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ABSTRACT 

Genes related to human longevity have not been studied so far, and need to be investigated thoroughly. This 
study aims to explore the relationship among ABO gene variants, lipid levels, and longevity phenotype in 
individuals (≥90yrs old) without adverse outcomes. A genotype-phenotype study was performed based on 5803 
longevity subjects and 7026 younger controls from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). 
Four ABO gene variants associated with healthy longevity (rs8176719 C, rs687621 G, rs643434 A, and rs505922 
C) were identified and replicated in the CLHLS GWAS data analysis and found significantly higher in longevity 
individuals than controls. The Bonferroni adjusted p-value and OR range were 0.013-0.020 and 1.126-1.151, 
respectively. According to the results of linkage disequilibrium (LD) analysis, the above four variants formed a 
block on the ABO gene (D’=1, r2

range = 0.585-0.995). The carriers with genotypes rs687621 GG, rs643434 AX, or 
rs505922 CX (prange = 2.728 x 10-107-5.940 x 10-14; ORrange = 1.004-4.354) and haplotype CGAC/XGXX (p = 2.557 x 
10-27; OR = 2.255) had a substantial connection with longevity, according to the results of genetic model 
analysis. Following the genotype and metabolic phenotype analysis, it has been shown that the longevity 
individuals with rs687621 GG, rs643434 AX, and rs505922 CX had a positive association with HDL-c, LDL-c, 
TC, TG (prange = 2.200 x 10-5-0.036, ORrange = 1.546-1.709), and BMI normal level (prange = 2.690 x 10-4-0.026, 
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INTRODUCTION 
 

A healthy life span is a complex phenotype that is 

influenced by both genetic and environmental factors. It 

has been observed that the influence of genetic factors 

increases with age [1]. Based on recent genetic studies, 

more than 50 different genes are associated with 

longevity in different populations [2–6]. Many reported 

studies have revealed that individuals with a life span of 

≥ 90 years had several healthy genetic variants, 

indicating the importance of genetic contribution to a 

longer life span. Some of these variants were found to 

be associated with plasma lipid homeostasis that could 

delay the onset or prevent diseases and promote a 

longer life span [4]. 

 

The balance between metabolism and plasma lipids is 

vital for physiological turnover. The results of the Long 

Life Family Study (LLFS), an international collaborative 

study, showed that individuals with a longer life span 

had a better lipid profile [7, 8]. The molecular 

composition and concentration of lipid species are 

indicative of their cellular localization, metabolism, and, 

consequently, their impact on age-related diseases and a 

healthy life span [9]. Previous studies have identified a 

few loci associated with longevity involving lipid 

metabolisms, such as APOE Ɛ2, TOMM40 rs2075650, 

FOXO3A rs2802292, CETP rs5882, HLA-DQB1 

rs1049107, and rs1049100 in individuals with an 

exceptionally long life span [10–13]. 

 

Recently, our group has successively reported some 

lipid metabolism-related genetic variances associated 

with a healthy life span. However, the overall genetic 

basis of these variances is unidentified, and given this, 

there may be more yet unexplained genetic variances 

whose cumulative influence increases longevity by 

altering and maintaining lipid homeostasis [10–13]. 

There are multiple gene interaction networks in our 

body, which together maintain the body's physiological 

balance, including lipid metabolism. We tried to find 

more genetic variants that promoted longevity and 

metabolic balance to explain their biological 

significance through multi-gene network interaction. 

 

Many studies have shown that the ABO gene has been 

linked to longevity [14–16]. Fortney et al., (2015) 

evaluated and replicated five loci including rs514659 in 

ABO in Caucasians by applying informed genome-wide 

association studies (iGWAS) [17]. Timmers et al. used a 

genome-wide association (GWA) of 1 million parental 

lifespans of genotyped subjects and data on mortality 

risk factors to identify and replicate rs2519093 in ABO 

in the English population [18]. But it is still not clear for 

ABO variants in longevity in other populations, for 

example, Chinese. So, it is important to develop this 

study in Chinese to confirm ABO variants associated 

with human longevity. 

 

In addition, using NGS, other ABO SNPs, which were 

potential causal loci related to lipid homeostasis and 

health, were discovered subsequently. Previous research 

suggested that individuals with the ABO genotype, i.e., 

rs8176719 CC, had improved overall cardiovascular 

health and increased longevity via plasma lipid levels 

[14, 19–21]. According to a meta-analysis of the 

LURIC and YFS cohorts, the minor allele of Ars657152 

of the ABO gene was significantly associated with 

greater cholesterol absorption that results in disrupted 

healthy aging [22]. Another research found that the 

major rs644234*T allele of the ABO gene was 

associated with decreased levels of apolipoprotein E 

(ApoE), a multifunctional protein involved in lipid 

metabolism and longevity [23–25]. Hence, it is needed 

to identify some loci on the ABO gene associated with 

longevity and lipid metabolism. So far, there are few 

reports on genetic variants of the ABO gene and plasma 

lipids associated with healthy longevity. Meanwhile, the 

genetic mechanism by which ABO gene variants protect 

against lipid metabolic disorders and promote healthy 

aging is unknown. 

