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Abstract
The discourse surrounding the structural organization of mutualistic interactions mostly revolves around modularity and nestedness. The 
former is known to enhance the stability of communities, while the latter is related to their feasibility, albeit compromising the stability. 
However, it has recently been shown that the joint emergence of these structures poses challenges that can eventually lead to limitations 
in the dynamic properties of mutualistic communities. We hypothesize that considering compound arrangements—modules with internal 
nested organization—can offer valuable insights in this debate. We analyze the temporal structural dynamics of 20 plant–pollinator 
interaction networks and observe large structural variability throughout the year. Compound structures are particularly prevalent during 
the peak of the pollination season, often coexisting with nested and modular arrangements in varying degrees. Motivated by these 
empirical findings, we synthetically investigate the dynamics of the structural patterns across two control parameters—community size 
and connectance levels—mimicking the progression of the pollination season. Our analysis reveals contrasting impacts on the stability 
and feasibility of these mutualistic communities. We characterize the consistent relationship between network structure and stability, 
which follows a monotonic pattern. But, in terms of feasibility, we observe nonlinear relationships. Compound structures exhibit a 
favorable balance between stability and feasibility, particularly in mid-sized ecological communities, suggesting they may effectively 
navigate the simultaneous requirements of stability and feasibility. These findings may indicate that the assembly process of mutualistic 
communities is driven by a delicate balance among multiple properties, rather than the dominance of a single one.
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Significance Statement

Mutualistic relationships between species, in which both organisms benefit from their association, constitute a vital building block of 
ecosystems. Understanding how these relationships shape complex ecosystem communities is a central topic in community ecology. 
This importance is underscored by the negative implications arising from climate change, habitat loss, and species invasions. Our study 
examines how network patterns emerge from individual interactions and explores their implications for the stability and feasibility of 
ecosystems. Analyzing 20 time-resolved plant–pollinator networks, we find that compound network structures, combining modular and 
nested organization, are prevalent. Furthermore, synthetic experiments challenge the notion of a universally advantageous organiza-
tional pattern, confirming the importance of a delicate balance among multiple properties in the assembly of mutualistic communities.
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Introduction
Mutualistic species interactions—their quantity, diversity, and struc-
ture—play a pivotal role in preserving ecosystems (1). However, they 
are known to respond to varying biotic and abiotic conditions (2) and 
to change across geographic locations (3). Indeed, the impacts of cli-
mate change (4, 5), habitat loss (6), and species invasions (7, 8) are 
profoundly affecting mutualistic interactions all over the planet. As 
a paradigmatic example of a complex system (9), understanding 
the influence of these intricate dynamics on system-scale properties 
presents a major challenge in the field of community ecology.

In the specific context of plant–pollinator communities, which 
exhibit marked annual periodicities, it is usually convenient to 

characterize and analyze these interactions across various time 

frames (10). This approach is indispensable, as species interac-

tions typically involve complex and intertwined dynamic proc-

esses that give rise to diverse patterns at various time scales (5, 

11–13). At larger time scales (years to decades), turnover and indi-

vidual interactions vary (4, 11, 14–16) (stochastically, perhaps 

(17)), but the overall structure of the interaction networks seems 

to remain quite stable across seasons (4, 14–16, 18), also when 
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considering a reasonable range of aggregation windows, from 
weekly to monthly intervals (19). At shorter time scales, during 
the course of the season, plant–pollinator communities also 
undergo changes in the number of species (20), leading to varia-
tions in connectance (21, 22), as well as experiencing significant 
turnover (23). These variations in the underlying conditions of 
the system lead to complex rewirings of the relations between 
species (20, 21, 23) and the emergence of preferential attachment 
mechanisms (12) that affect the macro- and mesoscale structure 
of their interaction network (24).

In each of these temporal scales, scholars have investigated 
network micro- to macroscopic properties. At the local level, sev-
eral studies have examined species (node) dynamics and their im-
plications, such as structural roles (20), intraday dynamics (20), 
and phenological impacts (25), among others. Moving up to the 
system’s meso- and macroscale, the emergence of structured in-
teractions has been attributed to various dynamical processes 
(26, 27), including different levels of complexity and detail: niche 
patterns (28, 29), niche dynamics (30, 31), eco-evolutionary mech-
anisms (31–37), phylogenetics (38–40), geographical constraints 
(39), or abundance maximization (22), among others (41). While 
these models have greatly enriched our understanding of eco-
logical communities, elucidating the dynamical properties re-
sponsible for the resilience and adaptability of such structured 
interactions remains challenging, and to some extent limited to 
time-aggregated interaction networks.

