
localizing the main farm or pasture areas where cows behaved in such ways could also
be significant information for animal management and welfare monitoring [6,11]. Among
technologies applied directly on the animal, promising results have been attained with
triaxial accelerometers, as reported by different authors [13,14].

Accelerometers have shown to be effective in detecting behaviors of cattle, such as
ruminating, feeding, lying, or walking [15–17], depending on the site where the sensor is
fixed to the animal. Although in previous studies a satisfactory detection of few behaviors
was reached, the prediction performance tended to drop when both posture and behaviors
(feeding, ruminating, walking, resting, etc.) were investigated [17–19]. For this reason,
sometimes sensors have been used together in multiple locations [13,14], but this implies
greater costs and more drawbacks for both the animal and the handler [17]. So far, using a
single accelerometer to measure posture, multiple behaviors, physiological parameters, and
physiological functions appear to represent a challenge. Arai and colleagues [20] applied
an accelerometer into a rumen bolus to measure rumen motility in cows, but no behaviors
or postures were detected, whereas Lush et al. [21] were able to detect multiple behaviors
and the urination frequency in sheep. To develop this further, we thought of a position on
the animal where a single sensor could give as much information as possible, both in terms
of the behavior and physiological parameters. In ruminants, the left flank paralumbar fossa,
beyond behavior, potentially enables the monitoring of rumen and thoraco-abdominal
contractions associated with breathing and involved in both urination and defecation [22].
So far, we explored the feasibility of collecting data from this site, focusing at first on
behavior detection, with the purpose of expanding the analysis to physiological data in the
next future.

The aim of the present observational study was to develop a model to identify the
animal posture and predefined behaviors (moving, feeding, resting, ruminating, and
standing still) from data collected by a triaxial accelerometer located on the left flank
paralumbar fossa of dairy cows and evaluate its accuracy and precision as well.

2. Materials and Methods
2.1. Ethical Statement

Experimental procedures were carried out in accordance with EU Directive 2010/63/EU for
animal experiments and were approved by the animal welfare committee (Organismo Preposto
al Benessere Animale committee—OPBA—official number 167326) of Padova University.

2.2. Animals, Housing and Collection Time

The trial was carried out in the Veneto region (north-eastern Italy), in a dairy farm
raising cows in a loose housing facility with a concrete floor. The resting area is characterized
by cubicles filled with straw and the feed bunk by the presence of headlocks. Both the
number of cubicles and headlocks exceed the number of animals by around 15%. Lactating
cows were fed a total mixed ration characterized by a dry matter (DM) of 48.5%, and on a
DM basis by 16.0% of crude protein, 3.5% of ether extract, 34.0% of neutral detergent fiber,
and 26.0% of starch. Animals were fed once a day, at 0900 h, after morning milking and
milked twice a day at 0700 and 1900 h. Data were collected from 12 randomly selected
Italian Red-and-White mid-lactation dairy cows, showing no signs of lameness or other
diseases that might affect their behavioral repertoire; they were characterized by having on
average 2.87 ± 0.91 lactations and being at 180 ± 35 days in milk. After two months spent
trying the best solutions to apply the sensor to the animals and training the observers to
recognize the various behaviors and postures, on April 2019, data collection started, and it
was carried out on average for 136 ± 29 min per cow for 12 cows, by applying the sensor to
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one cow at a time (one cow a day), for 12 days on end, weekends excluded. This time was
long enough to collect a sufficient amount of acceleration data from each animal during all
behaviors selected to build and train the models. Animals were observed approximately
between 1100 h and 1500 h, because within this interval cows were more likely to perform
a variety of behaviors, including feeding, resting, ruminating, and moving (locomotion
activity).

Upon the application of the sensor, each animal was observed continuously by two
trained observers, who recorded animal posture and behavior in real time using Microsoft
Excel 2010 (Microsoft, Remond, WA, USA) on a laptop synchronized with the triaxial
accelerometer [13]. Inter-observer reliability was previously calculated using Cohens’
kappa [23] during the training period and resulted in 0.99 for posture and 0.91 for behavior.

