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Abstract

The volume and diversity of biological data are increasing at very high rates. Vast amounts of protein sequences and
structures, protein and genetic interactions and phenotype studies have been produced. The majority of data generated by
high-throughput devices is automatically annotated because manually annotating them is not possible. Thus, efficient and
precise automatic annotation methods are required to ensure the quality and reliability of both the biological data and
associated annotations. We proposed ENZYMatic Annotation Predictor (ENZYMAP), a technique to characterize and predict
EC number changes based on annotations from UniProt/Swiss-Prot using a supervised learning approach. We evaluated
ENZYMAP experimentally, using test data sets from both UniProt/Swiss-Prot and UniProt/TrEMBL, and showed that
predicting EC changes using selected types of annotation is possible. Finally, we compared ENZYMAP and DETECT with
respect to their predictions and checked both against the UniProt/Swiss-Prot annotations. ENZYMAP was shown to be more
accurate than DETECT, coming closer to the actual changes in UniProt/Swiss-Prot. Our proposal is intended to be an
automatic complementary method (that can be used together with other techniques like the ones based on protein
sequence and structure) that helps to improve the quality and reliability of enzyme annotations over time, suggesting
possible corrections, anticipating annotation changes and propagating the implicit knowledge for the whole dataset.
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Introduction

In recent decades there has been a surge in the amount of

biological data available. According to [1], new DNA sequencing

technologies allowed a 1000-fold drop in sequencing costs since

1990 and made an increasing number of large data collection

projects economically possible, leading to an exponential increase

in the DNA sequence data available. Additionally, vast amounts of

data, such as protein sequences and structures, gene-expression

measurements, protein and genetic interactions and phenotype

studies, have been generated [2]. A significant portion of these

data are organized and publicly available to the scientific

community in biological repositories and databases accessible

through the Internet. In accordance with [3], these biological

databases store not only biological raw data but also relevant

information such as protein function, literature information and

the relationship between a protein and its encoding gene, among

other annotation.

Considering the existing and the increasing volumes of

biological data, a common approach involves selected data sets

of high relevance being manually curated by experts while most

data are automatically annotated [4]. In the majority of cases, the

roles of genes have been reported by sequence similarity

propagation without experimental evidence [5,6]. Glycoprotein

G of the Nipah virus (entry Q9IH62 in Swiss-Prot) illustrates the

drawbacks of this approach. When considering residue similarity,

it is very similar (more than 50%) to hemagglutinin-neuramin-

idases, an enzyme group associated with viral attachment and

fusion to the host cell. The structures of Glycoprotein G of the

Hendra and Nipah viruses were solved (PDB id 2 VSK and

2 VSM, respectively), revealing the six-blade b propeller structural

motif typical of these hydrolases [7]. A structural alignment with a

legitimate neuraminidase from Parainfluenza Virus Type III (PDB

id 1 V3D), which also belongs to the same Paramyxoviridae family

of Henipavirus, resulted in a RMSD lower than 2.0 Å [8]. Thus,

an automated system based on such similarities may erroneously

classify the function of Glycoprotein G of Henipavirus as having

neuraminidase activity. In fact, up to release 14 (July 2008) of

UniProt/Swiss-Prot [9], entry Q9IH62 was considered an

enzyme. However, despite all these sequence and structural

similarities, Henipavirus Glycoproteins G are now known not to

be enzymes and to have only hemagglutinin activity, performing

protein-protein interactions with host receptors [7]. At the time we

wrote this article, the PDB [10] still classified them as hydrolases.

In summary, the scientific community still has concerns regarding
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the quality and reliability of the data and annotations from the

large, publicly available databases.

As we mentioned, biological repositories and databases almost

always store some annotations that characterize and provide

biological context to the raw data. In this work, we investigate the

extent to which these annotations may be used to detect problems

in the database. In particular, we want to verify whether the

UniProt/Swiss-Prot annotations are good indicators that an EC

number change (a type of enzyme annotation detailed in the next

section) will occur and determine how we can systematically

perform such predictions.

In this work, we propose a supervised learning approach to

characterize and predict annotation changes in temporal data,

which we named ENZYMatic Annotation Predictor (ENZYMAP).

More precisely, we are interested in predicting enzyme function

annotation changes based on other UniProt/Swiss-Prot annota-

tions. This proposal is intended to be an automatic complemen-

tary method (that can be used together with other techniques like

the ones based on protein sequence and structure) that helps

improve the quality and reliability of enzyme annotations,

suggesting possible corrections and anticipating annotation

changes. A common phenomenon in biological databases is that

since a correction is made, this knowledge is not necessarily

propagated to the whole database at once, but gradually and

slowly. Our proposal can suggest corrections to database

annotations, propagating the implicit knowledge for the whole

dataset. Moreover, there is a huge volume of data that cannot be

analyzed manually, hence the importance of reliable automatic

annotation methods.

Enzyme Annotations
In this work, enzyme function annotation refers to the Enzyme

Commission (EC) number [11], which is a numerical classification

scheme for enzymes based on the chemical reactions they catalyze.

Each enzyme code consists of four numbers separated by periods.

Those numbers represent a hierarchical, progressively finer

classification of the catalyzed reaction. For example, the code

3.4.21.4 represents the following information: (3) hydrolase,

indicating that the enzyme breaks a chemical bond involving a

water molecule; (3.4) peptidase, indicating that the broken bond is

a peptide bond, i.e., a bond between residues in a protein chain;

(3.4.21) endopeptidase, indicating that an intra-chain peptide bond

is broken and that a serine residue participates in the mechanism

of catalysis; and (3.4.21.4) trypsin, indicating an enzyme that

cleaves mainly at the carboxyl side of lysine or arginine residues.

The EC classification system is known to have some drawbacks.

[12] reported a systematic annotation error in genome and

pathway databases resulting from the misinterpretation of partial

EC numbers. The key issue is that different enzymes that catalyze

different reactions within the same class can be assigned the same

partial EC number but the same partial EC number does not

mean that the enzymes have the same activities. Also according to

[12], the available EC number list does not cover all known

enzymatic activities, so a partial EC number can be used even

when the enzyme activity is known because a complete EC

number is not available. [13] stated that the same reaction can be

correctly annotated with different EC numbers. For example, the

reaction catalyzed by the sterol 14-demethylase (1.14.13.70) is

correctly assigned to 1.14.13 (oxidoreductase with NADH or

NADPH as one donor and incorporation of one atom of oxygen),

but it could be assigned to 1.14.21 (oxidoreductase with NADH or

NADPH as one donor and the other dehydrogenated). These two

sub-subclasses are similar and could be merged without a loss of

information. In addition, according to [13], the general principle

that the enzyme class is defined by its chemical reaction is violated

in some cases. For example, the reaction

ATP z H2O ~ ADP z phosphate is catalyzed by the enzymes

adenosinetriphosphatase (3.6.1.3) and myosin ATPase (3.6.4.1). In

3.6.1.3, the ATPase activity is not connected to actin movement,

but in 3.6.4.1 it is.

Nonetheless, we chose to analyze the EC number as an enzyme

function annotation because it is a mature and widely adopted

enzyme classification scheme yet a controlled vocabulary that is

numerical and hierarchical, which makes it particularly complex

and interesting for computational modeling and description.