In this last set-up, the seminal work by Bascompte et al. (42) 
demonstrated that a significant number of plant–pollinator and 
seed-dispersal networks exhibit nested arrangements (43, 44), 
i.e. specialist species interact only with subsets of those interact-
ing with the more generalists. Similarly, in Ref. (45) it has been 
noted that pollination communities can also exhibit a modular 
character (46–49), with densely linked groups of nodes, which 
are sparsely connected to the rest of the network. From the dy-
namical point of view, the identification of nested arrangements 
has been associated with various beneficial properties (35), such 
as promoting diversity (50), maximizing species abundances 
(22), or enhancing system feasibility (51, 52); which, within the 
Lotka–Volterra framework, characterizes the range of all possible 
growth rates that result in positive stationary abundances for all 
species, given an established interaction matrix. However, studies 
suggest that nested networks tend to be less stable (53, 54), where-
as greater stabilizing effects are associated with modular struc-
tures (55–57).

These findings challenge the notion that a single organizational 
pattern is universally advantageous. Moreover, empirical re-
search (58) and analytical evidence (59) have shown that these 
two patterns may not be structurally compatible with each other, 
contradicting the original proposition put forward in (45). So far, 
the study of the interplay between structure and dynamics in eco-
logical communities has primarily focused—with rare exceptions 
(60)—on one-to-one mappings. That is, examining the corres-
pondence of a given dynamical property to a single architectural 
pattern, or vice versa. Nevertheless, this view may be too limited 
to fit some of the complex dynamics observed in natural systems, 
which may potentially evolve concurrently by optimizing several 
ecological variables (61–65), admittedly probably with some corre-
lations (66).

A recent direction to fill this gap, currently attracting fresh 
interest, points at hybrid structural patterns. These complex or-
ganizational configurations, which have also received attention 
outside ecology (67), are defined as a combination of simpler net-
work macro- and mesoscale arrangements at different interacting 

scales. In the field of ecology (27) and bio-geography (68), these 
have crystalized in the definition of compound structures and, 
much later, in a formal definition: in-block nested (IBN) networks 
(69), that describe communities with compartmentalized species 
interactions with internal nested organization.

After the initial definition and identification of these compound 
patterns in real ecological communities (27, 70, 71), scholars have 
focused on exploring their origins as well as in identifying these 
patterns in other ecological settings (72–76). Several plausible 
mechanisms for their emergence have been eventually described, 
e.g. niche theory-based (30, 73, 77–79), trait-mediated (33), 
eco-evolutionary models (35) (including also simpler ones (80)), 
and geographic co-occurrence in combination with phylogenetic 
constraints (39).

In this article, we attempt to link the temporal analysis of 
plant–pollinator networks and the existing knowledge derived 
from time-agnostic aggregated network samples. We probe the 
structural variability of the interaction network of plant–pollin-
ator communities and confront it to their dynamical characteris-
tics. In agreement with previous literature, we analyze to which 
extent structural changes of the interaction network are in re-
sponse to variations of the ecosystem parameters during the pol-
lination season. Additionally, we hypothesize and show that 
compound structures not only provide ecological communities 
with dynamic advantages inherited from their constituent build-
ing blocks but also that distinct structural arrangements may of-
fer different benefits depending on the system’s state. Figure 1
illustrates this workflow. Specifically, we analyze the structural 
characteristics of species interactions throughout the pollination 
season, identifying a prevalent shift from modular to compound 
(hybrid) patterns during the peak of the season. These results 
serve as a motivation for our subsequent theoretical investigation, 
aiming to confront these arrangements to two dynamical proper-
ties: local asymptotic stability (hereafter stability) and feasibility. 
We explain—in the Lotka–Volterra dynamics framework—why 
such transitions may occur on varying size, connectance, and 
interaction intensity (of both mutualism and competition). The 
analysis reveals several regimes where nested, modular, and com-
pound structures offer dynamic advantages, while the IBN archi-
tecture provides a balancing effect between stability and 
feasibility for low to mid-sized communities. We hope that our re-
sults offer a new perspective on community assembly, responding 
to attempts to balance several dynamical properties rather than 
promoting one over the other.

Results
Predominant structures in plant–pollinator 
interaction networks
To assess the structural dynamics of mutualistic networks, we le-
verage data from Ref. (19), which comprises 30 individual datasets 
of pollination networks from sites in 9 countries, primarily located 
in temperate regions. Each dataset tracks the interactions be-
tween plant and pollinator species (taxonomic species or morpho-
species) within a given time window: daily, weekly, or monthly. 
Considering that network communities require a minimum dens-
ity to emerge, we have chosen a monthly time frame for our ana-
lysis. Interestingly, despite the potential consequences different 
aggregation windows may have on network metrics, both the 
modular structure and nestedness show minimal sensitivity with-
in the range of weeks to months (19).

After several data cleaning procedures (described in Materials 
and methods), we selected 20 datasets for analysis, each 
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containing at least three consecutive snapshots corresponding to 
calendar months. The final dataset includes a community from a 
tropical region (−4.7°, 55.4°) and one from the Arctic circle 
(74.5°, −20.6°), while the remaining ones are located in temperate 
regions. Most tropical and arctic regions were excluded from the 
analysis due to the limited number of interactions, which hin-
dered a robust temporal analysis. See Fig. 2 to visualize the loca-
tions of the plant–pollinator communities considered in our 
study.