2.3. Sensor Characteristics and Application, Postures and Behaviors

The sensor used was a commercial triaxial (X, Y, Z) accelerometer equipped with
data-logger, model MSR145W (PCE Italia srl, Capannori, LU, Italy), weighing 18 g, 18 mm
wide, 14 mm deep, and 62 mm long, with a memory capacity of 2 million data and a
detection rate ranging from 50 Hz to every 12 h. We did not associate the accelerometer to a
transmitter, because at this phase, we were mainly interested in exploring the opportunity
of collecting data from the animal left flank and converting them in information useful
to the farmer. The sensor was set to collect data every 0.2 s (5 Hz) and was inserted in
a suitable protective support to prevent the sensor from being damaged by impacts and
smashing. The frequency of 5 Hz was a good compromise between the opportunity to
characterize even short-term and intermittent behaviors, such as moving, which requires a
high frequency and the necessity of prolonging the battery life and optimizing the data
storage capacity. The support was glued to the animal’s hair and held in position by an
elastic band that was in turn held in position by three patches glued to the hairs on the
back and on either side of the abdomen, as reported in Figure 1. The glue used was a
non-toxic mixture of natural latex, acrylate terpolymer, and ammonium hydroxide (Salon
Pro, Glendale Heights, IL, USA) with a rapid drying period (from 30 s to 60 s). This product
showed excellent grip on the animal’s hair. The sensor was positioned so as to have, with
the animal in a standing position, the y axis parallel to the ground, the x axis in a vertical
position, and the z axis orthogonal to the side of the animal, as shown in Figure 1.
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Resting Cows lie, not moving or ruminating 
1 Animal posture was categorized as: standing, right sternal recumbency and left sternal recumbency. 2 Animal behavior 

was categorized as: standing still, feeding, moving (walking or moving slightly), ruminating and resting. 3 Adapted from 
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beside the acceleration values for each time interval. Statistical analyses were carried out 

Figure 1. Location and position of the triaxial accelerometer on cow’s left side paralumbar fossa. The
patch glued on the right side of the animal is not visible. X, Y, and Z are the acceleration axes.
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The animal posture was classified as left sternal recumbency (LSR), right sternal
recumbency (RSR), and standing (S); behaviors were classified as moving, standing still,
feeding, ruminating, and resting. All postures and behaviors are described in Table 1.

Table 1. Posture and behavior description for dairy cattle.

Posture 1 or Behavior 2 Definition 3

Posture

Standing Cows stand at three or four legs

Right sternal recumbency Cows lie on the sternum with the hind legs on the left

Left sternal recumbency Cows lie on the sternum with the hind legs on the right

Behavior

Standing still Cows are in a standing position and do not move their legs or show any sign of activity

Feeding Cows actively intake the feed at the manger including chewing it in the manger space

Moving (Walking or moving slightly) Cows in standing position walk through the pen or perform any behavior, different from those
mentioned above, which includes at least a step every 10 s.

Ruminating Cows perform chewing movements; it begins when the cow starts to chew a regurgitated bolus and
it ends when the bolus is swallowed back. It can be done both while the animal is standing or lying.

Resting Cows lie, not moving or ruminating
1 Animal posture was categorized as: standing, right sternal recumbency and left sternal recumbency. 2 Animal behavior was categorized
as: standing still, feeding, moving (walking or moving slightly), ruminating and resting. 3 Adapted from Cortese et al. [24].

2.4. Data Processing and Algorithm Description

Data were collected using the sensor software, MSR 5.12.04 (PCE Italia srl, Capannori, LU,
Italy), which gave the output as a .csv file, where for each line (collection time: date, h, min, s,
hundredths of a second) acceleration values on the axes X, Y, and Z were reported in different
columns. This file was imported to Excel 2010 (Microsoft, Remond, WA, USA), and every
change in posture or behavior recorded by observers was reported beside the acceleration
values for each time interval. Statistical analyses were carried out using R computing
environment, version 3.2.1 (R Core Team 2013, R Foundation for Statistical Computing,
Vienna, Austria). The input dataset had for each record the tri-axial accelerations, which were
collected every 0.2 s. The total number of observations from the 12 cows was 490,900, which
is equal to 27.3 h, in line with other similar experiments [15,25]. The observations that the
researchers were not able to assign to a univocal behavior or posture were removed from the
dataset. Table 2 shows the total number of observations collected, removed, and used for
the analyses of posture and behavior of each cow, showing that 1.89 h of observations were
excluded, whereas the remaining 25.3 were used for the analyses.

Table 2. Distribution of observation data among cows pre- and post-removal of observations not referring to univocal
behavior or posture.

