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Turner syndrome (TS), the most common type of X chromosomal disorder, has

various, clinical manifestations. Among these, primary hypogonadism, which

may lead to osteoporosis, is a life-long health issue. A high prevalence of

fractures associated with osteoporosis is a major problem in patients with TS,

where it may be 1.4-2.2 times higher than in healthy individuals and increases

with age.

Among the risk factors associated with fractures in TS, hypogonadism is

arguably the most important. Estrogen deficiency due to hypogonadism

leads to low bone mineral density (BMD), resulting in a high prevalence of

bone fractures. Estrogen replacement therapy (ERT) in patients with TS

reportedly improved their BMD. However, other causes of low BMD may

exist, given that this condition begins in the prepubertal period in patients

with TS.

Most previous studies have reported low BMD in patients with TS using dual-

energy X-ray absorptiometry (DXA), but this method has some limitations. Areal

BMD values assessed by DXA were influenced by bone size and short stature,

resulting in an underestimation of BMD. Currently, volumetric BMD values may

be accurately obtained using peripheral quantitative computed tomography

(pQCT). pQCT, high-resolution pQCT, and the trabecular bone score can also

be used to evaluate bone quality, including bone geometry and

microarchitecture, in TS.

The present review discusses the high fracture risk, role of estrogen deficiency

in low BMD, advantages and disadvantages of various bone assessment

methods, and characteristics of bone quality in TS.
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1 Introduction

Turner syndrome (TS) is a congenital disorder resulting from

partial or complete loss of one X-chromosome and has a prevalence

of approximately one in 2000 live births (1). Patients with TS have

various symptoms, such as short stature, hypogonadism, cardiac

malformation, and fractures, although their clinical phenotype

varies depending on their karyotype (1, 2). A high fracture risk is

especially problematic for patients with TS because the prevalence

of fractures can be as high as 30.5-32.2% (3–5).

Numerous, previous studies and reviews have reported the

characteristics of fractures in TS (2, 3, 6), which are caused by

estrogen deficiency, a high risk of falling, X chromosomal

abnormalities, and comorbidities of TS (6, 7). In particular low

bone mineral density (BMD) stemming from estrogen deficiency

is associated with an increased risk of fractures. BMD was higher

in patients with TS with a spontaneous menstrual cycle than in

those with primary hypogonadism (8–12). Indeed, estrogen

replacement therapy (ERT) has been found to improve BMD

in TS (13).

Dual-energy X-ray absorptiometry (DXA) is often used to

assess BMD in TS but it is crucial to understand its limitations.

Areal BMD (aBMD) values obtained using DXA are influenced

by bone size and short stature, resulting in an underestimation of

BMD (14, 15). This limitation of DXA has implications for

patients with TS, most of whom have short stature. In recent

years, quantitative computed tomography (QCT) has come to be

used more often to assess volumetric BMD (vBMD) (16–19).

Bone quality, including bone geometry and microarchitecture,

contribute to increasing or decreasing the risk of fractures

independently of BMD (20). Bone quality in TS is currently

evaluated using peripheral QCT (pQCT), high-resolution pQCT

(HR-pQCT), and the trabecular bone score (TBS).

The present review aims to summarize the high fracture risk,

role of estrogen deficiency in low BMD, advantages and

disadvantages of various bone assessment methods, and

characteristics of bone quality while focusing on TS.
2 High fracture risk in Turner
syndrome

2.1 Epidemiology of the fracture risk in
Turner syndrome

Patients with Turner syndrome (TS) have a 30.5-32.2%

prevalence of fractures (3–5). Population databases show that the

risk of fractures is 1.4-2.2 times higher in patients with TS than in

healthy individuals (21, 22). The high fracture risk in these patients

has its onset in childhood (21, 23) and increases with age (24, 25).

The odds ratio (OR) of the fracture rate between patients with TS
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and healthy subjects was 1.99 for those younger than age 45 years

and 19.26 for those older than 45 years (24). In general, the

occurrence of a fracture depends on bone strength and the

frequency, type and severity of trauma. Bone strength is

determined by bone density and bone quality, including the

microarchitecture of cortical and trabecular bone and bone

geometry (26). All these factors may contribute to increasing the

risk of fractures in patients with TS.

