Differences in the composition and
predicted functions of the intestinal
microbiome of obese and normal weight

adult dogs

Pamela Thomson', Rodrigo Santibaniez’, Camila Rodriguez-Salas’,
Carla Flores-Yanez’ and Daniel Garrido’

! Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santi-
ago, Chile

% Chemical and Bioprocess Engineering, Pontificia Universidad Catdlica de Chile, Santiago, Chile

3 Clinica Veterinaria Los Avellanos, Santiago, Chile

ABSTRACT

Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed
in developed and developing countries. It is estimated that over 40% of the canine
population suffers from obesity, which manifests in an increased risk of chronic
osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome
of obese animals shows increases in the abundance of certain members capable of
extracting energy from complex polysaccharides. The objective of this study was to
compare the composition and predicted function of the intestinal microbiome of
Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were
classified according to their body condition score (BCS) as obese (n=10) or normal
weight (n=10). DNA was extracted from stool samples, followed by next-generation
sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting
microbiome composition and function. Significant differences were observed between
these groups at the phylum level, with anincrease in Firmicutes and a decrease in
Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated
with their BCS, and obese dogs showed enrichment in pathways related to transport,
Submitted 17 May 2021 chemotaxis, and flagellar assembly. These results highlight the differences in the gut
Accepted 6 December 2021 microbiome between normal weight and obese dogs and prompt further research to
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others (Suchodolski et al., 2012; Heintz-Buschart ¢ Wilmes, 2018; Alessandri et al., 2020;
Siddiqui, Akbar & Khan, 2021).

The gut microbiome of healthy dogs is co-dominated by three phyla: Fusobacterium,
Bacteroidetes, and Firmicutes (Middelbos et al., 2010; Hand et al., 2013; Chun Ju et al.,
2020), with a lower proportion of Proteobacteria and Actinobacteria (Barko et al., 2017,
Salas-Mani et al., 2018; Alessandpri et al., 2020). In contrast to humans and other animal
microbiomes, Fusobacteria is abundant in the gut of healthy dogs (Song et al., 2013; Vital
et al., 2015; Bermingham et al., 2017).

Although the composition of the gut microbiota is stable during adult life, it is widely
variable among humans (Guard et al., 2017). This microbial stability is also expected in
dogs but only observed in the short term (Pilla & Suchodolski, 2020). Factors such as diet,
drugs, and age are among the most important factors shaping the gut microbiome in dogs
(Chandler et al., 2017; Gupta, Paul & Dutta, 2017; Kim et al., 2017; Li et al., 2017; Montoya-
Alonso et al., 2017). A loss of microbiome homeostasis, or dysbiosis, has been linked to
certain diseases such as inflammatory bowel diseases and metabolic disorders, among
others (Pilla & Suchodolski, 2020). This alteration has been shown to be a consequence of
the loss of key species or overgrowth of toxigenic microorganisms such as enterotoxigenic
Bacteroides fragilis (Chandler et al., 2017; Gavazza et al., 2018; Craven & Washabau, 2019).

Obesity in dogs is a multifactorial disorder, with a prevalence greater than 40% in
developed countries (Mao, Xia ¢ Chen, 2013; Montoya-Alonso et al., 2017; Forster et al.,
2018). Obesity is defined as the excessive accumulation of adipose tissue in the body,
usually due to excessive food intake or the inadequate use of energy, causing a positive
energy balance (Khera et al., 2019). Consequently, obese dogs suffer from a decrease in
quality and life expectancy and an increased risk of developing diseases such as diabetes
mellitus (DM), dyslipidemia, and cardiovascular disease, among others (Marshall et al.,
2009; Clark ¢ Hoenig, 2016; Chandler et al., 2017; Bjornvada et al., 2019). At least in the last
50 years, the prevalence of DM has increased in dogs (Guptill, Glickman & Glickman, 2003;
Heeley et al., 2020).

