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Simple Summary: Cancer is considered the most significant public health issue which severely
threatens people’s health. The occurrence and mortality rate of breast cancer have been growing
consistently. Initial precise diagnostics act as primary factors in improving the endurance rate of
patients. Even though there are several means to identify breast cancer, histopathological diagnosis is
now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopatho-
logical image and the rapid rise in workload render this process time-consuming, and the outcomes
might be subjected to pathologists’ subjectivity. Hence, the development of a precise and automatic
histopathological image analysis method is essential for the field. Recently, the deep learning method
for breast cancer pathological image classification has made significant progress, which has become
mainstream in this field. Therefore, in this work, we focused on the design of metaheuristics with
deep learning based breast cancer classification process. The proposed model is found to be an
effective tool to assist physicians in the decision making process.

Abstract: Breast cancer is the major cause behind the death of women worldwide and is respon-
sible for several deaths each year. Even though there are several means to identify breast cancer,
histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. How-
ever, the difficulty of histopathological image and the rapid rise in workload render this process
time-consuming, and the outcomes might be subjected to pathologists’ subjectivity. Hence, the
development of a precise and automatic histopathological image analysis method is essential for
the field. Recently, the deep learning method for breast cancer pathological image classification has
made significant progress, which has become mainstream in this field. This study introduces a novel
chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification
(CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly
focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-
BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence
of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful
set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is
exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparam-
eters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-
tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal
hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The perfor-
mance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results
reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.
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1. Introduction

Cancer is considered the most significant public health issue which severely threatens
people’s health. The occurrence and mortality rate of breast cancer (BC) have been growing
consistently. Initial precise diagnostics act as primary factors in improving the endurance
rate of patients [1]. A mammogram is the starting stage of initial prognosis; hence, it
becomes hard to detect cancer in the denser breasts of teenage women. X-ray radiation
warns radiologists of the patient’s health [2]. The golden standard for BC prognosis is only
pathological examination. Pathological examinations generally attain tumor samples via
excision, puncture, etc. [3]. Hematoxylin combines deoxyribonucleic acid (DNA), and eosin
combines proteins. The precise prognosis of BC demands proficient histopathologists, and
it needs more time and endeavor to finish this work. Moreover, the prognosis outcomes
of distinct histopathologists are dissimilar and heavily based on histopathologists’ earlier
experience [4].

Recently, BC prognosis is dependent on the histopathological image, and this is con-
fronted by three major difficulties. At first, there is a shortcoming of proficient histopathol-
ogists across the globe, particularly in quite a few undeveloped regions and small hos-
pitals [5]. Next, the prognosis of histopathologists is subjective, and evaluation is not
performed on an objective basis. Whether prognosis is right or not is wholly based on
the histopathologists’ earlier knowledge [6]. Lastly, the prognosis of BC depends on the
histopathological image, which is time consuming, highly complex, and labor-intensive,
and it is considered ineffective during the era of big data. Despite such issues, an objective
and effective BC prognosis technique is essential for mitigating the pressure of the workload
of histopathologists [7]. The speedy advancement of computer-aided diagnosis (CAD) was
slowly employed in the clinical domain. The CAD system will not act as a substitute for
the physician; however, it can be utilized as a “second reader” in assisting the physician
in recognizing diseases [8]. However, there are false-positive areas identified by the com-
puter that will consume time for the physician in evaluating the outcomes induced by the
computer, again leading to a decline in effectiveness and preciseness. Thus, methods for
improving the sensitiveness of computer-aided tumor identification methodologies while
greatly minimizing the incorrect positive identification rate and enhancing the efficiency of
the identification technique constitute a potential research area [9].

Currently, deep learning (DL) methods have become popular in computer vision
(CV), particularly in biomedical image processing. These methods were able to investigate
complex and enhanced characteristics from images automatically. At the same time, these
methods greatly require the attention of several authors in using such techniques to cate-
gorize BC histopathology images [10]. In particular terms, convolutional neural networks
(CNNs) are broadly utilized in image-based works because of their capabilities to efficiently
distribute variables over several layers inside a DL method.

This study introduces a novel chaotic sparrow search algorithm with a deep transfer
learning-enabled breast cancer classification (CSSADTL-BCC) model applied on histopatho-
logical images. The presented CSSADTL-BCC model applies the Gaussian filtering (GF)
approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extrac-
tion model was employed to generate a useful set of feature vectors. Furthermore, a CSSA
with a stacked gated recurrent unit (SGRU) classification approach was exploited to allot
class labels. The CSSADTL-BCC model does not exist in the literature to the best of our
knowledge. The design of the CSSA for optimal hyperparameter tuning of the SGRU model
demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC
model was verified using benchmark data collection, and the outcomes were inspected
under different evaluation measures.
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The remaining sections of the paper are planned as follows. Section 2 indicates the
existing works related to BC classification. Next, Section 3 elaborates the proposed model,
and Section 4 offers the performance validation. At last, Section 5 draws the conclusions.