Related Work
Several studies have drawn attention to the error rates in

biological database annotation. Here, we briefly review some of

them. In [6], authors compared annotations in Mycoplasma

genitalium performed by three different groups and detected an

error rate from 7% to 15% (depending on the gene analyzed and

the group responsible for the analysis). [14] estimated the error

rates in the genomes of Mycoplasma genitalium, Haemophilus influenzae

and Methanococcus jannaschii by counting the number of discrepan-

cies in sets of similar proteins and concluded that the error rates

vary from 4% to 40% for the first genome and from 4% and 34%

for the last two genomes. Both analyses were based on the

discrepancies of annotations made by different research groups for

very specific genomes, which allows the placement of a lower limit

on the likely levels of misannotation according to [15].

A systematic annotation error in genome and pathway

databases that results from the misinterpretation of partial EC

numbers was reported in [12]. This error results in the assignment

of genes annotated with a partial EC number to many or all

biochemical reactions that are annotated with the same partial

EC. For example, in KEGG [16], out of 135 genes from Escherichia

coli annotated with a partial EC number, 58 were incorrectly

assigned to reactions.

In [15], authors investigated the levels of misannotation for the

molecular function in UniProtKB/Swiss-Prot, GenBank Non-

redundant (NR) [17], UniProtKB/TrEMBL and KEGG for 37

enzyme families with experimental evidence. Swiss-Prot presented

error levels close to 0% for most families, whereas GenBank NR,

TrEMBL and KEGG showed high levels of misannotation, from

5%–63%, across the six studied superfamilies. Even in Swiss-Prot,

a few families showed high levels of misannotation, for example

Adenosine deaminase, which presented about 70% of misannota-

tion. Furthermore, an analysis of the sequences from GenBank NR

showed that the level of misannotation was close to 0% in 1999

but was approximately 40% in 2005, indicating that misannota-

tion increased during that period.

The authors of [13] investigated inconsistencies in the EC

number classification scheme as they can lead to inconsistencies in

enzyme annotation. The authors validated the data of 3,788

enzymatic reactions and found a greater than 80% agreement

between their assignment and the EC scheme. These results can

be used to make corrections and improve the EC number

classification.

These works focused on the levels of misannotation, showing

that they are significant in a variety of databases, even those with

manual revision such as UniProt/Swiss-Prot. The following works

are related to annotation prediction tools and a comparison of

computational methods for function prediction. The Density

Estimation Tool for Enzyme ClassificaTion (DETECT), a

probabilistic method for enzyme prediction based on both global

and local sequence alignments, was presented in [18]. It uses a

Bayesian framework to integrate information from density
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estimation profiles generated for each EC number. Compared

with BLAST, DETECT improved the enzyme annotation

accuracy and, when applied to Plasmodium falciparum, identified

potential annotation errors.

In [19], the EnzymeDetector was implemented to automatically

compare and evaluate the assigned enzyme functions from some

annotation databases (NCBI RefSeq [20], KEGG, PEDANT [21],

Pseudomonas Genome Database [22] and UniProt/Swiss-Prot)

and to supplement them with its own function prediction. In the

same work, the authors analyzed nine prokaryotic genomes and

found approximately 70% inconsistencies in the enzyme predic-

tions of the annotation resources used.

A system to provide annotations to proteins from completely

sequenced microbial genomes was proposed in [23]. It is called

HAMAP and is a semi-automated system that uses annotation

templates manually built for protein families to propagate

annotation to all members of manually defined protein families.

This system has increased the speed at which microbial proteins

are annotated in UniProt/Swiss-Prot without losses in the quality

standards of this database.

Funtree is presented in [24] as a resource that combines

structural, sequence, phylogenetic and functional data for struc-

turally defined enzyme superfamilies. The authors stated that

combining these data into a single resource enables the

investigation of how novel enzyme functions have evolved, which

can help to predict the functions of uncharacterized enzymes.

Recently, fifty-four methods for computational protein function

prediction, which represent the state of the art, were evaluated on

866 proteins from 11 organisms in [25]. The two main findingns of

this study were that the best algorithms used nowadays for

function prediction are significantly better than first-generation

methods and that although the top methods perform well to guide

experiments, there is significant room to improve computational

protein function prediction.

In this work, we propose ENZYMAP, a strategy based on

supervised learning to characterize and predict EC number

changes in temporal data from UniProt/Swiss-Prot using other

types of annotation that are already available in the database. Our

method is able to suggest possible corrections and anticipate

annotation changes, which improves the quality and reliability of

enzyme annotations. To the best of our knowledge, there are no

other works that proposes this type of approach with such purpose.

Materials and Methods

To characterize and predict EC number changes, we performed

three types of supervised learning experiments in this work:

Descriptive Multiclass, which is intended to verify whether separating

entries in UniProt/Swiss-Prot that suffered a specific change in the

EC number from those that remained constant based on entry

annotation is possible; Predictive Multiclass, which attempts to use all

available data in the database to predict an upcoming EC change;

and Predictive Common Source, which segments EC changes by their

common source (EC annotation before the change) to improve the

latter experiment. In the next sections, we detail the data

employed in these experiments, how the EC changes were

modeled and the techniques used to construct our approach.

Data
The EC number annotations of entries from the biological

database UniProtKB/SwissProt were studied in this work. A set of

44 major releases available in UniProt web site [26] in May 2012

were downloaded. Releases 1 to 44 were analyzed.

To determine whether a specific UniProt/Swiss-Prot entry has

undergone an EC number change, checking that entry’s EC

number in two consecutive releases is necessary, and therefore the

44 releases were analyzed in pairs, taking the set intersection of

identifiers in two consecutive releases. A total of 18,727,155 EC

pairs were obtained from the entire data set. Among them, 55,908

are pairs with different EC numbers.

The total number of entries, the number of entries annotated

with an EC number and their percentage in the 44 releases are

provided in Table S1 and Figure S1 in Material S1. The number

of entries in the set intersection of each release pair is shown in

Table S2 and Figure S2 in Material S1.

In addition to these data, we obtained the releases 43 and 44

from UniProt/TrEMBL (the latest releases by the time we started

this work) to use as test data set. These data have a total of

21,570,363 EC pairs, from which 5,532 are pairs with different

EC numbers.

Selected line types. In addition to the EC number change

data from the 44 UniProt/Swiss-Prot releases, in the Descriptive

Multiclass, Predictive Multiclass and Predictive Common Source

Experiments, we are interested in entry line types able to

characterize entries and their EC number changes. Next, we

detail the selected line types and explain why they were chosen.

Organism Classification (OC), which refers to the taxonomic

classification of the source organism. This classification is

maintained by the National Center for Biotechnology Information

(NCBI) [27] and reflects current phylogenetic knowledge. OC was

selected because there are extensively studied and well annotated

organisms which provide good training data for our supervised

learning approach. These kind of data potentially lead to good

quality annotation. Saccharomyces cerevisiae, Drosophila melanogaster and

Caenorhabditis elegans are examples of well studied organisms.

Althoug in general OC line type does not change over time (as

it is submitted by researchers and identifies the organism in which

a protein is present) the EC number associated with an entry can

change and OC helps to characterize such entry;

Reference Position (RP) describes the extent of the work (reference)

relevant to the entry and contains a description of the information

propagated in such entry. Entries with more specific references in

RP (e.g., function) likely have better annotation than entries with

general references (e.g., large scale genomic DNA). So, RP

characterize proteins by providing information about references

used to annotate them.