It has been observed that the relative abundance of Firmicutes and Bacteroidetes is
altered in obese human subjects with an overrepresentation of Firmicutes, compared
to lean subjects (Kasai et al., 2015; Haro et al., 2016; Coelho et al., 2018). Interestingly, in
dogs this change in relative abundance can be observed in Firmicutes, Bacteroidetes,
or Fusobacteria (Bermudez Sanchez et al., 2020). These taxonomic differences between
normal weight and obese animals can contribute to the development and perpetuation of
obesity (Li et al., 2017; Bermudez Sanchez et al., 2020). Proposed mechanisms include fat
storage, regulation of energy metabolism, extraction of energy from short-chain fatty acids,
increased low-grade inflammation, and impaired bile acid metabolism (Khan et al., 2016;
Kieler et al., 2017; Xu et al., 2017; Garcia-Mazcorro et al., 2020).

Dogs, being domestic carnivores, take advantage of meat-based diets, and diet has a
major influence on the composition of the gut microbiota (Wernimont et al., 2020). For
instance, high fiber diets lead to an increase in the relative abundance of Firmicutes and a
decrease in Fusobacterium and Proteobacterium (Bermudez Sanchez et al., 2020). A high-fat
and low-carbohydrate diet enriches genera related to fat digestion, such as Allobaculum
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and Parasutterella (Kilburn et al., 2020). Partial weight loss can be achieved after dietary
changes (Xu et al., 2017; Coelho et al., 2018; Apper et al., 2020).

The energy balance in animals is at a delicate equilibrium between energy consumption
and expenditure (Stubbs ¢ Tolkamp, 2006). The gut microbiota mediates changes in energy
storage, in some cases leading to pathophysiological consequences in the short, medium, or
long term (Ley et al., 2006). Few studies have addressed the impact of obesity in the canine
gut microbiota, and the microbiome functions that could be altered in these animals are
not well known. The goal of this study was to compare the composition of the intestinal
microbiota in a group of obese and normal-weight dogs and predict what metabolic
functions could be enriched or reduced in their microbiomes.

METHODS

Subjects and inclusion criteria

This study was approved by the Bioethics Committee at the Veterinary Clinic Los Avellanos
(Approval Certificate HCVLA-008). The study was performed at the same clinic, located
in Independencia, Santiago, Metropolitan Region, Chile. Samples were collected during
November 2020. Twenty dogs aged between 2 and 8 years old were sampled (Table S1).
Animals were of any breed or sex and fed commercial diets (pellets) from different
brands (Table S2). Inclusion criteria were for individuals who presented a normal clinical
examination, physiological parameters (temperature, heart, and breathing rate), and no
signs of gastrointestinal disease. Animals did not receive antibiotics or probiotics at least
three months before the beginning of the study. All dogs had been spayed or neutered
before the study.

All dogs were subjected to a complete clinic examination by a veterinarian. According
to their body condition, ten normal weight dogs and ten obese dogs were enrolled. The
body condition score (BCS) was determined based on a nine-point scale (German et al.,
2009; Chun et al., 2019), based on palpation and visual inspection of the ribs, waist, bony
prominences, the base of the tail, and abdomen. A one-unit increase in BCS corresponds
to an approximate 10% increase in body weight (German et al., 2009; Chun et al., 2019).
Animals with BCS values between 4-5 were considered normal weight, and dogs with BCS
8-9 were considered obese. Information regarding breed, age, and sex was obtained directly
from each owner (Table 1).

Analysis of the gut microbiome

Stool samples were collected immediately after defecation and stored at —80 °C until
processing. After thawed, 150 mg of each sample were used for total DNA extraction
(Quick-DNA Fecal/Soil Microbe Miniprep Kit, Zymo Research, Irvine, CA, USA) using a
Disruptor Genie device (Scientific Industries, USA). Fecal DNA samples were diluted to
20 ng/pl in nuclease-free water (NanoDrop 2000¢; Thermo Fisher Scientific, Waltham,
MA, USA ). DNA samples were submitted for Illumina MiSeq sequencing to the DNA
Sequencing Services at Molecular Research (MR-DNA, USA). The variable region of the
16S rRNA V3-V4 gene was amplified using primers 341F and 785R (Klindworth et al.,
2013), adding a barcode in the forward primer. The reaction was run for 30 cycles using
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Table 1 Animal data.