2. Literature Review

In [11], the authors proposed a real time data augmentation-related transfer learning
method to resolve existing limitations. Two popular and well-established image classi-
fication methods, such as Xception and InceptionV3 frameworks, have been trained on
a freely accessible BC histopathological image data named BreakHis. Alom et al. [12]
presented a technique for classifying BC using the Inception Recurrent Residual Convolu-
tion Neural Network (IRRCNN) framework. The proposed method is an effective DCNN
system that integrates the strength of the Recurrent Convolution Neural Network (RCNN),
Inception Network (Inception-v4), and the Residual Network (ResNet). The experiment
result illustrates better performance against RCNN, Inception Network, and ResNet for
object-detection tasks.

Vo et al. [13] presented a technique that employs the DL method with a convolution
layer for extracting the visual feature for BC classification. It has been found that the DL
model extracts the most useful feature when compared to the handcrafted feature extraction
approach. In [14], the authors proposed a BC histopathological image categorization related
to deep feature fusion and enhanced routing (FE-BkCapsNet) to exploit CapsNet and CNN
models. Firstly, a new architecture with two channels could simultaneously extract capsule
and convolutional features and incorporate spatial and sematic features into the new
capsule to obtain a discriminative dataset.

The researchers in [15] proposed a patch-based DL method named Pa-DBN-BC for
classifying and detecting BC on histopathology images with the Deep Belief Network
(DBN). The feature is extracted by supervised finetuning and unsupervised pre-training
phases. The network extracts feature automatically from image patches. Logistic re-
gression is utilized for classifying the patches from histopathology images. In [16], the
authors proposed a robust and novel technique based convolution-LSTM (CLSTM) learning
method, the pre-processing method with the optimized SVM classifier, and the marker-
controlled watershed segmentation algorithm (MWSA) for automatically identifying BC.
Saxena et al. [17] presented a hybrid ML method for solving class imbalance problems. The
presented method uses the kernelized weighted ELM and pre-trained ResNet50 for CAD
of BC using histopathology.

Several automated breast cancer classification models are available in the literature.
However, the models still contains a challenging problem. Because of the continual deep-
ening of models, the number of parameters of DL models also increases quickly, which
results in model overfitting. At the same time, different hyperparameters have a significant
impact on the efficiency of the CNN model, particularly in terms of the learning rate.
Modifying the learning rate parameter for obtaining better performance is also required.
Therefore, in this study, we employ the CSSA technique for the hyperparameter tuning of
the SGRU model.

3. The Proposed Model

In this study, a new CSSADTL-BCC model was developed to classify BC on histopatho-
logical images. The presented CSSADTL-BCC model mainly focused on the recognition
and classification of BC. At the primary stage, the CSSADTL-BCC model employed the GF
technique to eradicate the occurrence of noise. It was then followed by using a MixNet-
based feature extraction model employed to produce a useful set of feature vectors. Then,
the CSSA-SGRU classifier was exploited to allot class labels. Figure 1 illustrates the overall
process of the CSSADTL-BCC technique.
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Figure 1. The overall process of the CSSADTL-BCC technique.

3.1. Image Pre-Processing

At the primary stage, the CSSADTL-BCC model employed the GF technique to eradi-
cate the occurrence of noise. GF is a bandpass filter, viz., efficiently implemented in machine
vision and image processing applications [18]. A two-dimensional Gabor purpose was
oriented by sinusoidal grates controlled by two dimensional Gaussian envelopes. In the
two-dimensional coordinate (a, b) model, the GF comprising an imaginary and real one is
illustrated by the following:

Gδ,θ,ψ,σ,γ(a, b) = exp

(
− a′2 + γ2b′2

2σ2

)
× exp

(
j
(

2π
a′

δ
+ ψ

))
(1)

where they are described as follows.

a′ = a cos θ + b sin θ (2)

b′ = −a sin θ + b cos θ (3)

Now θ implies the orientation separation angle of the Gabor kernel, and δ signifies
the wavelength of sinusoidal features. Notably, it is essential to consider θ from the range
[0o, 180o] as symmetry generates another redundant direction. ψ denotes the stage offset, σ
indicates the standard derivation of the Gaussian envelope, and γ represents the ratio of
spatial features for identifying the ellipticity of the Gabor role. ψ = 0 and ψ = π/2 return
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the real and imaginary parts of GF. Variable 0 can be determined as 6 and spatial frequency
bandwidth bw is given by the following.