KeyWord (KW), provides information that can be used to

generate indexes of the sequence entries based on functional,

structural, or other categories and represents a controlled

vocabulary which summarises the content of an entry using

relevant words related to that protein. Once again, it is able

characterize proteins in Swiss-Prot, which is important for our

supervised learning approach.

An example of the selected line types is provided below for

UniProt/Swiss-Prot id P66880, whose EC number is currently

3.1.3.5. Further information regarding the line types OC, RP and

KW from UniProt text file format can be obtained from the

UniProt User Manual [28].

OC Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;

OC Brucellaceae; Brucella.

RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENO-

MIC DNA].

KW Complete proteome; Cytoplasm; Hydrolase; Metal-bind-

ing;

KW Nucleotide-binding.

ENZYMAP
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Problem modeling
Initial exploration. Based on the numerical and hierarchical

nature of the EC number, we proposed a model to characterize

the EC changes observed across the releases of UniProt/Swiss-

Prot. Knowing the hierarchical level in which a change occurs is

important because an alteration at a higher level (leftmost) is more

severe than that at a lower level. Thus, we decided to characterize

the EC changes observed in release pairs by the following

parameters: common prefix length, number of generalizations and

specializations. Common prefix length refers to the number of

levels that remained the same from left to right; the number of

generalizations and specializations represent the number of

deleted and added levels, respectively. Examples of EC changes

described by our model are provided in Table S3 in Material S1.

To tackle the problem of analyzing and visualizing such a large

amount of data representing the evolution of enzyme annotations

across several releases of the UniProt/Swiss-Prot database, we

proposed ADVISe [29]. It is a tool that provides a panoramic

macro view of EC changes and presents further details on

demand, such as the frequencies of change types segmented by the

common prefix length, by the levels of generalization and

specialization as well as by the UniProt/Swiss-Prot releases and

by the enzyme families (leftmost EC level). Consequently, the

trends of specialization, database growth and exceptions in which

the EC numbers were deleted, divided or created and the revisions

of past annotation errors can be identified using this tool. ADVISe

also allows users to explore and compare the entry line types OC,

RP and KW used in our supervised learning approach.

There are many reasons why an UniProt/Swiss-Prot entry has

its EC annotation changed. In general, specializations in the EC

annotation of an entry (for example entry P75289 that changed

from 5.1.-.- to 5.1.3.4 from release 7 to 8 and entry P42404 that

changed from 5.3.-.- to 5.3.1.27 from release 14 to 15) may be a

result of increased evidence or they can indicate the creation of

new EC numbers; generalizations in the EC annotation may be

the result of misannotation (for example entry P17109 that

changed from 2.5.1.64 to 2.5.1.- from release 13 to 14); an EC

change that involves both specialization and generalization (for

example entry P41407 that changed from 3.1.4.14 to 1.7.-.- from

release 7 to 8) may be the result of a correction, where there was a

misannotation and now there is enough evidence to make a

correct and more precise annotation. Moreover, there are EC

changes that result from changes in the EC classification system, as

some EC numbers are deleted and others are created (for example,

the EC number 2.5.1.64 was created in 2003 and deleted in 2008,

when it was divided into 2.2.1.9 and 4.2.99.20). Trends in EC

annotaion changes and their possible causes are further discussed

in [29].

When we started this work in 2009, we collected a set of

UniProt/Swiss-Prot releases and we noticed that there were some

EC numbers with letter n followed by a number instead of a –. We

searched UniProt/Swiss-Prot website and found that there are

cases in which a partial EC number is used when the enzyme

activity is already known because a complete EC number is not yet

available in the EC number list from Nomenclature Committee of

the International Union of Biochemistry and Molecular Biology

(NC-IUBMB). Also, in some news from UniProt/Swiss-Prot [30],

we found that the process of representing partial EC numbers

associated to enzymes of already known activities using letter n

with a preliminary EC number instead of – (for example 2.5.1.n1

instead of 2.5.1.-) was an ongoing process. We understood from

this observation that there were enzymes of known activities that

were yet represented as partial EC numbers using – and others

that were already represented using n. So, we decided to consider

partial EC numbers like 2.5.1.n1 as 2.5.1.-, which is in accordance

with the NC-IUBMB.

Descriptive and predictive experiments. The data mod-

eling was the same for the three types of experiments performed:

Descriptive Multiclass, Predictive Multiclass and Predictive

Common Source.

The training data from the EC changes and non-EC changes

(also called the control set) are required to characterize and predict

the EC number changes using a supervised learning approach.

The algorithm needs to learn from these data in a training phase

to be able to subsequently separate a set of entries that underwent

EC changes from a set in which the EC annotations remained the

same. For example, the entry with UniProt/Swiss-Prot id

Q9PKH4, which underwent the EC change 3.1.3.2 to 3.1.3.5

from release 5 to 6, is an example of EC change type

3:1:3:2?3:1:3:5, and the id P20611, for which the EC annotation

remained the same from release 5 to 6, is an example of control set

3:1:3:2?3:1:3:2.

Here, we proposed an occurrence data matrix to model the EC

changes and non-changes. In such a matrix, the columns represent

features (terms obtained from the OC, RP and KW line types),

and the rows represent instances of the change or control set. The

position i,j of this matrix is one whenever the instance of index i (a

given entry) has the annotation attribute corresponding to the

column of index j, and is zero otherwise. The last column

represents the classes for each instance (row). The classes were

modeled considering a source EC number (before the EC change)

and a destination EC number (after the EC change), so an instance

whose class is 3:1:3:2?3:1:3:5 had its EC annotation changed

from 3.1.3.2 to 3.1.3.5. A fragment of an occurrence matrix

showing the EC change 3:1:3:2?3:1:3:5, which occurred from

release 5 to 6, and its control is provided in Table 1.

Technique
Generation of occurrence matrix. To generate an occur-

rence data matrix to feed the supervised learning approach, for

each type of EC change and for each release of the UniProt/Swiss-

Prot in which such a change occurred, we parsed the text files of

the entries that experienced the change and the files of the control

group entries to extract the annotation attributes OC, RP and

KW. We performed a text preprocessing on these data, which is a

set of techniques applied in the text to reduce the data

dimensionality and ambiguity. The following text preprocessing

tasks were performed: Normalization, which is intended to remove

punctuation from the text and convert the characters to lowercase;

Stop word removal, which aims to remove stop words, which are

extremely common words, such as pronouns and articles, and do

not add information; N-grams, which is a contiguous sequence of n

words from a given sequence of text that is used to capture some

Table 1. Fragment of an occurrence matrix.

Id F1 F2 F3 F4 F5 Class

Q8TUG3 1 1 0 1 0 3:1:3:2?3:1:3:5

O67004 1 1 0 1 0 3:1:3:2?3:1:3:5

P34724 0 0 1 0 1 3:1:3:2?3:1:3:2

P44009 0 1 0 1 1 3:1:3:2?3:1:3:2

This fragment of an occurrence matrix shows the EC change 3:1:3:2?3:1:3:5,
which occurred from release 5 to 6, and its control. F1 = nucleotide-binding,
F2 = magnesium, F3 = eukaryota, F4 = metal-binding, F5 = signal.
doi:10.1371/journal.pone.0089162.t001
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context present in the analyzed line types and to match not only

exact terms but also approximate ones; Stemming, which is an

algorithm that reduces inflected words to their stem, such as the

words stem, stems and stemming, which have the root stem. The

employed stemmer was a Java implementation of the Porter

stemming algorithm [31], downloaded from the author’s website

[32]. We performed the same process for TrEMBL data set.