For each of these datasets, we quantified the degree of nested-
ness, group structure, and in-block nestedness using specific 
measures. The NODF-like measure, as defined in Ref. (69), was 
used for nestedness evaluation, while modularity was optimized 
using the extremal optimization algorithm (81). In the case of in- 
block nestedness, we employed the optimization method defined 
in (69). For specific details about these measures, we refer the 
reader to Section S1.

It is important to note that the obtained values for the different 
structural organizations cannot be directly compared due to 
methodological differences (82, 83). We opted to compare them 
by assessing their statistical significance by means of z-scores, 
which were obtained by performing 150 randomizations of each 
network. These randomizations were generated using a corrected 
version of the null model proposed in (42), which respects the net-
work degree of the plant–pollinator bipartite networks. In other 
words, the marginals of rows and columns of the network’s adja-
cency matrix are preserved. For detailed information about the 
null model, the randomization process, and their performance, 
please refer to Section S2.

The results are provided in Fig. 3. Figure 3A shows that most of 
the communities achieve a significant z-score for more than one 
structural organization (multicolor pie diagrams) and these vary 
throughout the pollination season. This supports our hypothesis 
that structural transitions are common during these periods. 
Figure 3B is a support guide for our results, mapping each 
configuration of significant z-scores to prototypical structural 
arrangements. It is interesting to examine the six possible config-
urations and their frequencies in our dataset, as well as the two 
configurations that are not possible because nested networks 
are inherently IBN networks with a single compartment. 
Although implausible, we identify three situations where the 
nested arrangement is the only significant outcome, which we at-
tribute to a suboptimal solution of the IBN-maximization process.

In the results, few communities display all three structural 
types simultaneously, as nested arrangements tend to impede 
the emergence of pure modular structures (row 6 in Fig. 3b) (84). 
These configurations are only feasible in heterogeneous-sized 
nested modules, provided that at least one module is large enough 
to facilitate system-scale nestedness and several others are suffi-
ciently dense to maintain significant modularity. It is also inter-
esting to analyze the relatively common occurrence of IBN 
structures that are neither modular nor nested (gray-only circles 
in Fig. 3). These arise when modules are structured in a nested 
form but lack sufficient density to achieve significant modularity, 
usually because the nested structure is very stylized. Nested and 
modular patterns coexisting with IBN structures at different de-
grees are quite common since this compound arrangement incor-
porates elements of both. Significant IBN communities that also 

Fig. 1. The figure illustrates the hypothesized impact of different pressures and parameter variations (network size and connectance) along the 
pollinator season on the structural arrangement of plant–pollinator networks. The upper part of the figure illustrates different structural 
transformations that one might find throughout the pollinator season: nested to modular, compound to nested, etc. The lower part of the figure shows a 
line plot with the average variation in size and connectance of the interaction networks observed in the empirical dataset used in this article.
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achieve significant zQ , due to their modular organization, are the 
most common pattern. Finally, pure modular structures (green 
circles in Fig. 3) are rare and typically emerge at the beginning of 
the sampling periods in the datasets.

Examining the temporal evolution within each dataset, we find 
that most of them undergo transitions between structural pat-
terns (z-score configurations vary). Although it’s crucial to con-
textualize the results to the particularities of each mutualistic 
community, our analysis yields several conclusions. The IBN ar-
rangement, specifically featuring more than one community 
and consistently obtaining higher z-scores, is the most prevalent 
configuration during the peak of the pollination season. This is 
corroborated by the inset panel of the figure and the hierarchical 
classification shown in (B). Moreover, the frequent coexistence of 
IBN with other patterns in multiple datasets suggests complex 

dynamics, involving variation in both size and internal organiza-
tion. For example, several datasets incur in transitions from 
modular to IBN structures (e.g. Fruend2010, Thompson2018, 
Petanidou2008, or Heil2018 and LeBuhnYY to a lower degree), 
and vice versa (e.g. Kaiser-Bunbury2017, Rasmussen2013), indi-
cating a reorganization within their community structures. 
Transitions between different degrees of IBN and nestedness 
are also common (e.g. WinfreeYYd, MacLeod2016, and 
CaraDonna2017), suggesting interesting dynamics of growth-split 
and shrinkage-merge of a large nested block.

To complete the analysis, we assess the impact of variations in 
size and connectance on the observed structural transitions, we 
explore the z-scores for nestedness, IBN, and modular structures 
across the size-connectance diagram. The results, displayed in 
Fig. 4, show that communities with sizes and connectance values 

Fig. 2. Location of the plant–pollinator communities considered in our study. Inset provides information about the aggregated number of interactions 
captured over the years in the datasets.