σ =
δ

pi

√
ln2
2

2bw + 1
2bw − 1

(4)

3.2. MixNet-Based Feature Extractor

Next, for image pre-processing, a MixNet-based feature extraction model is employed
to generate a useful set of feature vectors. A CNN algorithm created by the traditional
convolutional operation is difficult to use for mobile terminals due to its complicated
calculations and excessive parameters. In order to improve its effectiveness on mobile
terminals and to guarantee the accuracy of the model, a sequence of lightweight convolu-
tional operators has been presented. Amongst them, one of the most commonly utilized
is a depthwise separable convolution layer. A depthwise separable convolutional layer
splits the convolution into pointwise and depthwise convolution. In the initial phase,
it convolves a single channel at a time using convolutional kernels at size = 3. In the
second phase, it uses a feature map with the 1 × 1 convolutional kernel. Assume that N
Dk × Dk feature view and 1 convolutional sliding step are utilized to convolve a feature
map with DF × DF ×M dimensions, including the output feature map with dimensions of
DF × DF × N. The parameter amount of traditional convolutional operations is provided
as follows.

Dk × Dk ×M× N (5)

The parameters involved in the depthwise separable convolutional operation is pro-
vided below.

Dk × Dk ×M + 1× 1×M× N (6)

The computation involved in traditional convolutional operation is provided as follows.

Dk × Dk ×M× N × DF × DF (7)

The computation involved in depthwise separable convolutional operation is defined
in Equation (8).

Dk × Dk ×M× DF × DF ×M× N × DF × DF (8)

The ratio of the two operations is provided as follows.

Dk × Dk ×M× DF × DF ×M× N × DF × DF
Dk × Dk ×M× N × DF × DF

(9)

A depthwise separable convolutional layer uses a similar size 3 × 3 convolutional
kernel in the computation method; however, a network with larger convolutional kernels
of 5 × 5 or 7 × 7 confirms that a larger convolutional kernel improves the efficiency
and accuracy of the model. However, the experiment shows that the case where a larger
convolutional kernel is better is rare; simultaneously, a large convolutional kernel minimizes
the model’s accuracy. Here, MDConv splits the input channel with M size into C groups,
later convolving all the groups with distinct kernel sizes. The standard depthwise separable
convolution splits the input channel with M size into M groups and later implements
convolutional calculations for all groups with a similar kernel size.

3.3. Image Classification Using SGRU Model

At this stage, the generated feature vectors are passed into the SGRU classifier to allot
class labels. SGRU is made up of various GRU units. For time series t, the input series
{e1, e2, . . . , et} first enters into hidden layer

{
h1

1, h1
2, . . . , h1

t
}

to attain all data from the
previous time step. Next, the upper hidden layer takes the output from the lower hidden
layers at a similar time step as the input for extracting features [19]. In particular, the
upper layer of the hidden layer is

{
h2

1, h2
2, . . . , h2

t
}

. For all layers, a hidden layer hi
t, as
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provided in Equation (13), is shown by Equations (10)–(12) to attain the candidate value,
update, and reset gates. It should be noted that in Equations (10)–(12), we have included
embedding vector et in the initial layer. Starting from the next layer upward, we employ
the hidden state from the current time step in the previous layer, hi−1

t , rather than et in
(10)–(12). Figure 2 depicts the framework of SGRU.

ui
t = σ

(
Wi

uhi
t−1 + Ui

uet + bi
u

)
(10)

ri
t = σ

(
Wi

rhi
t−1 + Ui

ret + bi
r

)
(11)

C̃ = tanh
(

Wi
c.
[
ri

t × hi
t−1

]
+ Ui

cet + bi
c

)
(12)

hi
t = ui

t × C̃i
t +
(

1− ui
t

)
× hi

t−1 (13)

Figure 2. Framework of SGRU model.

3.4. Hyperparameter Optimization

Finally, CSSA is implied to optimally modify the hyperparameters included in the
MixNet model. SSA attains the best possible solution by mimicking certain behaviors of
sparrows [20]. Firstly, the discoverer–joiner sparrow population models are established,
and then the sparrow is arbitrarily chosen as a guard. The joiner snatches food from the
discoverer, observes the discoverer, and follows the discoverer for food. The discoverer
takes the responsibility to provide foraging direction and areas for the sparrow population.
Once the vigilante realizes the threat, the population implements anti-predation behavior
immediately. Lastly, with various iterations of the location of the discoverer and joiner,
the adoptive position for the entire population can be found. The sparrow population
is within the space of N × D, where N indicates the overall amount of sparrows, D rep-
resents the spatial dimension. Next, the location of the i-th sparrow in space represents
Xi = (xi1, xi2, · · · , xid), i ∈ [1, N], d ∈ [1, D], and xid characterizes the location of i-th
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sparrow in d-dimension. The position update equation of the discoverer can be shown in
the following Equation (14).