We processed the data from line types OC, RP and KW, which

resulted in a set of features for the classification task. Considering a

given type of change, the release in which this change occurred

and an entry that underwent such a change, we extracted line

types from this entry for all releases prior to the change (until the

release immediately before the change).

EC change selection. As in the Descriptive Multiclass

Experiment we employed a ten-fold cross-validation to evaluate

the performance of our supervised learning approach, change

types from UniProt/Swiss-Prot with at least ten examples were

selected (discarded and used types of EC changes in each release

are presented in Figure S3 in Material S1). The total number of

EC change types was 1,968. Among them, 508 EC change types

had at least 10 examples. Here, examples of the change types are

3:1:3:2?3:1:3:5 and 4:{:{:{?4:1:99:17. Q8TUG3 and

O67004 are examples of entries that experienced change type

3:1:3:2?3:1:3:5.

In the TrEMBL data set, as it was used as test data for the

Predictive Common Source Experiment, EC change types in

which the common source (EC number before a change) was

present in the training data of such experiment were selected. The

total number of EC change types in TrEMBL data set was 471.

Among them, 12 were present in the Predictive Common Source

Experiment.

For some change types, such as {:{:{:{?5:2:1:8 from

release 39 to 40, there were many examples (288,932) in the

control set, {:{:{:{?{:{:{:{, which represent entries

that were not annotated with an EC in release 39 and remained

without an EC annotation in release 40. Thus, we set an upper

limit to the number of examples in the control set; otherwise,

performing the tasks of dimensionality reduction (detailed in the

next section) and classification would not be possible due to the

computational cost and also, the training dataset would be

extremely unbalanced. The upper limit chosen for the examples

in the control set is the median of the number of EC change

examples, which is 27. Additional information about this choice is

provided in Figure S4 in Material S1.

Dimensionality reduction through SVD. Singular Value

Decomposition (SVD) is a technique from linear algebra in which

an m by n matrix A can be represented by the product USVT

where U is an m by m matrix and its columns are the left singular

vectors of A; S is an m by n diagonal matrix with its values in

descending order; and V is an n by n matrix and its columns

represents right singular vectors of A. To compress the data used in

the classification task, reducing the number of features and noise,

yet maintaining relevant semantic relationships among the terms,

matrix A can be approximated by matrix Ak (with rank k where k

is less than the rank of A) as: Ak~UkSkVT
k .

To achieve Ak, the first k singular values of A and their singular

vectors were taken, and thus the resulting matrix has k features:

Ak~UkSkVT
k ~Uk(SkVT

k )~Uk(Dk). According to [33], Ak can

be computed using only matrix Dk, which is: Dk~SkVT
k .

In this work, the original matrix A was approximated by Dk.

The same strategy for approximating Ak was adopted in [34,35].

As stated by [36], the choice of k is an empirical matter; therefore

approximations with k from 1 to 100 were generated, and the

matrix that led to the best classification model was chosen. It is

important to highlight that the applied dimensionality reduction

via SVD may reduce the computational cost and memory

requirements of the algorithms used in the classification task.

SVD was used and discussed in a similar way in several studies

[36–39].

Classification. In accordance with [40], classification is a

supervised learning technique that consists of associating one or

several predefined labels or classes with data objects. A classifi-

cation model may be viewed as a function f that maps a set of

attributes x to a given class y. The classification task is represented

in Figure S5 in Material S1 and is performed as follows in each

experiment: Descriptive Multiclass Experiment: This step aimed to

verify whether the annotation attributes OC, RP and KW are able

to discriminate entries that underwent a specific change in the EC

number from those in which the EC annotation remained the

same. We generated classification models using data matrices

(constructed from the entire dataset, that is, the 44 UniProt/Swiss-

Prot releases) that we reduced via SVD using k from 1 to 100, and

we selected the best classification model. We evaluated the model

performance through a ten-fold cross-validation. In addition to

this experiment, we performed another one, using the same

methodology, in which annotation attributes OC, RP and KW

were used separately to discriminate entries that experienced a

specific EC change from those which remained with the same EC

annotation. It aimed to show the individual contribution of each

line type.

Predictive Multiclass Experiment: We used EC change types

previously modeled in the Descriptive Experiment to construct a

classification model and predict the EC changes. Here, we

reserved the last release in which a change type occurred to test

the model. We consider as modeled EC change types those that

had F1 score greater than 0.5 (we detailed the F1 score in Section

Classifier evaluation strategy). Only those were used because the

change types that were not characterized in the Descriptive

Experiment (in which the entire data set was used and a cross-

validation was performed) are not expected to be predicted.

Predictive Common Source Experiment: We segmented the data set

from the Predictive Multiclass (which comprises data from

UniProt/Swiss-Prot) by the common source, and each source

corresponds to a classifier. The common source here is the

previous EC number (before the EC change) associated with an

entry. For example, the EC changes 2:1:1:{?2:1:1:189,

2:1:1:{?2:1:1:190 and their control 2:1:1:{?2:1:1:{ have

the common source EC 2:1:1:{, and there is one classifier in

which the possible classes are these three EC changes. We

performed this experiment expecting that making correct predic-

tions using a more specialized classifier would be easier than the

Predictive Multiclass Experiment in which a single classifier has

361 classes. Also, we performed a similar experiment using

training data from UniProt/Swiss-Prot but test data from

UniProt/TrEMBL expecting that the knowledge present in

Swiss-Prot could be propagated to TrEMBL, improving the

quality of its automatic annotations.

We employed and compared the classification algorithms Naı̈ve

Bayes [41], K Nearest Neighbor (KNN) [42] and C4.5, also called

J48 [43]. We chose these algorithms due to their low memory

requirements and short execution time.

Classifier evaluation strategy. We performed several

experiments to choose the best classification model. We used the

100 matrices resulting from SVD with k (number of features or

columns) varying from 1 to 100, and for each matrix, we applied

three classification algorithms: Naı̈ve Bayes, KNN with

K~f1,3,5,7,10g and J48. To assess the performance of the
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classifiers, we used the metrics F1 score (also called F measure) and

Area Under the ROC Curve (AUC) [44].

The F1 score is the harmonic mean of precision (p) and recall

(r), and it tends toward the least of these elements (F1~2 p|r
pzr

).

Precision is the fraction of actually positive instances among those

that were predicted as positive by the classifier (p~ TP
TPzFP

) and

recall refers to the fraction of actually positive instances that were

retrieved by the classifier (r~ TP
TPzFN

).

The Receiver Operating Characteristic (ROC) Curve is a

method to evaluate classifiers in which the true positive rate

(TPR~ TP
TPzFN

) is plotted on the y axis and the false positive rate

(FPR~ FP
FPzTN

) is plotted on the x axis. Some points of ROC

curves have a well-defined interpretation: (FPR = 1, TPR = 0)

means that all predictions are wrong, and (FPR = 0, TPR = 1)

means that all positive and negative instances are correctly

predicted. The case in which FPR = 0 and TPR = 1 is the ideal

classifier, and the Area Under ROC Curve is 1. Thus, the closer

AUC is to one, the better the model.