Code Age Breed Sex Weight Body
(years) (kg) condition

score

1I-N 5 crossbreed F 31.8 5

2-N 5 crossbreed F 31.7 5

3-N 3 crossbreed M 13.3 5

4-N 4 labrador retriever M 25 5

5-N 4 crossbreed M 26 5

6-N 7 crossbreed M 28 5

7-N 3 crossbreed F 17.5 5

8-N 5 cocker spaniel F 12 5

9-N 3 crossbreed M 13.5 5

10-N 2 crossbreed F 21.5 5

Average 41+14 22.75+7.2 5+0

1-0 5 crossbreed M 49 9

2-0 3 crossbreed M 15 8

3-0 3 crossbreed M 17.3 9

4-0 2 crossbreed M 23 9

5-0O 8 crossbreed M 30.4 9

6-O 5 crossbreed M 17 8

7-0 3 crossbreed M 14.1 8

8-O0 10 german shepherd M 42 9

9-0 10 great dane M 55 9

10-O 8 crossbreed M 20.4 8

Average 5.7+ 3.1 33.5+17.3 8.6 + 0.5

Notes.

F, Female; M, Male.

the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA, USA). After amplification, the
PCR products were verified on a 2% agarose gel. Several samples were pooled and purified
using calibrated Ampure XP microspheres (Agencourt Bioscience Corporation, Beverly,
MA, USA). The pooled and purified pooled PCR products were used to prepare a DNA
library using the TruSeq DNA LT Sample Preparation Kit (Illumina, San Diego, CA, USA)
following the manufacturer’s instructions. Sequencing was performed using the MiSeq
platform (Illumina, USA).

Bioinformatics analyses

The raw DNA sequences provided by the external service were analyzed employing the
QIIME version 1.8.0 open-source bioinformatics tool (Caporaso et al., 2010). Each sequence
sample was demultiplexed into individual files, and barcodes were removed from the 5'-end
of each read (via demultiplex_fasta.py script). The processed sequences were uploaded to
the European Nucleotide Archive under the project code PRJEB38793. Individual reads
were assigned to bacterial taxonomy employing the DADA2 v1.10 R package (Callahan
et al., 2016), following a modified procedure. Briefly, sequences were quality-filtered to
remove undetermined base callings and trimmed down to 220 nucleotides before estimating
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the sequencing error model. The model was used to infer Amplicon Sequence Variants
(ASV) (Callahan, McMurdie ¢ Holmes, 2017) and those variants used to assign bacterial
taxonomy with a Naive Bayesian classifier (Wang et al., 2007) and the SILVA database
version 132 (Quast et al., 2013; Yilmaz et al., 2014). The ASV abundance table was utilized
to infer the abundance of metabolic functions and pathways with the PICRUSt2 python
package (Douglas et al., 2020). Briefly, the PICRUSt2 software reconstructs a metabolism,
first aligning an ASV to a reference tree that allows the selection of a reference genome
and prediction of the gene content per ASV. Then, PICRUSt2 infers the abundance of
metabolic functions and pathways employing the abundance of each ASV in a sample and
the selected reference genome. Microbiome composition at the phylum level was assessed
with the Shannon diversity index and the weighted UniFrac method (Lozupone et al., 2011)
employing the scikit-bio python package (http:/scikit-bio.org/). The weighted UniFrac was
statistically assessed employing ANOSIM and PERMANOVA, using the scikit-bio software.
Univariate analyses of the differences in the relative abundance of phyla, family, and genera
were assessed with the non-parametric Mann—Whitney U -test (Mann & Whitney, 1947)
and the DESeq2 R package (Lin ¢ Peddada, 2020). Finally, multivariate analysis of the
differences in the abundance of taxa, metabolic functions, and pathways was assessed
with the Linear Discriminant Analysis (LDA) Effect Size (LEfSe) method (Segata et al.,
2011). The LefSe method was performed employing the Galaxy server (Afgan et al., 2018)
at https:/huttenhower.sph.harvard.edu/galaxy/). In the case of the metabolic functions, the
abundance of the KEGG orthologs (KO) and KEGG pathways were clustered and analyzed
in a sample basis, and later, the contribution of each taxon at the genus levels and treatment
was assessed only for the significant effect sizes of LDA (absolute value of the logl0 LDA
greater than 2) employing the Pearson Correlation Coefficient. Significance level for all
statistical analysis was p-value <0.05.