xt+1
id =

{
xt

id · exp.
(
−i
α·T

)
R2 < ST

xt
id + Q·L, R2 ≥ ST

(14)

In the equation, t signifies the existing amount of iterations; T indicates the maximal
amount of iterations; α represents an arbitrary value within [0, 1]; Q implies an arbitrary
value with standard distribution; L indicates a matrix in that element is 1, and its size
is 1× d; R2 ∈ [0, 1] signifies the warning values; ST ∈ [0.5, 1] denotes the safety values.
If R2 < ST, this implies that the population is not at risk and the discoverer continues
searching. If R2 ≥ ST, this implies that the vigilante discovered the predator and instantly
delivered an alarm to the others. The sparrow population implements anti-predation
behavior immediately any fly to a safer region for food. The position update equation of
the joiner can be shown in the following Equation (15).

xt+1
id =


Q · exp

(
xt

worstd−xt
id

i2

)
i > N

2

xt+1
best d +

1
D

D
∑

d=1
(rand(−1, 1)·

∣∣∣∣xt
id − xt+1

best d i ≤ N
2

(15)

Here, xt
worstd signifies the global worst place in tth iteration; xt+1

bestd signifies the global
optimal location at the tth iteration. If i > N

2 , it implies that the i-th joiner has not attained
food and that it needs to fly toward another location in order to search for food. If i ≤ N

2 ,
this implies that the i-th joiner is closer to the world’s best location and is arbitrarily foraging
around. The vigilant location upgrade equation is provided as follows:

xr+1
id =

xt
worst d + β

(
xt

id − xt
worst d

)
, fi 6= fg

xt
id + K

(
xt

id−xt
worst d

| fi− fw |+e

)
fi = fg

(16)

where β signifies the step length control variable that is an arbitrary value subjected to a
regular distribution with a variance of 1 and means value of 0; K denotes the movement
direction of sparrow, and arbitrary values lie within [1, 1]; e indicates a constant with
smaller value; fi characterizes the fitness of i-th sparrow; fg signifies the optimum fitness
of the existing population; fw denotes the worst fitness of existing population. If fi 6= fg,
this implies that the i-th sparrow is at the edge of the population and can be attacked easily
by the predator. If fi = fg, this implies that i-th sparrow is within center of the population,
and it is aware of danger; it relocates closer to other sparrows in order to reduce the threat
of becoming caught.

With the addition of a global optimum sparrow neighborhood in all iterations, the
searching ability of SSA can be enhanced. Additionally, this could assist the sparrow
group in attaining the best location through the search process. The chaotic local searching
technique can be employed in the iteration process of SSA for improving the capability of
exploitation and maintaining a better harmony among the core search processes. Moreover,
the logical chaotic function is employed to calculate chaotic SSA. This can be obtained
as follows.

ρk+1 = µρk(1− ρk), k = 1, 2, . . . , N − 1 (17)

On the other hand, ρ1 ∈ (0, 1) and ρ1 6= 0.25, 0.5, 0.75, and 1 once the control
parameter µ is set to 4, and the logistic function is converted to a chaotic state. Therefore,
the chaotic local searching function is shown below.

Pi = b + ρi × (b− a), i = 1, 2, . . . , N (18)
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Here, [a, b] indicates the searching space, and the chaotic function was produced by
mapping chaotic parameters ρi into the chaotic vector Pi. Furthermore, chaotic vector Pi
was linearly integrated with targeted position TP for generating candidate location CL,
which is expressed as follows.

CL = (1− SC)× TP + SC× Pi (19)

SC = (T − t + 1)/T (20)

The CSSA approach resolves an FF for obtaining higher classification performances.
It defines a positive integer for demonstrating the optimal performance of candidate
solutions. During this case, the minimized classifier error rate was regarded as FF, as
offered in Equation (21).

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples × 100

(21)

4. Performance Validation

In this section, the experimental validation of the CSSADTL-BCC model is tested using
a benchmark dataset [21], and the details are provided in Table 1. The CSSADTL-BCC
model is simulated using the Python 3.6.5 tool. The parameter settings are provided as
follows: learning rate—0.01; dropout—0.5; batch size—5; epoch count—50; activation—
ReLU. A few sample images are demonstrated in Figure 3.

Table 1. Dataset details.