Fig. 3. A) Temporal evolution of the interaction networks’ structure in 20 plant–pollinator communities. Green, gray, and blue colors in the pie diagrams 
relate to the significant z-scores (z − score > 1.96) obtained for modular, hybrid (in-block nested), and nested arrangements, respectively. Slices displaying 
a single color indicate that only one structure was found to be significant. In slices containing multiple colors, the area of each color represents the 
respective proportions of the different z-scores obtained. The area outlined with a thicker line indicates the structural descriptor that achieved the 
highest z-score. White circles indicate that no structure was found to be significant. Datasets are sorted in descending order by latitude, from North to 
South. The inset aggregates the results by month, highlighting the most predominant structure (indicated by the highest z-score) across the various 
temporal slices of the dataset. B) provides an intuitive hierarchy, matching each combination of significant z-scores to a prototypical structural pattern. 
Column 4 shows the expected structural configuration, while Column 5 relates the analysis to (A) of this figure. Lastly, Column 6 indicates the frequency 
of each structure detected in the dataset. Section S3 provides the raw values from the structural analysis. Also, it includes a scatter plot that illustrates 
the relationship between the z-scores obtained for Q and I arrangements.
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near their averages commonly exhibit one or more (IBN) nested 
modules. However, when communities deviate from their average 
size and connectance values, they exhibit predominantly pure 
modular structures with fewer nested patterns. The inset shows 
a scatter plot depicting the relationship between the fraction of 
temporal networks predominantly exhibiting a modular structure 
and the average displacement (represented by the average 
Euclidean distance between consecutive temporal snapshots) 
across the size-connectance diagram (main plot). While there ap-
pears to be a positive trend, it is important to note that the signifi-
cance of this relationship cannot be determined due to the limited 
amount of available data.

Synthetic experiments
The analysis of mutualistic networks during the pollination sea-
son has revealed that the structure of interaction networks varies, 
potentially due to changes in size and connectance over time. Due 
to the dissimilar characteristics of the datasets, e.g. variations in 
mutualistic and/or competition strengths, climate regions, or 
sampling effort, a direct comparison between them is not advis-
able. Therefore, we resort to synthetic experiments to further in-
vestigate the relationship between the network’s structural 
arrangements and their dynamical response. Specifically, we 
examine the performance of the three prototypical structural ar-
rangements (pure modular, nested, and IBN) on synthetically en-
gineered mutualistic communities and we evaluate their impact 
on two commonly studied dynamical characteristics: stability 
and feasibility, within the Generalized Lotka–Voltera dynamics 
framework. See Materials and methods for all the definitions 

and details on the generative network model. Results are pre-
sented in the different panels of Fig. 5. Figure 5A shows the results 
obtained for a particular size and connectance configuration. It is 
apparent to the naked eye that modular networks (green dots) are 
the most stable ones, while nestedness (blue dots) penalizes sta-
bility. In this sense, stability defines an ordering in which modu-
larity is on the top, nestedness at the bottom, and in-block 
nested structures (gray dots) lay between those. On the x-axis, 
feasibility shows the reversed behavior: nested architectures 
show the highest values of F , while modular ones fall behind. 
Importantly, in both situations, IBN offers intermediate dynamic-
al properties. More formally, we have:

〈FN 〉 > 〈FI 〉 > 〈FQ〉, 〈λ∗N 〉 < 〈λ∗I 〉 < 〈λ∗Q〉, (1) 

where 〈FX〉 (〈λ∗X 〉) indicates the average value of feasibility (stabil-
ity) over the ensemble of synthetic networks with predominant X
structure.

Figure 5C and D shows the same information as the previous 
plot, varying the size and the connectance, respectively. These 
suggest that the observed relationship in Fig. 5A is, to a large ex-
tent, robust to variations in the size and connectance of the mu-
tualistic community. In this sense, our results regarding pure 
nested and pure modular communities agree with the previous 
literature, where nestedness was found to hinder stability (53, 
54) favoring feasibility (52); and modularity was found to boost 
stability (55), while its effects on feasibility remained, to the best 
of our knowledge, untested so far. From the mathematical point 
of view, the ordering provided by stability may be understood in 
terms of the Gershgorin theorem (85), linking the real part of the 
largest eigenvalue with the row sum of the interaction matrix, 

Fig. 4. Diagram illustrating the evolution of size and connectance in relation to the differences in statistical significance of the analyzed structural 
arrangements. Each point represents a snapshot of the interaction network from a specific dataset, with consecutive snapshots connected by lines. The 
color scale indicates the absolute difference between the z-scores obtained for nested-like and modular structures. The inset displays the average 
displacement of consecutive temporal snapshots over the size-connectance diagram with respect to the fraction of time a modular structure is found to 
be predominant in the plant–pollinator community. Each point corresponds to a dataset. See Section S3 for the raw values obtained in the analysis.
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which is maximized in nested networks because of the presence of 
generalist species (see Section S4). This is certainly true for pure 
mutualistic systems (53) but, worth highlighting, these results 
seem to be robust for an average competition strength up to 10%

of the mutualistic one.
The case of feasibility suggests varying levels of complexity de-