Cow Total Number of
Observations

Number of Removed
Observations

Number of
Observations Used

Minutes of Removed
Observations

Minutes of
Observation Used

1 59,628 1892 57,736 6.3 192
2 45,927 3902 42,025 13 140
3 34,468 619 33,849 2.1 113
4 30,263 582 29,681 1.9 99
5 394,05 7794 31,611 26 105
6 31,758 3201 28,557 10.7 95
7 40,784 1200 39,584 4 132
8 37,047 2527 34,520 8.4 115
9 45,039 1680 43,359 5.6 145

10 36,894 1350 35,544 4.5 118
11 52,770 7759 45,011 25.9 150
12 36,917 1664 35,253 5.5 118

Total 490,900 34,170 456,730 113.9 1522
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The remaining 456,730 observations were divided into 3 postures and 5 behaviors, as
shown in Table 3.

Table 3. Observation time spent by cows in different postures and behaviors.

Posture Total Observations Hours of Observations

Left sternal recumbency 67,771 3.76
Right sternal recumbency 115,736 6.43

Standing 273,222 15.2

Behavior

Feeding 84,206 4.68
Moving 84,400 4.69
Resting 141,055 7.84

Ruminating 53,744 2.98
Standing still 93,325 5.18

2.5. Feature Extraction

The magnitude of the acceleration (amag) has been estimated for each observation as the
root squared of the sum of the squared tri-axis accelerations (x, y, and z): amag =

√
x2 + y2 + z2.

Then, for each of the previous 4 variables (x, y, z, amag), the following functions have been
applied to create a tidy dataset. A short time window of 8 s (40 observations) has been found to
be the best fitting to compute a list of metrics to be used in the model. These time windows
overlap by 33.0%. The elements of the feature vector consist of:

• Average (avg)
• Standard deviation (sd)
• Number of zero crossings (zc)—number of times related to a change of sign (after

scaling it).
• Peak-to-peak value (p2p)—difference between the highest and the lowest value within

the interval.
• Root mean squared value (rms)
• Kurtosis (kur)
• Skewness (skw)
• Crest factor (cf)—the ratio between the maximum peak and the root mean squared value.
• RMS of the integral (RMS of the velocity, Vrms)—this can be obtained by computing

the inverse function of the lagged differences function of a vector and calculating the
root mean squared value.

Each interval of 40 observations with a sliding interval of 13 observations (33.0% of
40 observations) has been chosen as the observation unit. Hence, a dataset of 35,133 rows
(456730/13) was obtained. However, all the intervals that contained more than one consecutive
behavior or posture were excluded from the analysis. Two different datasets were created: one
to predict the behavior and the other to determine the posture. Overall, the behavior dataset
included 33,318 observations and the posture dataset 32,500. The variables recorded for each 8 s
time interval are reported in Table 4.

Variables that were highly correlated and showed a cut-off value equal or higher to
0.8, were removed: amag.rms, z.sd, z.p2p, amag.p2p, amag.cf, amag.sd, x.p2p, amag.avg,
x.rms, y.sd, x.Vrms, x.avg, z.avg, z.Vrms, y.Vrms, y.zc, y.kur, y.skw. To build up a predictive
model, the dataset was randomly split in a training (75.0% of the observations) and testing
(25.0%) datasets. The latter has been used to estimate the performance of the model. All
variables have been normalized considering the mean and the standard deviation of the
training dataset. For posture, two datasets of 24,377 and 8123 observations were attained
for training and testing, respectively, whereas for behavior, the training and testing datasets
included 22,701 and 7567 observations.
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Table 4. Variables obtained for each 8 s time window concerning axes x, y, z, and the magnitude of
acceleration (amag).

X Y Z Amag
x.avg y.avg z.avg amag.avg
x.sd y.sd z.sd amag.sd
x.zc y.zc z.zc amag.zc

x.p2p y.p2p z.p2p amag.p2p
x.rms y.rms z.rms amag.rms
x.kur y.kur z.kur amag.kur
x.skw y.skw z.skw amag.skw

x.cf y.cf z.cf amag.cf
x.Vrms y.Vrms z.Vrms amag.Vrms

Avg = average; sd = standard deviation; zc = number of zero crossing; p2p = peak to peak value; rms = root mean
squared value; kur = kurtosis; skw = skewness; cf = crest factor; Vrms = RMS of the velocity.