While numerous, previous studies have demonstrated a high

fracture risk in patients with TS, some have denied any

significant difference from the fracture risk in the general

population. Ross et al. compared past fractures in 78 patients

with TS aged 4-13 years with the annual fracture rate in healthy

children and reported that the total, annual fracture rate did not

differ significantly between these groups (27). Another report

demonstrated that the total fracture rate in 267 adult patients

with TS (30.5%) did not differ significantly from the

epidemiological data showing a rate of 32-44% (4). These

reports were possibly biased because the data on the fracture

rate in patients with TS and healthy controls were collected in

different regions and at different times. The impact of the role of

ERT on fractures is not entirely clear although its impact on

BMD has been studied.
2.2 The pathophysiology underlying the
high fracture rate in Turner syndrome

A major contributor to fractures in TS is the loss of bone

density associated with estrogen deficiency. Estrogen suppresses

osteoclasts, and estrogen deficiency weakens this suppression,

resulting in osteoclast activation and loss of BMD (28). Estrogen

deficiency also contributes to decreased intestinal calcium

absorption and increased urinary calcium loss, which occurs

when parathyroid hormone secretion decreases in response to

elevated serum calcium resulting from bone resorption (29).

Elevated follicle-stimulating hormone (FSH) is also

associated with decreased BMD in TS patients (6). FSH

decreases bone density by directly binding to FSH receptors

on osteoclasts and indirectly by promoting the production of

TNF-a, which in turn promotes the production of osteoclasts

(30, 31). Sun et al. demonstrated that neither FSHb nor FSH

receptor null mice had decreased BMD despite having severe

hypogonadism (30). Furthermore, they demonstrated that BMD

increased in haploinsufficient FSHb+ mice with normal ovarian

function, suggesting that FSH directly affects bone loss (30).

Many patients with TS have a high FSH level from the neonatal

period or early childhood (32), and it is possible that a high FSH

level is related in some way to decreased BMD.

Bone fragility in TS is caused not only by decreased BMD but

also decreased bone quality, including changes in bone geometry
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and microarchitecture. An increase in the total bone area, low

cortical bone thickness in the radius, and small vertebrae and

femurs have been reported in patients with TS (17–20, 33)

(Table 1). The characteristics of radial bone in TS may be

caused by a deletion of entire coding regions in the SHOX

gene (SHOX-del) (33). The microarchitecture is affected by
Frontiers in Endocrinology 03
remodeling, a process of bone formation mediated by

osteoblasts, and bone resorption mediated by osteoclasts (7).

Remodeling in TS shows an imbalance between these

processes, with bone resorption being more pronounced

than bone formation (36), resulting in poor trabecular

microarchitecture (35).
TABLE 1 Bone density and quality in TS according to QCT, pQCT, and HR-pQCT.

Age
(y)

Number Method Area Cortical/
Trabecular

Value of cases
(g/cm3)

Values of
control
(g/cm3)

Bone Geometry

Nanao et al.,
2002 (16)

4-6.9 5 QCT Vertebral Total 0.226 (0.036) 0.216 (0.031) N/A

7-9.9 8 0.193 (0.029) 0.220 (0.033) ‡

10-
12.9

15 0.177 (0.032) 0.217 (0.017) ‡

Holroyd et al.,
2010 (34)

12.7† 22 pQCT Proximal
radius

Total -1.04 (1.06) -1.29 (1.13) The cortical thickness in the TS group
was reducedCortical -2.58 (1.30) -1.38 (1.40) ‡

Soucek et al.,
2011 (17)

10.3
(2.2)
†

22 pQCT Proximal
radius

Total 0.511 (0.100) N/A Cortical area and cortical thickness were
low in all age groups.Cortical 0.936 (0.059) N/A

14.3
(1.7)
†

25 Total 0.653 (0.099) N/A

Cortical 1.026 (0.057) N/A

17.4
(1.2)
†

20 Total 0.657 (0.106) N/A

Cortical 1.091 (0.038) N/A

Pitukcheewanont
et al., 2011 (20)

11.9
(3.3)
†

22 QCT Vertebral Total 0.230 (0.036) 0.279 (0.048) ‡ Vertebrae and femurs of patients with
TS were smaller.Femoral Total 2.011 (0.063) 2.033 (0.066)

Hansen et al.,
2012 (35)

35
[20-
61]

32 HR-
pQCT

Distal
radius

Cortical 0.961 [0.83-1.02] 0.922 [0.76-1.00] Cortical thickness was higher in TS in
the radius but not the tibiaTrabecular 0.112 (0.036) 0.154 (0.044) ‡

Tibia Cortical 0.927 [0.81-0.97] 0.890 [0.80-0.96]

Trabecular 0.135 (0.040) 0.176 (0.044) ‡

Soucek et al.,
2013 (33)

10.3
(2.2)
†

22 pQCT Distal
radius

Trabecular 0.185 (0.033) 0.215 (0.046) § Increased total bone area and a thin
cortex were observed in patients with TS.