RESULTS

This work analyzed the gut microbiome of ten obese (O) and ten normal (N) weight dogs,
according to their BCS. The characteristics of the animals are presented in Table 1. Both
groups were statistically similar in age and weight (Mann—Whitney U-test p ~ 0.14 and p
~ 0.09, respectively).

After 16S rRNA sequencing of fecal samples, each sample contained between 100 and
400 ASVs (Fig. 1A). Rarefaction curves showed saturation indicating the sequencing
depth was appropriate to describe the microbial composition. Alpha diversity using the
Shannon Index, measuring the number of species and their abundances in each sample, was
significantly different between both groups (N: 1.55 £ 0.15, O: 1.32 & 0.20; Mann—Whitney
U -test p-value ~ 0.014; Fig. 1B).

Microbiome compositions in both groups were analyzed using the Weighed Unifrac
beta diversity method. A PCoA plot of their compositions showed clustering of normal
weight animals separated from obese dogs (Fig. 1C). The statistical assessment showed
the beta diversity between obese and normal dogs was statistically different (ANOSIM R
~0.179, p-value = 0.01; PERMANOVA pseudo-F ~6.125, p-value = 0.009).
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Figure 1 Microbiome diversity among normal and obese weight dogs. (A) Rarefaction curve. Number
of identified Amplicon Sequence Variants (ASVs) as a function of the number of sequenced 16S ampli-
cons. Blue lines identify samples of normal weight dogs, orange lines identify samples of obese dogs with
a BCS of 8, and green lines identify samples of obese dogs with a BCS of 9. (B) Shannon index for each
group. The violin plot shows all indexes and an estimation of the probability distribution of the data. (C)
Principal Coordinate Analysis of the weighted UniFrac index for each sample. Each dot represents the
UniFrac index, the proportion of relative abundance, and the similarity of phyla between the two sam-
ples. Indexes for normal weight dogs are shown in blue, while indexes for obese dogs are shown in orange
(BCS= 8) and green (BCS =9).

Full-size Gl DOI: 10.7717/peerj.12695/fig-1

In both groups, the most abundant phyla were Firmicutes and Bacteroidetes, followed
by Fusobacteria, Proteobacteria, and Actinobacteria (Fig. 2). Both groups presented
significant differences in their microbiome composition at the phylum level. Compared
to normal weight dogs, obese animals had a higher relative abundance of Firmicutes and
lower abundance of Bacteroidetes (Mann—Whitney U-test p-value &~ 0.014 and 0.011
respectively; Fig. 2A). Similarly, a LEfSe analysis at the phylum level showed significant
enrichment of Firmicutes in obese dogs and significant enrichment of Bacteroidetes,
Deferribacteres, and Tenericutes in normal weight dogs (Fig. 2C). Furthermore, the ratio
Firmicutes to Bacteroidetes was significantly lower in normal weight dogs compared to
obese dogs (0.28 &£ 0.16 vs. 0.53 & 0.21 respectively, p-value ~ 0.004; Fig. 2D).

At the genus level, samples in both groups were dominated by Blautia, Bacteroides, and
Peptoclostridium (Fig. 3). Among these, significant differences in both groups were found in
Peptoclostridium (DESeq2, adjusted p-value ~ 0.048) and Bacteroides (DESeq2, p-value ~
0.048). In general, obese dogs had an increase in the relative abundance of Peptoclostridium
and a decrease in Bacteroides genera (Fig. 3).

Finally, using PICRUSt we predicted the abundance of major putative metabolic
pathways in the gut microbiome of these animals and compared their total representation
in both groups employing the LEfSe method (Fig. 4). A LEfSe analysis was first performed to
determine genera enriched in both groups. We observed that Peproclostridium was increased
in obese animals, and several other genera were decreased (including Ruminococcaceae,
Oscillibacter, and Parasutterella; Fig. S1).