Category Class Names Labels No. of Images Total

Benign

Adenosis A 106

588
Fibroadenoma F 237

Phyllodes Tumor PT 115

Tubular
Adenoma TA 130

Malignant

Carcinoma DC 788

1232

Lobular
Carcinoma LC 137

Mucinous
Carcinoma MC 169

Papillary
Carcinoma PC 138

Total Number of Images 1820

Figure 4 illustrates the confusion matrices produced by the CSSADTL-BCC model un-
der distinct epochs. With 500 epochs, the CSSADTL-BCC model has identified 65 samples in
class A, 205 samples in class F, 81 samples in class PT, 84 samples in class TA, 760 samples in
class DC, 93 samples in class LC, 117 samples in class MC, and 96 samples in class PC. Along
with that, with 2000 epochs, the CSSADTL-BCC approach has identified 89 samples in class
A, 228 samples in class F, 109 samples in class PT, 112 samples in class TA, 779 samples in
class DC, 116 samples in class LC, 160 samples in class MC, and 121 samples in class PC.
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Figure 3. Sample images: (a) benign (b) malignant.

Table 2 and Figure 5 highlight the overall classification outcomes of the CSSADTL-
BCC model under distinct epochs and class labels. The experimental outcomes implied
that the CSSADTL-BCC model has resulted in ineffectual outcomes over other models
in terms of different measures such as accuracy (accuy), precision (precn), recall (recal),
specificity (specy), F-score (Fscore), MCC, and G-mean (Gmean). For instance, with 500 epochs,
the CSSADTL-BCC model provided the averages of accuy, precn, recal , specy, Fscore, MCC,
and Gmean at 95.62%, 78.78%, 73.25%, 97.09%, 75.71%, 73.18%, and 84.01%, respectively.
Moreover, with 1000 epochs, the CSSADTL-BCC method obtained the averages of accuy,
precn, recal , specy, Fscore, MCC, and Gmean at 97.10%, 85.21%, 82.09%, 98.16%, 83.52%, 81.84%,
and 89.62%, respectively. In addition, with 1500 epochs, the CSSADTL-BCC methodology
provided averages of accuy, precn, recal , specy, Fscore, MCC, and Gmean at 98.61%, 92.80%,
91.48%, 99.14%, 92.10%, 91.29%, and 95.19%, respectively. At last, with 2000 epochs, the
CSSADTL-BCC technique obtained the averages of accuy, precn, recal , specy, Fscore, MCC,
and Gmean at 98.54%, 92.58%, 90.87%, 99.08%, 91.66%, 90.82%, and 94.84%, respectively.
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Figure 4. Confusion matrix of CSSADTL-BCC technique under various epochs: (a) 500 epochs,
(b) 1000 epochs, (c) 1500 epochs, and (d) 2000 epochs.

Table 2. Result analysis of CSSADTL-BCC technique with various measures and epochs.

Class Labels Accuracy Precision Recall Specificity F-Score MCC G-Mean

Epoch-500

A 96.43 73.03 61.32 98.60 66.67 65.07 77.76

F 95.77 82.00 86.50 97.16 84.19 81.79 91.67

PT 97.25 83.51 70.43 99.06 76.42 75.27 83.53

TA 95.55 70.59 64.62 97.93 67.47 65.16 79.55

DC 92.42 87.36 96.45 89.34 91.68 85.10 92.83

LC 96.21 78.81 67.88 98.51 72.94 71.14 81.78

MC 94.84 73.58 69.23 97.46 71.34 68.54 82.14

PC 96.48 81.36 69.57 98.69 75.00 73.38 82.86

Average 95.62 78.78 73.25 97.09 75.71 73.18 84.01
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Table 2. Cont.