pending on the network parameters. In small communities (S= 20), 
Figure 5B demonstrates consistent behavior across all connectance 
levels. However, for larger networks (S= 60) complexity increases, 
marked by the nonmonotonic behavior of 〈F〉as connectance values 
rise. This phenomenon may find its roots in the relative difference 
between effective and critical competition, as it was shown for struc-
tural stability in (86). Nevertheless, this nonmonotonic dependence 
requires further analysis, which is beyond the scope of this work. 
Whichever the underlying cause of this behavior, it is easy to see 
that the three structures become optimal 〈F〉 − wise within some 
parameter range: nested structures are optimal for C ∈ (0.04, 0.10], 
IBN structures for C ∈ (0.10, 0.15] and modular structures for C ∈ 
(0.15, 0.20] when S = 60. These results unveil the existence of three 
regimes, in which (A) IBN offers a trade-off between feasibility and 
stability, (B) IBN offers advantages concerning feasibility, and 

balance on stability, and (C) modular networks maximize both feasi-
bility and stability, being in that situation indisputably the best inter-
action pattern. In the other two of these regimes, IBN structural 
arrangements are more beneficial than any of its nonhybrid coun-
terparts, balancing their dynamical properties as we hypothesized. 
To wrap up these results, see also Figs. S5–S7 in Section S5, where 
we report results for pure mutualistic scenarios and varying the 
number of species S.

Until now, our analysis has been conducted with moderate mu-
tualistic strength, γ = 0.1, and a low competition regime, ω = 0.01, 
which is approximately an order of magnitude lower than the mu-
tualistic strength. Both parameters are in agreement in order of 
magnitude with the values used in the literature regarding the 
analysis of stability and feasibility (22, 50, 52, 53, 86, 87).

To deepen our understanding of this aspect, we explore the re-
lationship between the mutualism and competition parameters 
(γ and ω) of the Generalized Lotka–Volterra model and the dynam-
ical properties linked to the different structural arrangements. 
Figure 6 displays the different situations we find over the γ − ω 
space. We identify three regions depending on the stability and 
feasibility ordering. The green region is such that the mediating 

Fig. 5. Stability and feasibility performance in nested, modular, and in-block structured networks. A) Stability vs. feasibility analysis for an ensemble of 
synthetic networks with varying levels of in-block nested (B = 2, p ∈ [0, 0.06], μ ∈ [0, 0.06], ξ ∈ [1.2, 1.5]), nested (B = 1, p ∈ [0, 0.1], μ = 0, ξ ∈ [1.85, 2.55]), and 
modular (B = 2, p = 1, μ ∈ [0, 0.1], ξ ∈ [1.1, 1.5]) features, with S = 20 species (|A| = |P| = S) and connectance C = 0.2. Each point represents a network, with its 
color indicating the type of structural arrangement it contains: blue for nested networks, green for modular networks, and gray for in-block nested 
networks. Red crosses are located at the average values of stability and feasibility of the corresponding network clusters. B) Stability and feasibility 
dependence on connectance C) for nested, in-block and modular networks of size S = 20 (left) and S = 60 (right). For a fixed connectance, the average 
feasibility and stability on several network realizations are reported (shadowed areas represent the variance). All the experiments are performed with 
γ = 0.1 and ω = 0.01 parameters of the Lotka–Volterra dynamics. C) Here, the stability–feasibility ordering across architectural patterns is portrayed 
for different values of connectance, varying in the range [0.07, 0.15] at fixed size. Dot-solid lines depict the average of the related network ensemble with 
size, while darker colors indicate increasing connectance. Deviation around central values arises because of the noise introduced in the interactions 
between species (see Materials and methods). D) Along the same line, the information of the previous plot is presented for different values of the size 
[20, 60] at fixed connectance.

6 | PNAS Nexus, 2024, Vol. 3, No. 6

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae209#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae209#supplementary-data


role of IBN, as expressed in Eq. 1, is preserved. Such ordering pre-
vails across weak and moderate γ and ω values, but changes occur 
outside that wide range. Specifically, in the limit of large competi-
tion, IBN arrangements become the least stable (blue region in 
Fig. 6). In this scenario, nested arrangements (which can also be 
viewed as IBN networks with a single block) emerge as the most 
feasible, competing closely with modular arrangements in terms 
of stability. In contrast, in cases where mutualism greatly out-
weighs competition strength (the gray region in Fig. 6), there is 
an impact on the observed feasibility ordering (as defined in Eq. 
1). In these scenarios, networks exhibiting IBN structures tend to 
be the most feasible, displaying also stability values similar to 
those of modular structures. Figure S8 in Section S6 provides fur-
ther details on the transition between these three regions.

Discussion
Seasonal structural dynamics of plant–pollinator 
networks
Seasonal dynamics of pollination networks at the intraseason 
scale are frequently investigated in terms of three phases: assem-
bly, intermediate dynamics, and disassembly (20). While various 
species interaction-level mechanisms have been identified (e.g. 
turnover, interaction rewiring), their impact on the meso—and 
macroscopic structures remains largely unexplored. These mech-
anisms served as the foundation for designing iterative models 
that can capture properties at the system scale. Preferential at-
tachment (and detachment) mechanisms have been found to 
mimic community assembly and disassembly at seasonal scale. 
As new species enter the community, they tend to connect to 
the most generalist (12), probably biased by some fidelity mechan-
ism (17). Similar models in other fields (44, 88), e.g. those attempt-
ing to maximize the individual centrality, have indeed shown to 
promote the emergence of nested structures.