Interestingly, obese animals showed an enrichment in KEGG pathways and orthologs
related to motility (chemotaxis proteins K03406, flagellar assembly), as well as transport
functions and two-component systems (Figs. 4A and 4B). On the contrary, normal
weight animals showed a deployment in general biosynthetic pathways (terpenoids, folate,
lipopolysaccharide, Fig. 4A), as well as hexosaminidases (Fig. 4B).
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To detail the individual contribution of any microorganism to enriched or depleted
metabolic pathways, the LEfSE analysis of the abundance of the KEGG orthologs at the
phylum level was performed (Fig. 4C). The analysis revealed that the higher relative
abundance of Firmicutes in obese dogs contributed to increases in chemotaxis proteins
(p-value ~ 0.005), hexosaminidase activity (p-value &~ 0.016), and fumarate reductase
activity (p-value = 0.0005). These processes are related to respiration, motility, and
degradation of host glycans. In addition, the analysis revealed that Bacteroidetes abundance
in normal weight animals was responsible for the abundance of sensor histidine kinase
function in obese dogs (p-value ~ 0.003) and to hexosaminidase activity in normal weight
dogs (p-value &~ 0.016). This analysis was also performed at the genus level (Fig. 4D).
Anaerobiospirillum, Bacteroides, and Prevotellaceae relative abundance correlated positively
with 3 of 4 enriched KEGG orthologs in normal weight dogs (K06142, K00244, K02014;
Fig. 4D). Similarly, Caproiciproducens relative abundance correlated positively with 2 of
3 identified KEGG orthologs by LEfSe in obese dogs (K03406, K00936; Fig. 4E). On the
contrary, Allobaculum, Alloprevotella, Lactobacillus, Negativibacillus, and Ruminococcaceae
relative abundance correlated negatively with the abundance of the three identified KEGG
orthologs (Fig. 4E).

DISCUSSION

The gut microbiome has emerged as a factor shaping metabolic responses in animals,
including canines (Bermudez Sanchez et al., 2021). In this study, we observed a significant
decrease in Bacteroidetes and an increase in Firmicutes in obese dogs (Figs. 2 and 4).
Bacteroidetes, together with Firmicutes, is one of the most abundant phyla in the canine
intestinal microbiome, both in obese and normal weight dogs. A tendency of Bacteroidetes
to decrease and Firmicutes to increase in obese dogs has been observed previously
(Suchodolski, 2016). Interestingly, the ratio Firmicutes/Bacteroidetes has been shown to
increase in dogs undergoing a high-fat diet accompanied by a reduction in insulin sensitivity
and alterations in epithelial permeability (Moinard et al., 2020). This ratio has been shown
to decrease in dogs under weight loss or inflammatory bowel disease (IBD) (Barko et al.,
2017; Li et al., 2017; Bermudez Sanchez et al., 2020; Moinard et al., 2020). Notably, most of
these studies have been reported in US and European countries, but only a few in other
countries. In general, the evidence indicates a similar trend of increasing the Firmicutes to
Bacteroidetes ratio in obese animals in different countries (Handl et al., 2013; Li et al., 2017;
Montoya-Alonso et al., 2017; Bermudez Sanchez et al., 2020). However, further studies and
proper statistical comparisons are required to determine the effect of geography on the gut
microbiota and obesity in dogs. The Firmicutes/Bacteroidetes ratio imbalance has also been
observed in obese humans, being reversible after dietary interventions (Ley, Turnbaugh &
Klein, 2006). While obesity is a multicomponent disease and dogs were classified as obese
according to the BCS score, additional analysis, including measurements of fat percentage
and metabolic markers would improve the power of these correlations.

Changes in the ratio Firmicutes/Bacteroidetes seem to contribute to the development
and preservation of obesity in dogs (Park et al., 2015). In agreement with humans and other
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animals, the increase in Firmicutes and decrease in Bacteroidetes generates an increase in
the extraction of energy from the diet, mainly complex polysaccharides (Ley et al., 2006;
Palmas et al., 2021). This has been suggested to lead to the induction of specific metabolic
pathways involved in short-chain fatty acid production and finally causing an increase in
adipose tissue in the individual (Martinez-Cuesta et al., 2021). Recently it has been shown
by using metabolomics that weight loss in obese dogs induces several changes in fecal
metabolites (Bermudez Sanchez et al., 2021). The actual contribution of alterations in the
Firmicutes/Bacteroidetes and increased energy extraction to obesity has been challenged by
several studies (Duncan et al., 2008; Schwiertz et al., 2010; Xiao ¢ Kang, 2020). In addition,
no studies have demonstrated that these alterations indeed contribute to obesity in dogs.