2.6. Data Modelling

To find the most suitable algorithm to predict both posture and behavior, 4 different
algorithms were run: the Support Vector Machine (SVM), Random Forest (RF), K Nearest
Neighbors (KNN), and Extreme Boosting Algorithm (XGB). All of them have already
proved to be useful in classifying behaviors in cows as reported in the literature [11,17].
The R packages used to apply the different algorithms are described in [26] for SVM, [27]
for RF, [28] for KNN, and [29] for XGB.

2.7. Model Assessment

To compare the overall ability of different models in predicting either the animal posture
or behavior, Cohen’s kappa (K), accuracy, accuracy lower, accuracy upper, and accuracy p-value
were reckoned [30]. The upper and lower accuracy are calculated considering a confidence
interval of 95.0%. The confidence interval for the accuracy rate uses the default binomial
confidence interval method used in the binon.test function [31] in R. Cohen’s kappa gives
an estimate of agreement between the algorithm and the observation results, corrected for
hypothetical probability of chance agreement [23], whereas accuracy, once, for each model, the
number of true positive (TP), true negative (TN), false positive (FP) and false negative (FN)
has been established, is reckoned as accuracy = (TP + TN)/(TP + FP + FN + TN), and gives
an overall measure of correctly identified postures or behaviors [15]. For each model, the
sensitivity, specificity, positive predictive value (PPV or precision), and negative predictive
value (NPV) were calculated to determine each posture or behavior. These parameters were
calculated as follows: sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), PPV or
precision = TP/(TP + FP), and NPV = TN/(TN + FN), as reported in the literature [15,32]. In
addition, for each posture or behavior, its prevalence was given, reckoned as the ratio between
the number of its occurrence and the number of all postures or behaviors recorded, and its
balanced accuracy, calculated as (sensitivity + specificity)/2.

3. Results
3.1. Posture Model Results

The accuracy related to the posture for each model is reported in Table 5. It appears
that the model with the best performance is XGB with an accuracy of about 99.2% and the
highest Cohen’s kappa.

Table 5. Model accuracy for the prediction of posture of the testing dataset.

Model Accuracy Cohen’s Kappa Accuracy Lower Accuracy Upper Accuracy p-Value
RF 0.988 0.978 0.985 0.990 <0.001

KNN 0.974 0.954 0.971 0.978 <0.001
XGB 0.992 0.986 0.990 0.994 <0.001
SVM 0.976 0.957 0.973 0.980 <0.001

RF = Random Forest model; KNN = K Nearest Neighbors model; XGB = Extreme Gradient Boosting model; SVM = Support Vector
Machine model.
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As described in Table 6, the prediction of posture was found to be accurate for all the
models, always being higher than 0.940. Moreover, all the models displayed a high range of
sensitivity (0.89–1.00), specificity (0.961–0.999), precision (0.927–0.996), and NPV (0.981–1.00).
The highest prevalence was detected for standing, whereas the lowest was for LSR.

Table 6. Model sensitivity, specificity, precision, negative predictive value, prevalence, and accuracy for the prediction
of posture.

Posture Model Sensitivity Specificity Precision NPV Prevalence Balanced Accuracy
RSR RF 1.00 0.999 0.996 1.00 0.253 0.999
LSR RF 0.946 0.996 0.973 0.991 0.148 0.971

S RF 0.993 0.982 0.988 0.989 0.599 0.987

RSR KNN 0.994 0.995 0.987 0.998 0.253 0.995
LSR KNN 0.932 0.987 0.927 0.988 0.148 0.960

S KNN 0.977 0.972 0.981 0.966 0.599 0.974

RSR XGB 1.00 0.999 0.998 1.00 0.253 1.00
LSR XGB 0.971 0.996 0.976 0.995 0.148 0.983

S XGB 0.994 0.991 0.994 0.991 0.599 0.992

RSR SVM 0.998 0.999 0.996 0.999 0.253 0.998
LSR SVM 0.890 0.992 0.951 0.981 0.148 0.941

S SVM 0.989 0.961 0.974 0.983 0.599 0.975

Model = model of the algorithm used for data analysis; NPV = negative predictive value; RSR = right sternal recumbency; LSR = left sternal
recumbency; S = standing; RF = Random Forest model; KNN = K Nearest Neighbors model; XGB = Extreme Gradient Boosting model;
SVM = Support Vector Machine model.