Soucek et al.,
2015 (18)

15.3
(3.2)
†

32 pQCT Radius Cortical 1.108 (0.052) 1.137 (0.044) ‡ Cortical thickness was misinterpreted as
decreased radial bone density due to the
partial volume effect.

Tibia Cortical 1.104 (0.048) N/A

Soucek et al.,
2018 (19)

10.0
(2.2)
†

15 pQCT Distal
radius

Trabecular 0.186 (0.031) N/A Total bone cross-sectional area increased
with age.

Proximal
radius

Cortical 1.057 (0.031) N/A

13.5
(1.5)
†

14 Distal
radius

Trabecular 0.165 (0.031) N/A

Proximal
radius

Cortical 1.084 (0.037) N/A

16.1
(0.4)
†

3 Distal
radius

Trabecular 0.149 (0.015) N/A

Proximal
radius

Cortical 1.155 (0.019) N/A
y, year; vBMD, volumetric bone mineral density; QCT, quantitative computed tomography; pQCT, peripheral QCT.
†Values are expressed as the mean, median or number.
‡Statistically significant.
§Values of SHOX-D patients.
NA, Not available.
frontiersin.org

https://doi.org/10.3389/fendo.2022.967857
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ikegawa and Hasegawa 10.3389/fendo.2022.967857
2.3 Pathogenetic mechanism of the
fracture risk in Turner syndrome

2.3.1 Estrogen deficiency
The most obvious cause of fractures in patients with TS is

hypogonadism. ERT reportedly decreased the fracture rate in

patients with hypogonadism (14). Patients with primary

amenorrhea caused by some other diseases besides TS had a

significantly higher fracture prevalence than healthy controls

(33% vs 5%) (37), suggesting that hypogonadism was one of the

significant clinical risk factors associated with fractures.

Gravholt et al. published two manuscripts on the fracture rate

in patients with TS, demonstrating the importance of ERT for

fracture risk reduction in these patients. In the first study, they

used the Danish Population Database to show that the relative

risk (95% confidence interval [CI]) of fractures in patients with

TS was 2.16 (1.50-3.00) compared to the general population (21).

Their second study, which employed a similar method,

demonstrated that the hazard ratio (95% CI) for fractures in

patients with TS was 1.35 (1.04-1.75) (22). The higher fracture

risk found in the first study was the result of a difference in the

percentage of subjects receiving ERT between the two studies; in

the former study, almost none of the patients had received ERT

while in the second study, 83% had, indicating the efficacy of

ERT. Although some studies have investigated the relationship

between BMD and the timing and dosage of ERT as described

below, no reports have hitherto directly investigated the

relationship between these ERT-related factors and the

frequency of fractures.

2.3.2 High risk of falling
A higher risk of falling associated with hearing impairment

also contributes to the high fracture rate in patients with TS.

Several, previous studies reported an association between

hearing impairment and the fracture rate (4, 5). Hearing

impairment leads to impaired speech perception and spatial

orientation, increasing the risk of falling resulting in forearm

fractures (4). This type of fracture is common in patients with

TS, whose annual, childhood incidence of wrist fractures was

significantly higher than in healthy children (9.1/1000 vs 3.5/

1000, p < 0.003) (27).

2.3.3 X chromosomal abnormalities
Other reasons for the high fracture risk in patients with TS

includes X chromosomal abnormalities (7, 38). SHOX-del,

which is observed in almost all patients with TS, may be the

one of the most important factors. Altered bone shape and

microarchitecture, observed in many patients with TS, possibly

stem from SHOX-del (39). Children with SHOX deficiency

(SHOX-D) had an increased total bone area (Z-score = 1.5 ±

1.4, p = 0.001) and thin cortex (Z-score = -2.0 ± 1.2, p < 0.001)

than healthy subjects (33). Similar results were observed in
Frontiers in Endocrinology 04
patients with TS (33) (Table 1). Although no studies have as

of yet examined the higher fracture rate associated with SHOX-

D, the previously mentioned differences in bone characteristics

may contribute to the higher fracture rate in patients with TS.