In our analysis of species interaction data, we observed that 
pure modular structures predominate over nested configurations 
during the early stages of assembly periods, from January to May. 
Although this seems contradictory to the results in Fig. 5, which 
show that modular structures are less feasible compared to all 
other arrangements in small communities, our theoretical ana-
lysis suggests that this scenario is plausible in environments 
with low competition and large mutualistic parameters (as de-
picted in the grey area of Fig. 6). In such conditions, modular ar-
rangements can achieve greater feasibility and stability than 
nested configurations and can closely compete with IBN struc-
tures (refer to Fig. S8).

The detected nonmonotonic implications of the competition 
and mutualism parameters on the Generalized Lotka–Volterra 
and their consequences regarding stability and feasibility proper-
ties deserve thorough investigation to gain understanding of these 
complex behaviors. In this work, we have explored a comprehen-
sive range of parameters. However, there is generally a limited dir-
ect connection between theoretical models and their practical 
uses, especially when measuring competition in real mutualistic 
systems. To better understand mutualistic communities, we 
need to narrow the gap between theoretical ecology and fieldwork. 
Additionally, the nonlinear dependence of feasibility on network 
size and connectance may also play a crucial role in the assembly 
of mutualistic communities, especially considering the crossover 
in the feasibility diagram (see Fig. 5). This crossover point could 
signify a critical transition in the community dynamics affecting 
the overall stability and persistence of the ecosystem. A deeper ex-
ploration of these intricate relationships is essential for a holistic 
understanding of the underlying mechanisms shaping mutualis-
tic interactions in ecosystems.

Intermediate dynamics, occurring around the peak of the sea-
son, are often overlooked in specific studies (with exceptions in 
(20)), but interactions in such stages may bear resemblance to 
those observed in aggregated interaction networks. Microscopic 
models (30, 79) suggest that hybrid structures may emerge 
through an abundance-maximization process (22) atop 
niche-structured population dynamics. However, the link be-
tween these compound structures and their global dynamical 
properties remains largely unexplored, with existing knowledge 
limited to their constituent building blocks (36, 51, 52, 54, 89). 
Our work contributes to expanding the field in this aspect, shed-
ding light on the intricate interplay between different structural 
arrangements in mutualistic communities. Lastly, we emphasize 
the significance of comprehending the properties maintained by 
mutualistic communities beyond their pairwise interaction 
mechanisms. While the study of link dynamics provides valuable 
insights into the functioning of mutualistic communities, under-
standing the system-scale dynamical properties is crucial for 
gaining a comprehensive understanding of mutualistic communi-
ties and ensuring their long-term viability in the face of changing 
ecological conditions.

The mediating role of hybrid structures
Despite the progress made by network theory in efficiently detect-
ing and measuring network patterns, community ecologists are 
still studying the relationship between these observed arrange-
ments and the dynamic properties of ecosystems (22, 36, 51–57, 
86, 90).

To offer a new perspective to the stability–feasibility debate 
(52), in this article, we looked into compound structures with 
the hypothesis that they may inherit beneficial dynamical 

Fig. 6. Validity of the mediating role of IBN as a function of mutualism 
and competition strength. The green area depicts the parameter regime 
where Eq. 1 holds, i.e. the mediating role of IBN structures is present. 
Instead, the blue (grey) area indicates the parameter range where nested 
(modular) structures are best at balancing stability and feasibility. 
Experiments were conducted with networks of S = 20 and C = 0.2.
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properties from their building blocks which, in turn, may help eco-
logical communities to persist in time. We consider the in-block 
nested configuration, where nestedness and modularity interfere 
at a network’s mesoscale and show that may provide a mediating 
role between stability and feasibility.

Our results have important consequences on the mechanisms 
governing the organization of mutualistic communities. So far, 
the question has been addressed as finding the key property shap-
ing ecosystems assemblage (52, 91–94). Herein, analyzing commu-
nities only in terms of nestedness could lead for instance to the 
conclusion that these promote feasibility over stability, but not 
both at the same time. A similar reasoning applies to the pair stabil-
ity–modularity. The introduction of an intertwined architecture per-
mits us to revisit and deepen this finding. Particularly, the 
emergence of in-block nestedness in real communities, associated 
now with a trade-off between stability and feasibility, paves the 
way to the hypothesis that the fundamental criterium underlying 
the assembly process is the equilibrium between those (and possibly 
more) properties, rather than the predominance of one of them. In 
this work, we validate this statement by means of examining two 
specific fundamental structural patterns (and their derived com-
pound one). Nevertheless, the literature has explored several others, 
such as gradient (27) or core–periphery (95, 96), among others.