Table 7 shows the confusion matrix for each model applied to the testing dataset for
the determination of posture. Although overall all the models are reported to predict the
posture very well, it is worthwhile noticing that even in the best model, XGB, there are few
observations (2.49%) belonging to LSR that are predicted as S and vice versa (0.60%).

Table 7. Model confusion matrix for the prediction of posture.

Model Predicted
Actual

RSR LSR S Total
RF RSR 2058 6 3 2067
RF LSR 0 1137 31 1168
RF S 1 59 4828 4888

KNN RSR 2047 3 25 2075
KNN LSR 0 1120 88 1208
KNN S 12 79 4749 4840

XGB RSR 2059 5 0 2064
XGB LSR 0 1167 29 1196
XGB S 0 30 4833 4863

SVM RSR 2055 9 0 2064
SVM LSR 0 1070 55 1125
SVM S 4 123 4807 4934

Total 2059 1202 4862
Model = model of the algorithm used for data analysis; PPV = positive predictive value; NPV = negative
predictive value; RSR = right sternal recumbency; LSR = left sternal recumbency; S = standing; RF = Random
Forest model; KNN = K Nearest Neighbors model; XGB = Extreme Gradient Boosting model; SVM = Support
Vector Machine model.

3.2. Behavior Model Results

With regard to the accuracy of different models in predicting animal behavior, the
accuracy of different models has a range between 0.676 and 0.759, where the lowest accuracy
and Cohen’s kappa are given by SVM and the highest by RF model (Table 8).
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Table 8. Model accuracy for the prediction of behavior.

Model Accuracy Cohen’s Kappa Accuracy Lower Accuracy Upper Accuracy p-Value

RF 0.759 0.687 0.749 0.768 <0.001
KNN 0.681 0.587 0.670 0.692 <0.001
XGB 0.736 0.657 0.726 0.746 <0.001
SVM 0.676 0.578 0.665 0.687 <0.001

Model: model of the algorithm used; RF = Random Forest model; KNN = K Nearest Neighbors model; XGB = Extreme Gradient Boosting
model; SVM = Support Vector Machine model.

As reported in Table 9, the behavior predicted with the highest balanced accuracy
is resting (0.927–0.962), followed by feeding (0.729–0.803), standing still (0.716–0.800),
ruminating (0.735–0.805), and moving (0.689–0.774). The RF model led to the highest
balanced accuracy, sensitivity, precision, and NPV in the prediction of feeding, moving,
and standing still, whereas for the prediction of resting and ruminating the highest
balanced accuracy, sensitivity, and NPV were achieved using model XGB. Overall, KNN
and SVM proved to be less effective in predicting the considered behaviors compared
with RF and XGB.

Table 9. Model sensitivity, specificity, precision, negative predictive value, prevalence, and accuracy for the prediction of behavior.

Behavior Model Sensitivity Specificity Precision NPV Prevalence Balanced Accuracy

Feeding RF 0.685 0.922 0.671 0.926 0.189 0.803
Moving RF 0.597 0.951 0.706 0.923 0.164 0.774
Resting RF 0.964 0.956 0.915 0.982 0.331 0.960

Ruminating RF 0.601 0.987 0.873 0.945 0.125 0.794
Stand still RF 0.718 0.881 0.588 0.930 0.191 0.800

Feeding KNN 0.587 0.902 0.583 0.904 0.189 0.745
Moving KNN 0.518 0.926 0.579 0.907 0.164 0.722
Resting KNN 0.918 0.936 0.877 0.959 0.331 0.927

Ruminating KNN 0.618 0.950 0.641 0.946 0.125 0.784
Stand still KNN 0.545 0.887 0.531 0.892 0.191 0.716

Feeding XGB 0.627 0.917 0.638 0.914 0.189 0.772
Moving XGB 0.563 0.945 0.666 0.917 0.164 0.754
Resting XGB 0.964 0.960 0.922 0.982 0.331 0.962

Ruminating XGB 0.627 0.982 0.834 0.948 0.125 0.805
Stand still XGB 0.669 0.866 0.542 0.917 0.191 0.768

Feeding SVM 0.549 0.910 0.587 0.897 0.189 0.729
Moving SVM 0.415 0.962 0.681 0.893 0.164 0.689
Resting SVM 0.933 0.924 0.858 0.965 0.331 0.928

Ruminating SVM 0.487 0.983 0.809 0.930 0.125 0.735
Stand still SVM 0.705 0.810 0.468 0.921 0.191 0.758

Model = model of the algorithm used for data analysis; NPV = negative predictive value; RF = Random Forest model; KNN = K Nearest
Neighbors model; XGB = Extreme Gradient Boosting model; SVM = Support Vector Machine model.