Other genes associated with fractures in TS include bone

morphogenetic protein 2 (BMP2), which is involved in bone

mineralization; insulin-like growth factor 2 (IGF2), which is

involved in bone repair and formation; and secreted frizzled-

related protein 1 (sFRP1), which plays an important role in Wnt

signaling (40–42). Genome-wide methylation analysis profiling

has shown that these genes are not located on the X chromosome

but are downregulated in 45, X cells (43).

2.3.4 Comorbidities of Turner syndrome
Comorbidities of TS, such as obesity, diabetes, inflammatory

bowel disease (IBD), and thyroid disorder affect bone health (7,

38). Obesity activates both osteoblast and osteoclast functions

(44), and epidemiological data show that obesity increases the

fracture risk (45). A systematic review demonstrated that the

relative risk (95% CI) of any type of fracture in patients with

diabetes mellitus was 1.5 (1.3-1.8) (46). A population study

reported an increased fracture risk associated with thyrotoxicosis

(47), and a review article reported that patients with IBD had an

increased fracture risk (48). However, the nature of the

association of thyrotoxicosis and IBD with the fracture rate is

still unknown (7).
3 Low BMD and estrogen deficiency
in patients with Turner syndrome

Patients with TS have low bone mineral density (BMD), which

is one of the causes of the high prevalence of fractures (5). An

association between BMD and the fracture risk was has been

observed both in healthy individuals and patients with TS (5, 49).

A cohort study of 124, healthy, subadult females indicated that the

fracture risk was significantly higher in healthy subjects with a low

total volumetric BMD (vBMD) of the distal radius (odds ratio (OR):

1.71) (49). An interview of 177 adult patients with TS demonstrated

that an increased risk of fractures was independently associated with

low vertebral BMD as measured by dual-energy X-ray

absorptiometry (DXA) (OR: 3.2; 95% CI: 1.0-10.5) (5). Based on

these results, BMD is now often used as a surrogate outcome to

predict the risk of fractures although other factors, such as bone

microarchitecture, bone geometry, and the high risk of trauma

owning to hearing impairment described above, are also potential

risk factors.

One of the most significant causes of low BMD in patients

with TS is estrogen deficiency, a well-established finding of this

syndrome, as well as postmenopausal osteoporosis (7, 50, 51).

Several facts indicate the importance of estrogen for BMD in

patients with TS. First, BMD was higher in patients with TS with
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a spontaneous menstrual cycle, which occurs in 6% of patients

with TS (25, 52), than in those with primary hypogonadism (8–

12). Second, the later ERT is initiated, the lower the resulting

BMD is (13, 53). Third, the BMD Z-score was lower in

adolescence than in early childhood (8), suggesting that BMD

did not increase as much during adolescence in these patients as

in healthy individuals, who are typically exposed to estrogen. In

this study, the mean starting age for ERT was 13.5 (range 7.1-

21.3) years, or later than the currently recommended age.

Therefore, the BMD Z score might not have decreased in these

patients if ERT had been started at the appropriate age.

ERT is known to improve BMD in patients with TS, a

finding which was borne out by our own study (54), which

compared the BMD Z-score measured by DXA before and after

cyclic estrogen and progesterone therapy (Kaufmann therapy) in

18 patients with TS and found an increase in the BMD Z-score

after the start of therapy (54). To the best of our knowledge, no

other study has compared BMD before and after Kaufmann

therapy in the same subjects.

ERT is effective in increasing BMD, but the increase is

insufficient and needs to be improved. BMD was higher in

patients with TS with a spontaneous menstrual cycle than in

those with primary hypogonadism even if they received ERT (8–

12), suggesting that there is room for improvement in the

conventional ERT. In these reports, the mean starting age of

ERT was 13.5-20.2 years, and the mean age of menarche onset

was 14.7-17.8 years (8–11). Since BMD is known to increase

more with earlier ERT initiation (13), patients with TS may

achieve long-term BMD if they begin ERT around the recently

recommended age of 11-12 years.

Low BMD in patients with TS reportedly begins before

pubertal ages (16, 55), suggesting that hypogonadism might

not be the only cause. Nanao et al. measured bone density in the

lumbar spine using QCT, which mainly represents trabecular

BMD, in 21 subadult females with TS and 20, healthy, age- and

sex-matched controls (16). The study demonstrated lower BMD

in the patients with TS than in the healthy controls in the

prepubertal period (16). The authors also observed a gradual

decline in vertebral vBMD before prepubertal age (16) (Table 1).