Class Labels Accuracy Precision Recall Specificity F-Score MCC G-Mean

Epoch-1000

A 97.25 80.43 69.81 98.95 74.75 73.51 83.11

F 97.20 87.50 91.56 98.04 89.48 87.90 94.75

PT 98.13 89.32 80.00 99.35 84.40 83.56 89.15

TA 96.76 77.52 76.92 98.28 77.22 75.48 86.95

DC 95.82 93.20 97.46 94.57 95.29 91.61 96.01

LC 97.14 84.55 75.91 98.87 80.00 78.60 86.63

MC 96.98 83.14 84.62 98.24 83.87 82.21 91.18

PC 97.53 86.05 80.43 98.93 83.15 81.87 89.20

Average 97.10 85.21 82.09 98.16 83.52 81.84 89.62

Epoch-1500

A 98.46 89.80 83.02 99.42 86.27 85.53 90.85

F 98.68 94.19 95.78 99.12 94.98 94.22 97.43

PT 99.23 93.91 93.91 99.59 93.91 93.50 96.71

TA 98.41 90.40 86.92 99.29 88.63 87.79 92.90

DC 98.13 97.12 98.60 97.77 97.86 96.21 98.19

LC 98.68 93.80 88.32 99.52 90.98 90.31 93.76

MC 98.52 89.89 94.67 98.91 92.22 91.44 96.77

PC 98.79 93.28 90.58 99.46 91.91 91.27 94.92

Average 98.61 92.80 91.48 99.14 92.10 91.29 95.19

Epoch-2000

A 98.57 90.82 83.96 99.47 87.25 86.57 91.39

F 98.68 93.83 96.20 99.05 95.00 94.25 97.62

PT 99.18 92.37 94.78 99.47 93.56 93.13 97.10

TA 98.30 89.60 86.15 99.23 87.84 86.95 92.46

DC 98.02 96.65 98.86 97.38 97.74 96.00 98.12

LC 98.46 94.31 84.67 99.58 89.23 88.55 91.83

MC 98.68 91.43 94.67 99.09 93.02 92.31 96.86

PC 98.46 91.67 87.68 99.35 89.63 88.82 93.33

Average 98.54 92.58 90.87 99.08 91.66 90.82 94.84

The training accuracy (TA) and validation accuracy (VA) attained by the CSSADTL-
BCC model on test dataset are demonstrated in Figure 6. The experimental outcomes
implied that the CSSADTL-BCC model has gained maximum values of TA and VA. In
particular, VA appeared to be higher than TA.
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Figure 5. Result analysis of CSSADTL-BCC technique with distinct epochs.

Figure 6. TA and VA analysis of CSSADTL-BCC technique.

The training loss (TL) and validation loss (VL) achieved by the CSSADTL-BCC method
on test dataset are established in Figure 7. The experimental outcome inferred that the
CSSADTL-BCC model obtained the lowest values of TL and VL. In particular, VL seemed
to be lower than TL. Next, a brief precision–recall examination performed on the CSSADTL-
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BCC method on the test dataset is displayed in Figure 8. By observing the figure, it can
be observed that the CSSADTL-BCC approach has established maximal precision–recall
performance under all classes.

Figure 7. TL and VL analysis of CSSADTL-BCC technique.

Figure 8. Precision–recall curve analysis of CSSADTL-BCC technique.
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Figure 9 portrays a clear ROC investigation of the CSSADTL-BCC model on the test
dataset. The figure portrayed that the CSSADTL-BCC model has resulted in proficient
results with maximum ROC values under distinct class labels.

Figure 9. ROC curve analysis of the CSSADTL-BCC technique.

Figure 10 reports detailed classification accuracy outcomes of the CSSADTL-BCC
model under distinct iterations and runs. The figures highlighted that CSSADTL-BCC has
showcased effectual classifier results under every epoch.

To highlight the enhanced outcomes of the CSSADTL-BCC model, a brief comparison
study with recent models is shown in Table 3 [22]. Figure 11 investigates a detailed accuy
and Fscore analysis of the CSSADTL-BCC with existing models. The results indicated that
GLCM-KNN and GLCM-NB models obtained lower values of accuy and Fscore. At the same
time, the GLCM-discrete transform, GLCM-SVM, and Deep learning-IRV2 models have
attained moderately closer values of accuy and Fscore. Next to that, the GLCM-DL and Deep
learning INV3 models have resulted in reasonable accuy and Fscore values. However, the
CSSADTL-BCC model has gained an effectual outcome with maximum accuy and Fscore at
98.61% and 92.80%, respectively.

Figure 12 examines a detailed precn and recal examination of CSSADTL-BCC with
existing techniques. The outcomes represented that the GLCM-KNN and GLCM-NB
approaches have gained lesser values of precn and recal . Moreover, the GLCM-discrete
transform, GLCM-SVM, and Deep learning-IRV2 algorithms have attained moderately
closer values of precn and recal . Along with that, the GLCM-DL and Deep learning INV3
approaches have resulted in reasonable precn and recal values. However, the CSSADTL-
BCC technique has gained effectual outcomes with maximum values of precn and recal at
92.80% and 91.48%, respectively. After observing the results and discussion, it is apparent
that the CSSADTL-BCC model has showcased enhanced outcomes over other methods. The
enhanced performance of the CSSADTL-BCC model is due to the effectual hyperparameter
tuning process of the SGRU classifier. Thus, the proposed model can be applied to assist
physicians in the disease diagnosis process.
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Figure 10. Classification accuracy of CSSADTL-BCC technique under distinct iterations:
(a) 500 epochs, (b) 1000 epochs, (c) 1500 epochs, and (d) 2000 epochs.

Table 3. Comparative analysis of the CSSADTL-BCC technique with existing algorithms.