Table 10 shows the confusion matrix for each model applied to the testing dataset for
the prediction of behavior. Even in RF, the most accurate model, behaviors are in some
cases misclassified: the feeding behavior is predicted as standing still (21.7%) or moving
(9.45%), moving behavior is predicted as feeding (17.7%) or standing still (21.3%), resting
behavior is predicted as ruminating (2.60%), and standing still is misclassified as eating
(16.0%) or moving (10.8%). The other models show generally worse predictions.
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Table 10. Model confusion matrix for the prediction of behavior.

Model Predicted
Actual

Feeding Moving Resting Ruminating Standing Still Total

RF Feeding 978 220 8 20 232 1458
RF Moving 135 742 3 15 156 1051
RF Resting 4 9 2412 204 8 2637
RF Ruminating 1 6 65 570 11 653
RF Standing still 310 265 13 140 1038 1766

KNN Feeding 839 251 18 34 297 1439
KNN Moving 202 643 18 29 218 1110
KNN Resting 28 24 2296 219 52 2619
KNN Ruminating 48 40 150 587 91 916
KNN Standing still 311 284 19 80 787 1481

XGB Feeding 896 202 5 21 280 1404
XGB Moving 161 699 7 11 171 1049
XGB Resting 3 13 2410 182 6 2614
XGB Ruminating 8 20 69 595 21 713
XGB Standing still 360 308 10 140 967 1785

SVM Feeding 784 272 16 18 246 1336
SVM Moving 115 516 10 7 110 758
SVM Resting 14 28 2334 286 59 2721
SVM Ruminating 1 15 82 462 11 571
SVM Standing still 514 411 59 176 1019 2179

Total 1428 1242 2501 949 1445

Model = model of the algorithm used for data analysis; RF = Random Forest model; KNN = K Nearest Neighbors model; XGB = Extreme
Gradient Boosting model; SVM = Support Vector Machine model.

4. Discussion

In this research, we investigated whether data attained through a triaxial accelerometer
located on the left flank paralumbar fossa of dairy cows could be useful in predicting
animal’s posture and behavior. Moreover, we tried to determine what algorithm could
maximize accuracy and precision of these predictions. In both the prediction of posture and
behavior, the acceleration parameters that had helped the most in discriminating between
different classes were related to the y and z axes, which, in our case, gave us the main
information about acceleration and movements forward and backward (y), orthogonal to
the animal side (z), and about body rotation on the longitudinal body axis (x and z). The
prediction of posture was very accurate and precise for all the models, but particularly
for XGB, and proved to be much more accurate, sensitive, and precise than that found in
studies where the accelerometer was positioned on a collar or on the head. Martiskainen
et al. [18] and Vázquez Diosdado et al. [25], who mounted the accelerometer on a collar,
found a sensitivity of 0.80 and 0.77, respectively, and a precision of 0.80 and 0.98. A better
but still less sensitive (0.94) and precise (0.96) result was attained by Roland et al. [15]
in calves equipped with an accelerometer on an ear tag. The lower ability in predicting
the animal posture by these studies could be partly due to the different performance of
the algorithms used, and perhaps because, when lying in sternal recumbency, cattle keep
their head up, in the same position of when they stand up, and the neck generally moves
slightly during both standing and lying [14]. In this position, the gravity acceleration
measured by the accelerometer has the same direction when the animal is standing or lying.
A prediction of posture in line with our results was also found by other authors [14,33]
when they applied the accelerometer to the right hind leg. When in fact the accelerometer
is applied on both the paralumbar fossa or a leg, the change of posture of the animal (from
standing to lying and vice versa) causes a variation in the tri-axis acceleration measured
by the accelerometer on the three axes X, Y, and Z. This location of the accelerometer also
allowed to distinguish between left and right sternal recumbency. For all the models,
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RSR resulted as the posture with the best prediction, while LSR was the one with the
lowest accuracy, confirmed by a higher number of misclassifications between LSR and S. A
possible explanation is that the difference of the angle between the accelerometer and the
ground plane between LSR and S is lower than that between S and RSR.