Of 119 genera found in the microbiota of these animals in this study, the Bacteroides
genus was the most abundant in normal weight dogs. Comparatively, it showed a decrease in
obese dogs (Fig. 3). These microorganisms carry important immunological and metabolic
functions. They are related to healthy microbiomes in dogs and humans, participate in the
production of IL-6 and IL-10, stimulating the expression of MHC class I (Tsuda et al.,
2007). They are also major bacteria promoting the production of IgA in the large intestine
(Schofield & Palm, 2018; Yang et al., 2020). Bacteroides species have been associated with
the prevention of insulin resistance and correct energy metabolism (Rios-Covian et al.,
2017; Gurung et al., 2020). They are believed to have a great therapeutic value in metabolic
diseases such as diabetes and obesity (Yang er al., 2016). The role of Bacteroidetes in the
gut microbiota of dogs has not been well studied, especially if they play similar roles as in
the human gut.

The most abundant genera in obese dogs were Peptoclostridium and Blautia (Fig. 3).
They belong to the Clostridium class and phylum Firmicutes. The increase in species of
these genera has been related to certain disease states in dogs and humans, including
obesity, metabolic syndrome, acute diarrhea, and IBD (Leung et al., 2013; Woting ef al.,
20145 Guard et al., 2015). For example, the Blautia genus has been related to visceral fat
accumulation in adult humans between 20 and 76 years of age, independent of external
factors such as diet (Ozato et al., 2019). Changes in certain KEGG categories here were
associated with increases in Blautia and Allobaculum. Certain studies have shown this last
genus to increase in high-fat diets in mice and dogs (Kilburn et al., 2020; Zheng et al., 2021).

Metabolic analyses have supported the hypothesis that microbial gut ecology creates
functional changes that help perpetuate obesity (Backhed ¢ Crawford, 2010). The
microbiome of obese mice is enriched in genes that decode for the catabolism of complex
polysaccharides, promoting higher absorption of polysaccharides from the diet and
subsequent metabolism of monosaccharides (Turnbaugh et al., 2008). This precedes de
novo lipogenesis (DNL), a hepatic pathway responsible for converting excess carbohydrates
into fatty acids that are subsequently esterified to store triacylglycerols (TGs), providing
energy for the energy pathway of -oxidation of fatty acids (Ameer et al., 2014). It is
believed that the increased absorption of polysaccharides from the diet occurs due to an
increase in microbial glycosyl hydrolases present in multiple intestinal bacteria, including
those belonging to Bacteroidetes and Firmicutes, increasing the transactivation of lipogenic
enzymes and increasing the deposit of fat in peripheral tissues (Backhed et al., 2004).
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In this study, we predicted the enrichment of KEGG orthologs K03406 and K07483
in the obese group. Previously, other authors have identified these genes in dogs with
diarrhea compared with a healthy group (Guard et al., 2015). These genes, which code
for methyl-accepting chemotaxis protein and transposases, are related to the formation
of biofilms, biosynthesis of flagella, production of exopolysaccharides and toxins, among
others. These changes are likely a reflection of the enrichment in pro-inflammatory,
flagellated bacteria in the gut of obese animals, contributing to their obese phenotype
(Salah Ud-Din & Roujeinikova, 2017).

CONCLUSIONS

Obesity is a multifactorial disease highly prevalent in dogs. In this study, we compared
the gut microbiome of normal weight and obese dogs. Their microbiome compositions
were observed to be different. At the phylum level, obese animals showed an increase in
Firmicutes (Blautia, Peptoclostridium) and a decrese in Bacteroidetes (Bacteroides spp). An
increase in pathways related to motility and chemotaxis was observed in obese animals,
which could contribute to their phenotype. It is essential to understand the contribution
of specific microbiome taxa and their metabolic activities to obesity in dogs and how this
information could be used in combination with diet to manage this disease.
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