Methods Accuracy Precision Recall F-Score

GLCM-KNN Model 76.17 62.40 83.60 82.22

GLCM-NB Model 78.45 82.16 83.45 86.97

GLCM-Discrete transform 85.00 83.56 81.66 84.69

GLCM-SVM Model 85.00 87.32 87.61 81.62

GLCM-DL Model 92.44 86.89 80.24 87.92

Deep Learning-INV3 94.71 87.57 87.07 81.86

Deep Learning-IRV2 88.12 81.70 81.44 86.42

CSSADTL-BCC 98.61 92.80 91.48 92.10
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Figure 11. Accuy and Fscore analysis of CSSADTL-BCC technique with existing algorithms.

Figure 12. Recal and Precn analysis of the CSSADTL-BCC technique with existing algorithms.

5. Conclusions

In this study, a new CSSADTL-BCC method was advanced for classifying BC on
histopathological images. The presented CSSADTL-BCC model mainly focused on the
recognition and classification of BC. At the primary stage, the CSSADTL-BCC model em-
ployed the GF technique to eradicate the occurrence of noise. Moreover, a MixNet-based
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feature extraction model was employed for producing a useful collection of feature vectors.
Then, the SGRU classifier was exploited to allot class labels. Furthermore, CSSA is applied
to optimally modify the hyperparameters involved in the MixNet model. The performance
validation of the CSSADTL-BCC model can be tested by using a benchmark dataset, and
the results reported the superior efficiency of the CSSADTL-BCC method over the current
existing approaches with a maximum accuracy of 98.61%. In the future, deep instance seg-
mentation approaches can be included to enhance classification performance. In addition,
the classifier’s results can be boosted by designing deep fusion-based ensemble models.

Author Contributions: Conceptualization, K.S.; methodology, K.S., A.K.D.; software, S.K.; validation,
S.K., I.C.D.; formal analysis, K.S.; investigation, I.C.D.; resources, G.P.J.; data curation, A.K.D.;
writing—original draft preparation, K.S.; writing—review and editing, G.P.J.; visualization, S.K.;
supervision, I.C.D.; project administration, I.C.D. funding acquisition, G.P.J., I.C.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Hankuk University of Foreign Studies Research Fund (of
2022) and the Ministry of Science and Higher Education of the Russian Federation (Government
Order FENU-2020–0022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated
during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Das, A.; Nair, M.S.; Peter, S.D. Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring

of breast cancer: A review. J. Digit. Imaging 2020, 33, 1091–1121. [CrossRef] [PubMed]
2. Krithiga, R.; Geetha, P. Breast cancer detection, segmentation and classification on histopathology images analysis: A systematic

review. Arch. Comput. Methods Eng. 2021, 28, 2607–2619. [CrossRef]
3. Carvalho, E.D.; Antonio Filho, O.C.; Silva, R.R.; Araujo, F.H.; Diniz, J.O.; Silva, A.C.; Paiva, A.C.; Gattass, M. Breast cancer

diagnosis from histopathological images using textural features and CBIR. Artif. Intell. Med. 2020, 105, 101845. [CrossRef]
[PubMed]

4. Xie, J.; Liu, R.; Luttrell, J., IV; Zhang, C. Deep learning based analysis of histopathological images of breast cancer. Front. Genet.
2019, 10, 80. [CrossRef]

5. Kaushal, C.; Bhat, S.; Koundal, D.; Singla, A. Recent trends in computer assisted diagnosis (CAD) systems for breast cancer
diagnosis using histopathological images. IRBM 2019, 40, 211–227. [CrossRef]

6. Yan, R.; Ren, F.; Wang, Z.; Wang, L.; Zhang, T.; Liu, Y.; Rao, X.; Zheng, C.; Zhang, F. Breast cancer histopathological image
classification using a hybrid deep neural network. Methods 2020, 173, 52–60. [CrossRef]

7. Mehra, R. Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express 2018, 4, 247–254.
8. Alkassar, S.; Jebur, B.A.; Abdullah, M.A.; Al-Khalidy, J.H.; Chambers, J.A. Going deeper: Magnification-invariant approach for

breast cancer classification using histopathological images. IET Comput. Vis. 2021, 15, 151–164. [CrossRef]
9. Sohail, A.; Khan, A.; Wahab, N.; Zameer, A.; Khan, S. A multi-phase deep CNN based mitosis detection framework for breast

cancer histopathological images. Sci. Rep. 2021, 11, 6215. [CrossRef]
10. Ahmad, N.; Asghar, S.; Gillani, S.A. Transfer learning-assisted multi-resolution breast cancer histopathological images classifica-

tion. Vis. Comput. 2021, 1–20. [CrossRef]
11. Rai, R.; Sisodia, D.S. Real-time data augmentation based transfer learning model for breast cancer diagnosis using histopathologi-