In this study, cows spent almost 60.0% of their time standing and 40.0% lying.
This could be an important factor affecting the prediction reliability [17,19], but this
proportion is not representative of the daily time budget, which was not the purpose
of this study, because the observations were made on purpose between late morning and
early afternoon, so to see a greater variety of behaviors. Being able to detect the amount
of time spent by cows lying or standing is very important because it’s known that lying
deprivation, by even relatively short periods, below 10.3–12.0 h/day in lactating dairy
cows in confinement-housed freestall facilities, can lead to detrimental effect on health
and productivity [34]. On the other hand, it is also known that lying time is negatively
associated with milk yield at the individual-cow level, since high-producing animals need
more time to eat and being milked [34]. The high accuracy with which the accelerometer
on the left paralumbar fossa can detect the animal’s posture would allow to detect in
individual cows even slight changes in the time spent lying, which if prolonged over
time, could be associated with warning signals for the farmer, as reported by Stangaferro
et al. [7] in the case of mastitis detection. Animals spending an inadequate time lying or
experiencing sudden changes in it might be affected by cow-related factors such as parity,
stage of lactation, ill health, and lameness, as reported by King et al. [35], and the farmer
has the opportunity to focus his attention on the reported animal and discriminate among
different causes. In case inadequate lying time or its changes over time affect a group of
animals in the same period, the cause it is more likely linked to housing or management
issues [34]. The latter include the design and surface of the resting area, overstocking,
thermal conditions, time spent outside the stall for milking, etc. [34].

Compared with posture, the prediction of behavior was less performing, given that
even RF, which indeed was the best model, showed an overall accuracy in the prediction
of behavior of 0.759. This is likely due partly because we tried to differentiate a good
number of different behaviors, and because some of these behaviors, such as feeding and
ruminating, were characterized more by movements of the head and less by movements
and position of the body. Our outcomes were very good in predicting resting behavior
(accuracy of 0.96) and were in line with other studies that tried to predict multiple behaviors
with a single sensor, such as Roland et al. [15], who found an overall accuracy of 0.708, and
Martiskainen et al. [18], who reported, for example, a slightly lower precision in predicting
rumination (0.785) but higher sensitivity and precision for feeding (0.75 and 0.81) and
walking (0.79 and 0.79). Other authors, who applied the accelerometer to the collar and
limited the number of behaviors investigated, found for feeding a sensitivity ranging from
0.93 to 0.98 [17,25], whereas, combining behavior and posture (e.g., ruminating–standing
or ruminating–lying), other researchers found a sensitivity and specificity up to 0.97 and
0.99, respectively [17].

In the present study, for all the predictive models, the most common misclassifications
were about behaviors classified as standing still or feeding instead of moving. This probably
depends on the fact that cows moving slightly during exploration or grooming activities,
making few steps in a minute, can be easily confused with those standing still or feeding,
as reported by Benaissa et al. [14], when using leg accelerometers. Resting was commonly
mistaken for ruminating and feeding was commonly misclassified for moving. Again,
resting and ruminating behaviors, especially when lying, have similar movement patterns,
differing almost only for the movement of the jaws and the head.