In the Descriptive Multiclass Experiment and the Predictive

Multiclass Experiment, to select the best result for a specific

classification algorithm, which is the matrix that led to this result,

we applied a voting scheme. One vote was assigned for each result

with the greatest value for F1 and similarly one vote was assigned

for each result with the greatest value for AUC. Note that more

than one result may present the maximum value for F1 or AUC. If

there was a tie, we chose the result obtained from the matrix with

the smallest number of columns.

Similarly, after choosing the best result within a specific

classification algorithm, we selected the best result among all

techniques through the same voting scheme. In this case, if there

was a tie, we chose the result with the best F1. When comparing

the results obtained from the different classification algorithms,

those with similar AUC values may have quite different F1 values

(hence, different precision and recall). Therefore, we prioritize the

best values of F1 when there was a tie in the voting scheme.

In the Predictive Common Source Experiment, we chose the

best result according to the best value for F1 because in this

experiment even classifiers with high values for AUC showed low

values for F1 and therefore for precision and recall.

Implementation. SVD dimensionality reduction and all

graphs were generated with R software [45], version 2.10.1. We

implemented the data collection and processing in Java Develop-

ment Kit 6 and performed the classification task using algorithms

from Weka Data Mining Software [46] version 3.6.2. The EC

changes collected were stored in a MySql database, release 5.5.24.

Results and Discussion

Descriptive Multiclass Experiment
In this section, we present the results of the descriptive step. This

experiment aimed to verify whether the line types OC, RP and

KW are able to discriminate entries that experienced a specific

change in their EC number from those that remained the same.

We generated classification models using data matrices reduced

via SVD with k from 1 to 100 and chose the best classification

model as explained in Section Classifier evaluation strategy. We

evaluated the model performance through a ten-fold cross-

validation.

Table 2 provides the best result for this experiment. The

complete results are provided in Tables S4, S5, S6, S7 in Material

S1. Except for Naı̈ve Bayes, the classifiers predicted the EC

changes as their precision, recall and F1 were approximately 70%

and AUC was greater than 90%. We chose the KNN with 1

nearest neighbor as the best result due to its high F1 values, which

was considered by our voting scheme. The KNN with 1 nearest

neighbor indicates that, for each test instance considered in

classification process, its nearest training instance is the most

similar one and, therefore, helps to classify this test instance. As we

try to use more neighbors (Kw1), training instances from various

different classes are considered, which increases the number of

incorrect predictions. It is important to highlight that, in general,

modeled classes (F1w0:5) have more examples than unmodeled

ones, as presented in Table S8 in Material S1.

In Table S9 in Material S1, the arithmetic and weighted means

were calculated separately for the classes that represent EC

changes (change set) and non-changes (control set). In general, the

values were worse for the change set than the control set, which

was expected because predicting an annotation that changes is

more difficult than predicting an annotation that remains constant

because the data set has more examples from the control set than

the change set.

This experiment provided evidence that the annotation

attributes OC, RP and KW are able to discriminate and

characterize entries that experienced a specific EC number

change because even in a multiclass classifier with 664 classes (a

complex classification problem as the probability of correctly

predicting a class at random is 1/664 or 0.15%), the values of 0.74

for F1 and 0.95 for AUC indicate that our classifier is far from

random (when F1 and AUC are approximately 0.5).

In addition to the Descriptive multiclass experiment, we

performed another one, using the same methodology, in which

annotation attributes OC, RP and KW were used separately to

discriminate entries that experienced a specific EC change from

those which remained with the same EC annotation. It aimed to

show the individual contribution of each line type to predict EC

number changes and we concluded that KW outperforms RP and

OC. The results and discussions are presented in Tables S10 and

S18 Material S1. We also conducted an experiment to assess

whether changes in EC number annotation and KW line type

occur at the same time and we concluded that although there is

some correlation between EC and KW changes, for a significant

amount of data they vary separately. This experiment and its

results are detailed in Figure S6 and Tables S16 and S17 in

Material S1.

Predictive Experiments
The test data set was formed by the last occurrence of a certain

type of EC change and the training data set comprised the

previous occurrences of the same type of change. Consider the

change {:{:{:{?2:3:1:48, which occurred in releases 2, 6, 8,

9, 12, 14, 15, 43, and 44. We used data (line types RP, OC and

KW) from releases 1, 5, 7, 8, 11, 13, 14 and 42 (which means that

we collected the data before the change occurs) to train our

Table 2. Best results for the Descriptive and Predictive
Multiclass Experiments.

Multiclass
experiment Algorithm

# of
features FPR Prec. Rec. F1 AUC

Descriptive KNN_K1 38 0.01 0.74 0.74 0.74 0.95

Predictive KNN_K1 13 0.08 0.41 0.32 0.25 0.65

In this table, # of features refers to the number of features or attributes (in the
matrix that resulted in the best classification model). TPR corresponds to recall
and was omitted.
doi:10.1371/journal.pone.0089162.t002
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classifier and we used data (RP, OC and KW) from release 43 to

test our classifier (once again we collected data before the change

occurs). Therefore, we observed what happened in the past and

used the selected data as indicators of EC number changes, which

means that data from the past are used to predict future events (in

different releases and in different entries).

Here, we simulated a scenario in which all available information

about a certain type of EC change was applied to predict an

upcoming EC change of the same type, which means that our

approach can predict only changes previously observed in the

database.

Multiclass. The aim of the Predictive Multiclass Experiment

was to make predictions for the last occurrence of each EC change

type using a single multiclass classifier that comprises all possible

classes. This experiment was performed similarly to the descriptive

one, except for the EC change types, as here only those modeled in

the Descriptive Multiclass Experiment were analyzed (361 classes).

The experimental results are provided in Table 2. The

arithmetic and weighted means calculated separately for the

change and control sets are shown in Table S13 in Material S1

(complete results are in Tables S11 and S12 in Material S1). The

values of precision, recall, F1 and AUC were significantly lower

than those in the Descriptive Experiment. When the last release in

which a change occurred was left for the test set, some examples

were lost for the training set, which impacted in the quality of the

result.

Therefore, to improve the results, we need more training

examples or a more specialized classification task (with fewer

classes than in the Predictive Multiclass Experiment). As we do not

have control over the changes occurrence and amount, the

changes were segmented by their common source, and a more

specialized classification task was performed as detailed below.

Common source with Swiss-Prot test data. This experi-

ment was performed as an attempt to improve the classification

results of the Predictive Multiclass Experiment shown in Section

Multiclass. The data set was segmented by the common EC source,

and each source corresponds to a specific classifier. There are 24

common EC sources and thus 24 classifiers that are more

specialized than the previous general multiclass, increasing the

chance of making correct predictions (as there are fewer options of

classes for each classifier). As explained in Section Classifier

evaluation strategy, 100 matrices resulting from the SVD were

processed by three classification algorithms: Naı̈ve Bayes, KNN

with K~f1,3,5,7,10g and J48. This process was performed for

each of the 24 common source data sets, and the best results were

chosen according to the best values for F1.

The result of this experiment is provided in Table 3. The mean

of the 24 best classifiers metrics was calculated to summarize the

results (FPR~0:257, Precision~0:908, Recall~0:876,

F1~0:864, AUC~0:807). The mean had values of precision,

recall and F1 greater than 0.86.