Hogler et al. published a study supporting these findings,

demonstrating that the decrease in vertebral vBMD in patients

with TS occurred before pubertal age (55). One, possible

explanation of these findings of low trabecular BMD is the low

level of estrogen secretion before pubertal age.

The optimal timing of the start of estrogen replacement

therapy for TS is uncertain (10, 54). Saito et al. demonstrated

that age at ERT initiation was significantly related to BMD as

measured by DXA (53). Another study demonstrated that

height, age, and cortical thickness-adjusted cortical vBMD as

measured by pQCT was positively correlated to the duration of

ERT (17). Recent guidelines recommend that estrogen

replacement begin between ages 11 and 12 years and be
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increased to the adult dosage over 2-3 years (25, 56) although

the evidence in terms of BMD is pending.

Furthermore, the optimal, initial dosage and the criteria for

increasing the dosage have not been established. One, previous

report demonstrated that a high oral 17B-estradiol dosage (4

mg/day) did not affect BMD significantly in adult patients with

TS (57). Our previous report demonstrated that BMD in patients

with TS who began ethinyl estradiol therapy at an ultra-low

dosage (1-5 ng/kg/day) was no different from that of their

counterparts receiving classical conjugated estrogen (12). A

recent study recommended 3-7 µg/day for transdermal E2 or

0.25 mg/day for 17b oral E2 as the pubertal initiation dose (25)

although this recommendation is not evidence-based.

Diet and exercise habits may also contribute to low BMD in

patients with TS. The serum vitamin D level was shown to be

lower in patients with TS, which may be a contributing cause of

lower BMD (38, 58). Physical activity is also reportedly

associated with high BMD in patients with TS (59). Thus, an

appropriate diet with sufficient vitamin D and exercise are

important for bone health, especially in TS (7, 11).
4 Bone density and quality
assessment methods in patients
with Turner syndrome

One of the most common methods of assessing BMD is

DXA, a low-dose x-ray technology that measures the attenuation

of x-ray beams as they pass through tissues of varying density

(15). The recommended measurement sites are the lumbar

spine, distal radius, proximal femur, or the whole body for

adults, and the lumbar spine or total body less head (TBLH)

for children (60, 61). The lumbar spine and TBLH consist

mainly of trabecular bone, and the distal radius, proximal

femur, and whole body consist primarily of cortical bone (60).

DXA is rapid, safe, widely available, and use comparatively lower

levels of radiation (15). However, in general, DXA can only

measure aBMD, which is expressed in g/cm2, but not vBMD,

which is expressed in g/cm3. This limitation may cause the

values to be skewed by short stature and bone size (14, 15).

Although there are various methods of using by DXA to assess

vBMD, they are generally only theoretical (15). An exception is

the method described by Kroger et al., which uses the cylindrical

shape of bone to calculate the vBMD using the following

formula: vBMD = aBMD*[4/(p *width of vertebral)] (60, 62).

This method has been validated for use in children aged 6-19

years (60).

QCT, which is generally a method of evaluating the lumbar

spine or proximal femur using computed tomography (CT),

allow us to directly measure the vBMD (in g/cm3) (15, 63).

Therefore, QCT can provide the true BMD value independently

of short stature and bone size. Furthermore, this method can be
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used to evaluate cortical and trabecular bone separately (15, 63).

However, one of the disadvantages of QCT is that patients are

exposed to high doses of radiation (15, 63).

pQCT is a technique for evaluating radial and tibial BMD

using the smaller, less expensive peripheral CT scan (15, 63).

This method can assess vBMD using a lower radiation dose (64).

HR-pQCT can accurately assess cortical BMD with less partial

volume effect (15, 18), and also can measure bone

microstructure by using indicators, such as cortical porosity,

trabecular number, and trabecular spacing, to produce an

assessment of bone quality (65).