All the algorithms tested in this study to build the best fitting models have already
been used in this field for some years such as SVM and KNN [14,18], and the ones which
allowed us to build the best fitting models, such as RF and XGB, are gaining more and
more importance for the diagnosis of diseases [11] and the detection of behaviors, and are
reported to give better predictions than the others, as found in our study [17]. Both of them
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are effective algorithms and present elements that allow high performance. The RF is less
likely to overfit by averaging several trees, but at the same time, it has low variance: by
using multiple trees, it reduces the chance of stumbling across a classifier that does not
perform well because of the relationship between the training and testing data. The XGB
is another algorithm that can perform implicit variable selection, can capture non-linear
relationships in the data, high-order interactions between inputs, and scale well to large
datasets. Comparing these two models, if parameters are carefully tuned, XGB can result
in better performance than RF. However, XGB may not be a good choice if there is a lot
of noise, as it can result in overfitting. XGB also tends to be harder to tune up than RF.
Behaviors such as ruminating and feeding are extremely important to assess whether the
chemical and physical characteristics of the ration are adequate but may also be affected
by housing and management strategies, such as the amount of space at the feed bunk, the
frequency with which feed is pushed-up in the bunk, etc. [36]. Furthermore, variation
in the activity and rumination pattern are reported to be extremely useful in the early
detection of disease onset [7,10]. Since, so far, the accuracy of rumination detection with
our method is around 0.80, it appears to be more suitable to detect rumination changes in a
group, due to mistakes in diet preparation or management, than in individuals, due to the
onset of a disease. Overall, our results refer to mid-lactating cows belonging to a single
breed, housed in one farm and sampled for one day. Although they look promising, their
application to commercial farms requires first their confirmation from further studies taking
into account different breeds and housing and environmental conditions. Furthermore,
during 24/7 monitoring, because of the impossibility of removing transition behaviors, we
could experience a slightly lower accuracy for short-term behaviors such as moving and
standing still. As regards the position of the sensor on the left flank, the harness used in
this experiment was tested during the pre-trial period and allowed to keep the sensor in
position for up to 50 days. The elastic band helped to prevent the other cows from pulling
off the accelerometer. Despite the harness used working quite well during the experiment,
the application method of the sensor should be simplified and improved. Moreover, further
trials should be carried out by connecting the accelerometer to a transmitter to allow the
continuous collection of data remotely.

5. Conclusions

Overall, the application of a single triaxial accelerometer at the left side paralumbar
fossa of mid-lactating dairy cows has given very accurate results concerning the prediction
of posture and the resting behavior, whereas other behaviors such as standing still, feeding,
moving, and ruminating overall showed an accuracy below 0.80, which is lower than that
found in other studies. These outcomes demonstrate that this location has a great potential
for the collection of important data in dairy cows. Further studies on the improvement of
the application method and the feasibility of predicting physiological data from the same
sensor in the same position are warranted.
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19. Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and
classify sheep behavior at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [CrossRef]

20. Arai, S.; Okada, H.; Sawada, H.; Takahashi, Y.; Kimura, K.; Itho, T. Evaluation of ruminal motility in cattle by a bolus-type wireless
sensor. J. Vet. Med. Sci. 2019, 81, 1835–1841. [CrossRef]

21. Lush, L.; Wilson, R.P.; Holton, M.D.; Hopkins, P.; Marsden, K.A.; Chadwick, D.R.; King, A.J. Classification of sheep urination
events using accelerometers to aid improved measurements of livestock contributions to nitrous oxide emissions. Comput.
Electron. Agric. 2018, 150, 170–177. [CrossRef]

22. Reece, W.O. Functional Anatomy and Physiology of Domestic Animals; Blackwell Publishing: Ames, IA, USA, 2009.
23. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]

http://doi.org/10.3168/jds.2013-7560
http://doi.org/10.3168/jds.2019-16537
http://doi.org/10.1016/j.livsci.2018.06.009
http://doi.org/10.1016/j.anifeedsci.2018.05.009
http://doi.org/10.1016/j.anifeedsci.2020.114421
http://doi.org/10.1007/s00484-016-1222-z
http://www.ncbi.nlm.nih.gov/pubmed/27498881
http://doi.org/10.3168/jds.2016-10908
http://www.ncbi.nlm.nih.gov/pubmed/27372584
http://doi.org/10.20506/rst.33.1.2273
http://www.ncbi.nlm.nih.gov/pubmed/25000791
http://doi.org/10.7120/09627286.21.3.339
http://doi.org/10.1016/j.tvjl.2017.11.013
http://doi.org/10.1016/j.compag.2020.105233
http://doi.org/10.3168/jds.2017-14025
http://www.ncbi.nlm.nih.gov/pubmed/29501340
http://doi.org/10.3168/jds.2015-10843
http://www.ncbi.nlm.nih.gov/pubmed/27423949
http://doi.org/10.1016/j.rvsc.2017.10.005
http://www.ncbi.nlm.nih.gov/pubmed/29174287
http://doi.org/10.3168/jds.2018-14720
http://doi.org/10.3168/jds.2012-5670
http://doi.org/10.1016/j.compag.2019.105179
http://doi.org/10.1016/j.applanim.2009.03.005
http://doi.org/10.1016/j.applanim.2016.05.026
http://doi.org/10.1292/jvms.19-0487
http://doi.org/10.1016/j.compag.2018.04.018
http://doi.org/10.1177/001316446002000104


Animals 2021, 11, 2972 13 of 13
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