In general, in this experiment classifiers have training datasets

with many instances for change and control set. However, some of

the classifiers in Table 3 (common sources 2.3.1.-, 3.1.-.-, 3.2.1.18,

4.2.2.- and 6.-.-.-) have a test dataset with many instances in the

control set and very few instances in the change set. As an

example, consider the common source 3.1.-.-. This source has two

possible classes, 3:1:{:{?{:{:{:{ (change) and

3:1:{:{?3:1:{:{ (control). In the training dataset, we have

78 instances in change set and 162 instances in control set. In the

test dataset, we have 1 instance in the change set and 27 instances

in the control set. In these cases (Table 3, common sources 2.3.1.-,

3.1.-.-, 3.2.1.18, 4.2.2.- and 6.-.-.-), if the classifier makes wrong

predictions for all or almost all instances in the change set, which

represents, indeed, just a few instances, it has a strong impact on

FPR.

We observe that for common sources with enough number of

test instances for control and change sets we obtained good results

considering all metrics. Also, when we perform a ten fold cross

validation (Descriptive experiment), which allows us to overcome

the point of scarce number of test instances in change set, the

classifier is able to predict changes and non changes. It strongly

indicates that our classifiers (trained with enough number of

control and change instances) are able to predict EC number

changes and non changes and for those classifiers with high FPR,

there is the limitation of the scarce number of test instances for

change set. If we have more instances for the change set in the test

dataset, these classifiers will be able to reach good performance, as

they were already trained with enough number of control and

change instances.

There was one common source, -.-.-.-, that had a significantly

worse result compared with the mean. In addition, this origin had

a high value of weight as it contains 36 types of changes and 2,631

instances of EC number changes. This common source is expected

to have results worse than other common sources because it is

composed of instances that do not have EC annotation and can

receive any type of EC, which means that there are a lot more

possible EC number changes in this classifier. It represents a

difficult classification problem (with a great number of possible

classes). Moreover, from the point of view of the semantic of

common source -.-.-.-, it also represents a difficult classification

problem, as this is composed by (i) entries that are not enzymes

(and should stay -.-.-.-) (ii) entries for which it is not known if they

are enzymes or not (it is not known if they should stay annotated as

-.-.-.- or not), and (iii) entries which are enzymes but their classes

are not known (there is a chance that they will be annotated with

an EC number). Even so, we included the results of this common

source in our work because we believe that in Table 3, the

precision of 0.66 is relevant (it indicates that predicting a change is

difficult, but if the classifier predicts an instance as a change, it has

a considerable chance of being right). Finally, we decided to

include the results of common source -.-.-.- because we understand

that it is important to show and discuss negative and positive

aspects and results related to the proposed strategy.

In Table S14 in Material S1, the arithmetic and weighted

means were calculated separately for the change and control sets.

In the weighted mean from the change set, the precision (0.756) is

greater than the recall (0.274), which is also known as the true

positive rate (TPR) or specificity. This result indicates that

predicting a change is difficult, but if the classifier predicts an

instance as a change, it has a great chance to make a correct

prediction.

We would like to point out that enzyme classes received

different attention over time. We performed a simple search for

the names of higher level classes of EC hierarchy on February,

2012 in Google Scholar [47], PDB and PubMed [48] and

calculated the percentage of results returned for each class in each

of these three repositories. The results are shown in Table 4 and

they indicate that some classes have been more studied than others

over the years. The percentage of results for transferases is greater

than 26% for all repositories. The percentage of results for

hydrolases vary from 11% to 42%. On the other hand, the classes

lyase and isomerase have percentage of results less than 10% in all

repositories. So, the fact that certain EC classes have been more

studied than others could have reflected in our work, as there are

more examples of enzymes and their EC changes for classes

extensively studied, which means that data are intrinsically biased.

However, in the results of Table 3 we do not observe a relation
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between the quality of results and the EC classes as only EC

change types with a minimun number of examples were

considered in our strategy.

It is important to highlight that although some values of metrics

seem low for the change set in Table S14 in Material S1, the data

considered to be the correct answer (UniProt/Swiss-Prot EC

annotations) can present some inconsistencies or even errors as we

observed that changes in the EC annotation occur over time in this

database. Furthermore, these metrics calculated from the Weka

results do not take into consideration partial results (when not all

predicted EC levels are correct). Thus, to provide a fair

comparison between UniProt/Swiss-Prot and ENZYMAP, the

predicted annotations were compared with the Swiss-Prot

annotation considering from 1 to 4 levels of the EC number.

To extend this comparison, the DETECT tool [18] was used to

make the EC predictions for the same Swiss-Prot entries used in

our approach. Thus, predictions from the ENZYMAP, DETECT

and Swiss-Prot annotations were compared. DETECT was chosen

because it is a relatively new technique (2010) that is able to

predict the EC number annotations based on global and local

sequence alignments. It receives FASTA residue sequences

separated by organism as input and then outputs EC number

predictions. Although ENZYMAP and DETECT are essentially

different (as ENZYMAP is based on entry line types OC, RP and

KW from UniProt/Swiss-Prot and DETECT is based on residue

sequence), their EC predictions can be used in a complementary

manner to improve annotations.

Common source with TrEMBL test data. This experiment

was conducted to demonstrate that ENZYMAP can be used to

help to improve the quality of automatic annotations associated to

Table 3. Results of the Common Source Experiment with Swiss-Prot test data.

Source FPR Prec. Rec. F1 AUC Algorithm
# of
features # of classes

-.-.-.- 0.10 0.66 0.34 0.31 0.66 KNN_K1 1 36

1.1.1.- 0.00 1.00 1.00 1.00 1.00 KNN_K1 11 2

1.10.2.2 0.00 1.00 1.00 1.00 1.00 KNN_K5 2 2

1.9.3.1 0.33 0.70 0.70 0.70 0.68 KNN_K10 2 2

2.-.-.- 0.31 0.77 0.42 0.32 0.62 N. Bayes 1 3

2.1.1.- 0.24 0.91 0.90 0.91 0.93 KNN_K7 74 3

2.3.1.- 0.96 0.93 0.96 0.95 0.91 KNN_K10 100 2

2.4.-.- 0.00 0.98 0.97 0.97 0.98 J48 13 2

2.7.1.- 0.03 0.93 0.88 0.89 0.89 KNN_K3 89 2

2.7.3.- 0.00 1.00 1.00 1.00 1.00 J48 30 2

2.7.7.48 0.30 0.70 0.66 0.66 0.55 KNN_K3 40 2

2.7.7.6 0.01 0.96 0.93 0.94 0.96 N. Bayes 32 2

3.-.-.- 0.01 0.95 0.90 0.91 0.94 KNN_K1 5 2

3.1.-.- 0.96 0.93 0.96 0.95 0.61 KNN_K1 100 2

3.1.13.- 0.06 0.95 0.95 0.95 0.91 KNN_K10 65 2

3.1.2.15 0.00 1.00 0.96 0.98 0.00 KNN_K10 100 2

3.2.1.18 0.93 0.87 0.93 0.90 0.50 J48 10 2

3.4.22.- 0.00 1.00 1.00 1.00 1.00 KNN_K10 100 2

3.4.25.- 0.33 1.00 1.00 1.00 0.97 KNN_K10 41 2

3.6.3.14 0.05 0.94 0.94 0.94 0.95 N. Bayes 12 2

4.2.2.- 0.64 0.80 0.72 0.62 0.80 KNN_K1 2 2

5.-.-.- 0.00 1.00 1.00 1.00 1.00 KNN_K1 4 2

6.-.-.- 0.90 0.81 0.90 0.85 0.50 N. Bayes 100 2

6.4.1.2 0.00 1.00 1.00 1.00 1.00 KNN_K1 10 2

Each line corresponds to the best result (classifier) obtained for each source as we used the training and test data from 1 up to 100 features after SVD processing and
the classification techniques Naı̈ve Bayes, J48 and KNN with K~f1,3,5,7,10g. The last two columns refer to the number of features or attributes (in the occurrence
matrix that resulted in the best classification model) and to the number of classes in each classifier. The TPR corresponds to the recall and was omitted.
doi:10.1371/journal.pone.0089162.t003

Table 4. Result of the search for higher level classes of EC
number hierarchy.