TBS is an indirect method of measuring the trabecular

microarchitecture based on DXA data (66, 67). TBS is

calculated as the sum of the squared gray-level differences

between pixels at a specific distance (66, 67). The better the

trabecular microarchitecture, the more gray-level variation of

small amplitude there is, which leads to increasing the TBS score

(67). This method is easy, cost-effective, and involves lower levels

of radiation exposure. The disadvantage of TBS is the lack of

reference data (66).
4.2 Findings and limitations of bone
density and quality assessments in
Turner syndrome

4.2.1 Findings and limitations of methods of
assessing bone density in Turner syndrome

The methods described above are used to assess BMD or

bone quality in patients with TS. Numerous, previous studies

have diagnosed low BMD in patients with TS using DXA, but

this method has limitations, especially when used in patients

with TS (7, 14). Bakalov et al. demonstrated the aBMD value on

DXA was influenced by bone size and short stature, resulting in

an underestimation of BMD in patients with TS (14). They

demonstrated that a difference in the BMD values for the

femoral neck between patients with TS and age-matched,

healthy, adult females decreased after adjusting for bone

size (14).

Several reports have assessed the vBMD in patients with TS

using either DXA or QCT (16, 38). Gravholt et al. assessed the

vBMD of the lumbar vertebrae in patients with TS using DXA

(38), which reconstructs the vertebrae using four scans to allow a

three-dimensional view. Nanao et al. measured the vBMD of the

lumbar vertebrae in patients with TS using QCT, which can

directly provide three-dimensional assessment of BMD, and

demonstrated that the vBMD had already decreased during

the prepubertal period (16). These methods can reduce the

distorting effect of bone size and short stature on BMD

assessments (15).

Recently, pQCT, which measures radial bone density and

involves less radiation exposure than QCT, has come into use
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(17, 19) (Table 1). Several studies used pQCT to show that the

cortical BMD in patients with TS during and after puberty was

lower than in healthy, adult females (17, 34, 68). However,

Soucek et al. demonstrated that the cortical BMD on pQCT did

not decrease in patients with TS and that the decline in cortical

BMD in TS reported previously was due to the partial volume

effect described mentioned above (18), which skews assessments

of the cortical BMD, particularly in patients with a cortical

thickness < 2.0 mm (63, 69). A previous study using HR-pQCT,

which is less affected by the partial volume effect, reported no

difference in cortical BMD between patients with TS and control

subjects (35).
4.2.2 Findings and limitations of bone quality
assessments in Turner syndrome

Bone quality contributes to increased or decreased risk of

fractures independently of BMD (26). Recent studies have

described bone quality in TS, including bone geometry

and microarchitecture.

Bone geometry assessments using QCT and pQCT

demonstrated that the total bone area increased, and cortical

thickness decreased, in TS (Table 1). Soucek et al. demonstrated

that the total bone area Z-score (SD) and cortical thickness Z-

score (SD) of the proximal radius in prepubertal patients with TS

was 0.9 (1.5) and -0.7 (1.2), respectively (33). These findings

were more pronounced in patients with SHOX-D (33),

suggesting that SHOX-del is a major contributor to altered

bone geometry in TS. One of the hypotheses advanced to

explain the smaller changes in bone geometry seen in TS than

in SHOX-D holds that low serum estrogen might suppress

changes in bone geometry (33). Since there are many

unknowns regarding the relationship between estrogen and

bone geometry, future studies are needed to explore this issue.

Microarchitecture is another important factor determining

bone quality and is associated with resistance to fractures (70). A

previous study used HR-pQCT to demonstrate weakened

trabecular microarchitecture in TS. Hansen et al. compared

the radial bone microarchitecture in adult patients with TS

and healthy controls using HR-QCT and found that cortical

porosity was lower in TS patients (0.58 [0.10-2.27]% versus 1.14

[0.27-2.92]%; p<0.0001) (35). Their study demonstrated a lower

trabecular value (1.42 [0.42-2.15] mm-1 versus 1.92 [1.77-2.07]

mm-1; p<0.0001) and higher trabecular spacing (0.65 [0.40-2.28]

mm versus 0.44 [0.36-1.9] mm) (35). The TBS, an indirect

method of measuring trabecular microarchitecture, is also

considered a useful predictor of fractures (71). The TBS is

calculated using data from DXA, is less burdensome to

patients, and involves less radiation exposure than other

methods of evaluating bone microarchitecture, such as HR-

pQCT (53, 71). Two, previous studies demonstrated an

association between the TBS and fracture history, vertebral
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and femoral neck BMD, and age in patients with TS (53,

71) (Table 2).

Further research is needed to evaluate bone quality,

including bone geometry and microarchitecture, and more

studies using pQCT, HR-pQCT, and the TBS rather than only

DXA are needed to identify the best method and predictor of the

fracture risk in patients with TS.
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