cal images. In Advances in Biomedical Engineering and Technology; Springer: Singapore, 2021; pp. 473–488.
12. Alom, M.Z.; Yakopcic, C.; Nasrin, M.; Taha, T.M.; Asari, V.K. Breast cancer classification from histopathological images with

inception recurrent residual convolutional neural network. J. Digit. Imaging 2019, 32, 605–617. [CrossRef] [PubMed]
13. Vo, D.M.; Nguyen, N.Q.; Lee, S.W. Classification of breast cancer histology images using incremental boosting convolution

networks. Inf. Sci. 2019, 482, 123–138. [CrossRef]
14. Wang, P.; Wang, J.; Li, Y.; Li, P.; Li, L.; Jiang, M. Automatic classification of breast cancer histopathological images based on deep

feature fusion and enhanced routing. Biomed. Signal Process. Control. 2021, 65, 102341. [CrossRef]
15. Hirra, I.; Ahmad, M.; Hussain, A.; Ashraf, M.U.; Saeed, I.A.; Qadri, S.F.; Alghamdi, A.M.; Alfakeeh, A.S. Breast cancer classification

from histopathological images using patch-based deep learning modeling. IEEE Access 2021, 9, 24273–24287. [CrossRef]
16. Demir, F. DeepBreastNet: A novel and robust approach for automated breast cancer detection from histopathological images.

Biocybern. Biomed. Eng. 2021, 41, 1123–1139. [CrossRef]

http://doi.org/10.1007/s10278-019-00295-z
http://www.ncbi.nlm.nih.gov/pubmed/31989390
http://doi.org/10.1007/s11831-020-09470-w
http://doi.org/10.1016/j.artmed.2020.101845
http://www.ncbi.nlm.nih.gov/pubmed/32505426
http://doi.org/10.3389/fgene.2019.00080
http://doi.org/10.1016/j.irbm.2019.06.001
http://doi.org/10.1016/j.ymeth.2019.06.014
http://doi.org/10.1049/cvi2.12021
http://doi.org/10.1038/s41598-021-85652-1
http://doi.org/10.1007/s00371-021-02153-y
http://doi.org/10.1007/s10278-019-00182-7
http://www.ncbi.nlm.nih.gov/pubmed/30756265
http://doi.org/10.1016/j.ins.2018.12.089
http://doi.org/10.1016/j.bspc.2020.102341
http://doi.org/10.1109/ACCESS.2021.3056516
http://doi.org/10.1016/j.bbe.2021.07.004


Cancers 2022, 14, 2770 18 of 18

17. Saxena, S.; Shukla, S.; Gyanchandani, M. Breast cancer histopathology image classification using kernelized weighted extreme
learning machine. Int. J. Imaging Syst. Technol. 2021, 31, 168–179. [CrossRef]

18. Wang, Y.; Yan, J.; Yang, Z.; Zhao, Y.; Liu, T. Optimizing GIS partial discharge pattern recognition in the ubiquitous power internet
of things context: A MixNet deep learning model. Int. J. Electr. Power Energy Syst. 2021, 125, 106484. [CrossRef]

19. Al Wazrah, A.; Alhumoud, S. Sentiment Analysis Using Stacked Gated Recurrent Unit for Arabic Tweets. IEEE Access 2021, 9,
137176–137187. [CrossRef]

20. Yuan, J.; Zhao, Z.; Liu, Y.; He, B.; Wang, L.; Xie, B.; Gao, Y. DMPPT control of photovoltaic microgrid based on improved sparrow
search algorithm. IEEE Access 2021, 9, 16623–16629. [CrossRef]

21. Spanhol, F.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans.
Biomed. Eng. (TBME) 2016, 63, 1455–1462. [CrossRef]

22. Reshma, V.K.; Arya, N.; Ahmad, S.S.; Wattar, I.; Mekala, S.; Joshi, S.; Krah, D. Detection of Breast Cancer Using Histopathological
Image Classification Dataset with Deep Learning Techniques. BioMed Res. Int. 2022. [CrossRef] [PubMed]

http://doi.org/10.1002/ima.22465
http://doi.org/10.1016/j.ijepes.2020.106484
http://doi.org/10.1109/ACCESS.2021.3114313
http://doi.org/10.1109/ACCESS.2021.3052960
http://doi.org/10.1109/TBME.2015.2496264
http://doi.org/10.1155/2022/8363850
http://www.ncbi.nlm.nih.gov/pubmed/35281604

	Introduction 
	Literature Review 
	The Proposed Model 
	Image Pre-Processing 
	MixNet-Based Feature Extractor 
	Image Classification Using SGRU Model 
	Hyperparameter Optimization 

	Performance Validation 
	Conclusions 
	References