EC Class Scholar PDB PubMed

absolute
value (%)

absolute
value (%)

absolute
value (%)

oxidoreductase 122,000 6.5 7,731 1.8 499,969 20.2

transferase 942,000 50.0 10,897 26.5 712,758 28.8

hydrolase 215,000 11.4 16,054 39.1 1,040,771 42.1

lyase 154,000 8.2 3,202 7.8 118,865 4.8

isomerase 177,000 9.4 1,655 4.0 47,984 1.9

ligase 273,000 14.5 1,517 3.7 52,562 2.1

We performed a simple search for the names of higher level classes of EC
number hierarchy on February, 2012 in repositories Google Scholar, PDB and
PubMed (absolute value and percentage).
doi:10.1371/journal.pone.0089162.t004
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enzyme data. For this reason UniProt/TrEMBL database was

chosen as test data. We used training data from UniProt/Swiss-

Prot (the same data set from previous Predictive Common Source

Experiment) and test data from UniProt/TrEMBL, so, among the

471 EC change types from TrEMBL releases (43 and 44) we had

to select those (12) that were present in the training data, totaling

1,247 test instances. There are 6 common EC sources and thus 6

classifiers.

The result of the experiment is provided in Table 5. The mean

of the 6 best classifiers metrics was calculated to summarize the

results (FPR~0:606, Precision~0:896, Recall~0:888,

F1~0:885, AUC~0:667). The values for precision, recall and

F1 are greater than 0:88. However, FPR is considerably high,

which happens because, for some EC sources, in the training

dataset we have enough instances for change and control set, but

in the test dataset, there are many instances in control set and very

few instances for change set (EC sources 2:7:7:6, 3:1:{:{ and

6:4:1:2 with 1, 2 and 1 examples of change respectively) and the

classifier made a wrong prediction for all the instances in change

set from these EC sources, which represents, indeed, very few

instances. It had a strong impact on FPR.

In Table S15 in Material S1, the arithmetic and weighted

means were calculated separately for the change and control sets.

As already discussed in previous experiments, control set presents

better results than change set. Nevertheless, in this experiment the

weighted mean for change set presents excellent results, which is

due to the high number of correct predictions for classes from

change set which have many instances (for example (i) the class

{:{:{:{?2:8:1:{, which has 705 instances and metrics

FPR~0:133, Precision~0:948, Recall~0:750, F1~0:838,

AUC~0:851 and (ii) the class 3:6:3:14?{:{:{:{, which has

169 instances and metrics FPR~0:667, Precision~0:904,

Recall~1, F1~0:949, AUC~0:793). It means that, when a test

set with many instances is provided, ENZYMAP is able to

correctly predict EC number annotation changes.

ENZYMAP, DETECT and Swiss-Prot comparison
The same input data set used for the predictive experiments in

Section Predictive experiments, with 3,582 EC number changes, was

given as input for DETECT 1.0. Our technique made 3,582 EC

predictions, whereas DETECT made 1,876; both prediction sets

were compared with the annotations from UniProt/Swiss-Prot.

Figure 1 presents the comparison among the techniques.

For the first level shown in Figure 1 (a), 56% of the predictions

made by ENZYMAP agree with UniProt/Swiss-Prot, whereas this

rate is 49% for DETECT. If we consider the two approaches

together, their intersection with UniProt/Swiss-Prot represents

72% of these database annotations, which shows that combining

both of them increases the coverage of the annotations.

For levels 2, 3 and 4, the percentage of predictions made by

ENZYMAP that are correct is greater than those made by

DETECT, and both techniques together account for more than

64% of the database annotations as shown in Table 6. However,

for level 4, the percentage of predictions made by DETECT that

are correct decreases significantly and reaches 32%, whereas for

ENZYMAP, the rate is 49%. Here, predictions that agree with the

UniProt/Swiss-Prot are considered to be correct. The more

specific the annotation, the more difficult it is to predict, which can

lead to a common type of error called overprediction (when the

annotation procedure assigns more levels than it should) [15].

Thus, in this aspect ENZYMAP outperforms DETECT.

Case studies. In the common source 2.4.-.-, our technique

predicted that entry Q5NDL2 should be annotated as 2.4.1.-. It

was considered as an error because the Swiss-Prot annotation was

2.4.-.-. However, in release 2012_07 from July 2012 (released after

our analysis), this entry received EC 2.4.1.255 in Swiss-Prot. We

performed our prediction using the training data prior to release

2011_02 from February 2011 (inclusive) and the test data from

release 2011_03 (March 2011), indicating that our technique

anticipated the third EC level for entry Q5NDL2 16 months

before it occurred in Swiss-Prot. DETECT did not return a result

for this entry.

In this study we included multifunctional enzymes (which are

those associated with more than one EC number). Despite being

even more difficult for an automatic technique to predict EC

number annotation for this kind of enzymes as they have

characteristics related to different activities, ENZYMAP was able

to predict that entries P48820 and P49792 (putative peptidyl-

prolyl cis-trans isomerases from Bos taurus and Homo sapiens

respectively), which were annotated only with EC number

5.2.1.8, would receive EC number 6.3.2.- in release 2012_05

from May, 2012 (their recommended name are now E3 SUMO-

protein ligases RanBP2). DETECT predicted EC number 5.2.1.8

for entries P48820 and P49792, which is correct. However,

ENZYMAP was able to predict an additional function to what

were previously considered single function enzymes.

Entry Q5FWH2 was predicted to be 6.3.2.- for the test data

from release 44, and this entry really experienced the change

{:{:{:{?6:3:2:{ from release 43 to 44. In this case, our

approach correctly predicted three EC levels starting from a non-

annotated entry. DETECT did not return a result for Q5FWH2.

In the common source 3.2.1.18, AUC~0:5 and FPR~0:93,

which seems a result worse than expected. However, in this case

there were two classes, 3:1:2:18?3:2:1:18 (with 27 test instances

Table 5. Results of the Common Source Experiment with TrEMBL test data.