The study over a large ensemble of synthetic networks illus-
trates that the mediating role of IBN is beneficial for ecological 
communities over a wide range of parameters but depends on 
the connectance and size of the community. In small and very 
sparse communities, nestedness may suffice to guarantee a feas-
ible and, to some extent, stable system. As communities get larger 
and denser, we detect an unexpected effect consisting of a revers-
ing of the feasibility ordering. Only in this regime, both stability 
and feasibility are promoted by modularity, which stands out as 
the optimal pattern for ecosystem assemblage. While it may be 
relatively uncommon to find empirical networks within the 
modular-optimal range, due to the negative correlation between 
community size and connectance, our simulations indicate that 
these transitions occur in regimes of size and connectance that 
align with empirical network characteristics. All in all, our results 
indicate that there may be different structural adaptations that 
can serve the need of mutualistic communities to be both feasible 
and stable, as they evolve into larger (smaller) or denser (sparser) 
systems. This idea can enhance our insight into ecosystem assem-
bly processes, where an optimal size-connectance-architecture 
relationship may be relevant.

Materials and methods
Generalized Lotka–Volterra dynamics
The study of ecological communities is typically based on the ana-
lysis of species interaction networks, where nodes represent spe-
cies and edges reflect the type and strength of interactions 
between them. In the adjacency matrix Mij, a link is turned on if 
species i and j interact.

Based on this interaction network, species abundances can be 
mapped to a set of time-dependent functions xi(t), and their tem-
poral evolution is commonly studied with the Generalized Lotka– 
Volterra model:

ẋi = xi ri −
􏽘

j

Mijxj

⎛

⎝

⎞

⎠, (2) 

where the indexes i and j run over the system species and param-
eters ri indicate the intrinsic growth rate coefficients, ruling the 

dynamics of the i-species when interspecific interaction is 
dropped out.

In bipartite mutualistic communities (e.g. plant–pollinators or 
seed-dispersal), we categorize species into two distinct groups, A 
and P. For the sake of simplicity, during our analyses, we will as-
sume that both sets of species, A and P, have the same size 
|A| = |P| = S. Relations between species in different groups are as-
sumed to be mutualistic, and competitive within groups. For these 
bipartite networks, the adjacency matrix describing species rela-
tion exhibits a particular shape,

M = ΩAA −ΓAP

−ΓPA ΩPP

􏼒 􏼓

. (3) 

Block ΩAA (ΩPP) represents the competitive interactions between 

species corresponding to the set A (P), and the block ΓAP describes 
the mutualistic interaction between species corresponding to dif-
ferent sets. Both interaction matrices, Ω and Γ may have a particu-
lar structure or else be unstructured (random).

Temporal segmentation of plant–pollinator 
interaction networks
Plant–pollinator interaction data compiled in Ref. (19) offers a sol-
id background to study the structural change of interactions in 
mutualistic communities, but it requires some cleaning effort. 
Each dataset records the raw number of interactions per spe-
cies pair, without making any additional assumptions (e.g. esti-
mating unobserved interactions), and these records are 
gathered at different sampling frequencies: the most common 
is on a daily basis (963 days in the period 2000–2017), followed 
by a significant number of weekly records (161 weeks in the pe-
riod 1888–2015), and monthly records (62 months in the period 
1983–2013). In total, the datasets include 256 · 103 interactions. 
The inset of Fig. 2 shows the monthly distribution of these inter-
actions over time.

To integrate all datasets into a common temporal dimension, 
we opted to collect interactions by calendar month. However, 
due to potential misalignment with field experiment dates, we 
conducted a visual inspection and discarded slices where the 
number of days between the first and last sampling was much 
lower than the number of days in the respective month. For ex-
ample, the June slice of Alarcon2008 was discarded since the first 
sampling was on 2003 June 17 and the last one was on 2003 June 
28. We expect these decisions to help minimize the bias caused 
by differences in sampling effort. Furthermore, since pollinators 
could be determined by taxonomic species or morphospecies, 
we chose to keep the most specific name. After implementing all 
these procedures, we discarded any dataset that did not have at 
least 3 consecutive correct temporal slices. Figure 7 shows the dis-
carded temporal slices and datasets.

Synthetic network generation
Aligned with the objectives of our article, we focus on examining 
the dynamical responses of three distinct structural arrange-
ments: modular, nested, and in-block nested. These arrange-
ments are reflected in the off-diagonal mutualistic blocks of the 
species interaction adjacency matrix M, denoted as ΓAP and ΓPA. 
Meanwhile, the diagonal blocks of matrix M are considered un-
structured and assumed to be fully connected, in line with 
state-of-the-art studies (22, 52, 53).

To construct a diverse synthetic ensemble that encompasses 
the various structural patterns of ΓAP under consideration, we 
find it advantageous to employ the model introduced in (69, 84). 
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This model naturally spans nested, modular, and in-block nested 
(IBN) configurations with minimal parameterization, including 
the number of modules B ∈ [1, ∞), the inter-module noise 
μ ∈ [0, 1], the level of nested order within modules p ∈ [0, 1], and 
a shape parameter controlling the slimness of the nested struc-
ture ξ ∈ [1, ∞]. Illustratively, the nested matrix depicted in 
Fig. 8A corresponds to B = 1, p = 0.3, and connectance = 0.1 
(ξ = 2.5); the modular Fig. 8B and IBN matrices Fig. 8C correspond 
to B = 4, μ = 0.15, and connectance = 0.1, with the distinction that 
p = 1 in the modular case while p = 0.1 in the IBN case.