Source FPR Prec. Rec. F1 AUC Algorithm # of features # of classes

-.-.-.- 0.13 0.82 0.68 0.74 0.80 N. Bayes 81 36

2.3.1.- 0.07 0.91 0.88 0.89 0.87 J48 5 2

2.7.7.6 0.96 0.93 0.96 0.95 0.50 KNN_K10 1 2

3.1.-.- 0.93 0.87 0.93 0.90 0.54 KNN_K1 100 2

3.6.3.14 0.58 0.92 0.91 0.89 0.79 N. Bayes 43 2

6.4.1.2 0.96 0.93 0.96 0.95 0.50 J48 10 2

Each line corresponds to the best result (classifier) obtained for each source as we used the training and test data from 1 up to 100 features after SVD processing and
the classification techniques Naı̈ve Bayes, J48 and KNN with K~f1,3,5,7,10g. The last two columns refer to the number of features or attributes (in the occurrence
matrix that resulted in the best classification model) and to the number of classes in each classifier. The TPR corresponds to the recall and was omitted.
doi:10.1371/journal.pone.0089162.t005
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that were correctly predicted) and 3:1:2:18?{:{:{:{ (with 2

test instances that were incorrectly predicted). We observe that all

predictions for the class 3:1:2:18?{:{:{:{, which means only

2 instances in the test release (14), were incorrect and that is why

AUC and FPR are worse than expected.

In the common source 3.1.2.15, the values of the metrics were

excellent, but AUC was zero. In this case, there were two classes,

3:1:2:15?3:1:2:15 and 3:1:2:15?3:4:19:12. Predictions were

made using the training data prior to release 2010_08 from July

2010 (inclusive) and the test data from release 2010_09 (August

2010). Among the 74 instances of change, 71 were correctly

predicted. Nevertheless, in release 2010_09, there were no test

instances in the control set (3:1:2:15?3:1:2:15), which explains

why AUC ~ 0.

DETECT and ENZYMAP predicted that entries O61694 and

O94581, subunits of Cytochrome c oxidase of an insect and a

yeast, respectively, should receive EC number 1.9.3.1, which refers

to oxidoreductases acting on heme groups as electron donors and

oxygen as acceptors. In UniProt/Swiss-Prot, an EC number is not

assigned to these entries, indicating that they are not enzymes. The

point is that Cytochrome c oxidase is a large transmembrane

protein complex, with several subunits, which may introduce some

ambiguity. The prediction is correct if we consider them to be part

of the Cytochrome c oxidase enzymatic complex. However, these

subunits (per se) may have no direct catalytic function. This case

illustrates the difficulty of composing an unbiased annotation when

the entry comes from multi-domain or multi-chain protein

complexes with different functional units. Indeed, until release

15 (March 2009), Swiss-Prot assigned EC number 1.9.3.1 to these

entries.

Conclusion

In this work, we proposed ENZYMAP, a technique based on

supervised learning to characterize and predict annotation

changes in temporal data from UniProt/Swiss-Prot using entry

line types that are already available in the database. Our proposal

is intended to be an automatic complementary method (that can

be used together with other techniques like the ones based on

protein sequence and structure) that helps to improve the quality

and reliability of enzyme annotations, suggesting possible correc-

tions and anticipating annotation changes. Moreover, a common

phenomenon in biological databases is that since a correction is

made, this knowledge is not necessarily propagated to the whole

database at once, but gradually and slowly. Our proposal can

suggest corrections to database annotations, propagating the

implicit knowledge for the whole dataset. To the best of our

knowledge, there are no other works that propose this type of

approach to improve the quality of biological annotations over

time.

To characterize and predict the EC number changes, we

performed three types of experiments: Descriptive Multiclass, in

which we concluded that the selected line types (OC, RP and KW)

were able to discriminate entries that experienced a specific

change in the EC number from those that remained constant;

Predictive Multiclass, which indicated that predicting the last

occurrence of an EC change type using a multiclass classifier

and having a scarce number of examples was not possible; and

Predictive Common Source, which showed that predicting the last

occurrence of an EC change type using more specialized classifiers

even under the constraint of a scarce number of examples was

possible. In addition, the predictions made by our proposal were

compared with those made by the DETECT method, and both

were checked against the Swiss-Prot annotations. The percentage

of predictions made by ENZYMAP that were in accordance with

Swiss-Prot was greater than the same percentage for DETECT for

all 4 EC levels, and thus our technique outperformed DETECT in

this aspect. Also, we conduct a Predictive Common Source

experiment with test data from UniProt/TrEMBL in which we

demonstrated that ENZYMAP can be used to improve the quality

of automatic annotations associated to enzyme data.

As ENZYMAP hits annotation changes better than expected at

random, it is identifying consistent recurring patterns in the

training data, sufficient to support predictions that are not guesses.

Our results indicate that line types may carry information

sufficient to design a classifier able to make predictions of non-

random trends in EC number annotation changes.

Figure 1. Comparison of ENZYMAP, DETECT and Swiss-Prot. We compared the EC number predictions made by ENZYMAP and DETECT and
checked both against the UniProt/Swiss-Prot annotations. The number of predictions in which the techniques agree or disagree is presented in the
diagrams. In (a), the first level of the EC number annotation is compared; In (b), (c) and (d), up to the second, third and fourth levels of the EC number
annotation are compared.
doi:10.1371/journal.pone.0089162.g001

Table 6. ENZYMAP and DETECT predictions that agree with
UniProt/Swiss-Prot.

Level 1 Level 2 Level 3 Level 4

ENZYMAP (%) 56 53 49 49

DETECT (%) 49 48 45 32

Coverage (%) 72 70 65 64

The rows ENZYMAP and DETECT respectively correspond to the percentage of
predictions made by our approach and by DETECT that are in accordance with
the UniProt/Swiss-Prot annotations. The Coverage represents the percentage of
database annotations covered by the techniques used in a complementary
manner. In this comparison we considered from 1 to 4 levels of EC number.
doi:10.1371/journal.pone.0089162.t006
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We envision a use case for ENZYMAP in which we employ the

data available about EC changes in a set of UniProt/Swiss-Prot

releases to predict upcoming changes, as performed in the

Predictive Common Source Experiment. Thus, entries from the

latest available release are given as input for a specific classifier

trained with EC changes from all previous releases segmented by

the common source, and this classifier returns EC predictions for

each entry. As future work, we intend to investigate whether it is

possible to assign a reliability score to our predictions to help the

user decide whether s/he should accept this prediction. In

addition, we are considering using Formal Concept Analysis to

elucidate for domain experts what were the most relevant words

among the different line types to make the predictions, an

information that is lost due to SVD use.

As training data we used taxonomic information (OC), the

extent of a reference relevant to an entry annotation (RP) and

keywords (KW), which include a variety of biological information.

For example, in the entry Q5FWH2, KW presents information

such as metal-binding, structural motif (zinc-finger), biochemical

process (Ubl conjugation) and subcellular localization (cytoplasm),

among others. Nevertheless, also as future work, we plan to

investigate whether there are other line types able to describe and

predict changes in EC number annotation to be included in

ENZYMAP. It is not just a matter of adding line types, as a large

number of attributes will not necessarily improve predictions. If

many irrelevant or redundant training data are included, it can

have a negative impact on the results. So, if we add line types, we

need to characterize and measure the dificulty of the new training

dataset using, for example, entropy (related to the uncertainty of

the data) and mutual information (concerning the attributes that

carry the same information).

It is important to point out that the problem of changes in EC

number annotations from Swiss-Prot is a real and relevant

scenario. However, the technique and methodology developed in

this work are independent of this application scenario and may be

used in any scenario where there are large databases, which evolve

in time and in which is relevant to identify and fix any errors or

inconsistencies. For example, changes in functions of non-enzymes

could be analysed using Gene Ontology (GO) [49] annotation,

which is a controled and hierarchical vocabulary to represent gene

and gene product attributes across species and databases.

Supporting Information
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Tables, graphs and details about the used dataset, experiment
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