In addition to their internal structure, the weights of both com-
petitive and mutualistic interactions are expressed as the result of 
a small perturbation, σγ

ij, around a mean value:

ΓAP
ij = gijaij, gij = γ + σγ

ij ≥ 0, σγ
ij ≪ γ, (4) 

where aij = 1 if there exists a link between species i and j, and zero 

otherwise. Matrices ΓPA, ΩAA, and ΩPP are treated similarly, with 
the mean competition value denoted as ω. This approach aligns 
with previous literature (22, 52, 53, 97) and allows for a uniform 
treatment of interaction strengths, assuming they are of the 
same order of magnitude for all species pairs, for both mutualistic 

and competitive weights. Consistent with the aforementioned 
studies, the interaction weight between the same species is set 
to one (Mii = 1).

Stability
Over the past few decades, a wide range of metrics designed to as-
sess stability has emerged (63, 98). Here, we focus on the classical 
concept of stability, defined as the system’s capability to restore 
the original equilibrium state after an infinitesimal perturbation 
of abundances.

This is evaluated by looking into the Jacobian matrix of the gen-
eralized Lotka–Volterra model,

Jij ≡
∂ẋi

∂x j

􏼠 􏼡

x=x∗

, (5) 

where x∗ represents the stationary state of Eq. 2, defined by the 
condition ẋ∗i = 0 and leading to

x∗ = M−1r, (6) 

which describes the species abundances at equilibrium. Replacing 
Eq. 2 into Eq. 5 and recalling Eq. 6, we reach the final form of the 
Jacobian matrix of the Lotka–Volterra model:

Jij = −x∗i Mij. (7) 

The system is stable if the real part of the largest eigenvalue of the 
Jacobian matrix is negative, otherwise is said to be unstable. 
Hence, the quantity

λ∗ = −Max Re λJ
( 􏼁􏼂 􏼃

, λJ ∈ Sp(J) (8) 

naturally describes the stability and can be used to assess how dif-
ferent systems compare regarding such property.

In general, the stationary abundances, x∗i , affect the expression 
of the Jacobian and have to be taken into account to obtain the ei-
genvalues, as seen in Eq. 7. Following the approach presented in 
Ref. (87), we assume that the abundances are all positive, i.e. x∗i > 
0 ∀ i which describes a context equivalent to sampling a proper r 
vector in the feasibility domain.

Feasibility
In broad terms, feasibility refers to the system’s capability to pre-
vent extinctions and so maintain diversity, despite external per-
turbations, in the long-term limit. Formally, this translates into 

Fig. 7. Description of the temporal slices used to construct the interaction 
network for each dataset in (19). Red dots indicate slices and datasets 
(dots near the name) we discard because lack of data to assemble the 
interaction network.

Fig. 8. Examples of adjacency matrices of networks associated with nested A), modular B), and IBN C) structures. Rows represent species of group A and 
columns represent species of group P. Matrix entries portray the mutualistic interaction links between the two groups. In nested networks, the specialist 
species interact only with subsets of species interacting with the more generalists, and the related adjacency matrices manifest the traditional triangular 
structure. Modular networks are composed of weakly interlinked groups of species (modules) with strong internal connectivity, and this yields an 
adjacency matrix divided into blocks. IBN matrices are divided into blocks with an internal nested structure.
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strictly positive stationary populations, i.e. x∗i > 0 ∀ i. In the case of 
the generalized Lotka–Volterra dynamics (2), given a specific 
interaction matrix M, the emergence of stationary positive abun-
dance depends solely on the self-growth rates r (52). Herein, the 
goal is to characterize the range of possible growth rates associ-
ated with positive stationary abundances once the interaction 
matrix is provided. This is precisely what feasibility quantifies.

This problem is nontrivial from a mathematical standpoint and 
has attracted significant attention in recent years (51, 52, 99, 100). 
Particularly, it has been shown (99, 101) that the cumulative func-
tion of a multivariate normal distribution with mean value equal 
to zero and variance matrix Σ−1 = 2MtM:

Θ =
1

(2π)S/2
��������
det(Σ)

􏽰

�

· · ·

�

RS≥0
e−1

2x
tΣ−1xdx, (9) 

constitutes a measure of the amount of growth rates associated 
with positive stationary abundances. The quantity 0 ≤ Θ ≤ 1 
may be interpreted as the probability of randomly sampling an r 
vector driving to positive abundances. Usually, scholars look 
into F ≡ log10 (Θ) which −∞ < F ≤ 0, that is what is commonly re-

ferred as feasibility.
The higher the value of F , the broader the range of growth rates 

associated with positive stationary abundances. In simpler terms, 
a higher F indicates a lower likelihood of extinctions in response 
to changes in growth rates. In this context, studying feasibility 
complements stability analysis by delving deeply into ecosystem 
persistence. While the latter concentrates on perturbations in 
abundances, the former considers changes in growth rates, en-
compassing all possible variables of Lotka–Volterra dynamics 
for a specific interaction matrix.
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