 

Hence, the current study explored the ABO gene 

genetic variants that maintain plasma lipid homeostasis 

and enhance health longevity. Based on the CLHLS, a 

population genetic analysis was conducted in the 

Chinese population to find genetic variants of the ABO 

gene linked to a long life span and normal plasma lipid 

levels. We used genome-wide association studies 

(GWAS), metabolic phenomics technology, and 

combined analysis to identify the possible beneficial 

variants by performing a comparative analysis between 

longevity and age-specific control groups in these 

population cohorts. The obtained results would offer a 

new perspective on understanding a healthy longer life 

span and aging. 

ORrange = 1.530-1.997). Finally, two pathways involving vWF/ADAMTS13 and the inflammatory markers  
(sE-selectin/ICAM1) that co-regulated lipid levels by glycosylation and effects on each other were speculated. In 
conclusion, the association between the identified longevity-associated ABO variants and better health lipid 
profile was elucidated, thus the findings can help in maintaining normal lipid metabolic phenotypes in the 
longevity population. 
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RESULTS 
 

Identification of new longevity-associated ABO 

variations 

 

First, the raw data was collected from GWAS phases I 

and II, and data quality control procedures were 

followed for the sample screening. There were 5803 

longevity subjects and 7026 young controls with 

genotype left. Then, based on chromosomal position 

(i.e., chromosome 9: 136125788-136150617) of the 

ABO gene, 80% of the participants including 4437 

longevity individuals and 5627 young controls with 

genotype were randomly selected to identify variants on 

ABO genes. 

 

Seven variants (i.e., rs8176722, rs8176719, rs687621, 

rs2519093, rs514659, rs643434, and rs505922) were 

genotyped on ABO genes and four of them were 

associated with longevity (p≤0.05) as shown in  

Figure 1A. While the flowchart for the steps of 

sequential analytical has been shown in Figure 2. 

 

Replication of the longevity-associated variants 

 

Herein, four variants have been verified with 20% of 

participants involved in 1128 longevity subjects and 1397 

young controls with genotype. One reported rs8176719 

(p Bonferroni genotype = 0.016, p Bonferroni allele = 0.013, OR allele = 

1.151, 95%CI allele: 1.018-1.302) [16], and three novel 

variants in the ABO gene showed significant differences 

both in the allele and the genotype frequencies while 

comparing longevity and younger controls. Three 

variants including rs687621 (p Bonferroni genotype = 0.006, p 

Bonferroni allele = 0.018, OR allele = 1.131, 95%CI allele: 1.008-

1.268), rs643434 (p Bonferroni genotype = 0.008, p Bonferroni allele = 

0.016, OR allele = 1.131, 95%CI allele: 1.010-1.267), and 

rs505922 (p Bonferroni genotype = 0.002, p Bonferroni allele = 0.020, 

OR allele = 1.126, 95%CI allele: 1.006-1.260) were 

identified in accordance with Hardy-Weinberg 

equilibrium in the younger controls (p > 0.05), and were 

positively correlated with longevity (p ≤ 0.05) (Table 1 

and Supplementary Table 1). 

 

Identification of longevity-associated haplotypes 

 

The results of both LD analysis and three-dimensional 

(3D) genome interaction revealed a block formed by 

rs8176719, rs687621, rs643434, and rs505922 variants 

on the ABO gene (D’=1, r2
range = 0.585-0.995, Figure 

1B, 1C). The CGAC haplotype enhanced the probability 

of longevity (p-value = 4.926 x 10-17, OR: 1.315, 95% 

CI: 1.233-1.401), as compared to the-AGT haplotype. 

Furthermore, as compared to the-AGT haplotype, the 

CGAC haplotype was correlated with both 

nonagenarians (p-value = 1.589 x 10-3, OR: 1.127, 95% 

CI: 1.046-1.214) and centenarians (p-value = 3.460 x 

10-4, OR: 1.18, 95% CI: 1.078-1.291) (Table 2). 

 

 
 

Figure 1. Association analysis identified ABO as the longevity-associated gene. (A) Manhattan plot of Genome-Wide Association 

Studies (GWAS) on chromosome 9; (B) Linkage Disequilibrium (LD) analysis of the four variants. a: LD map of centenarians; b: LD map of 
nonagenarians; c: LD map of longevity; d: LD map of young controls. (C) Interaction analysis of the four variants in the three-dimensional 
genome. The red triangle box shows the Topologically Associating Domains (TAD) region on the ABO gene. 
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Longevity–associated variants were independent of 

APOE e3, and e2. 

 

APOE e2 is associated with significantly increased odds 

of longevity [26]. The layered results of APOE alleles 

indicated that there were four haplotypes with 

frequencies > 0.03. A comparison between longevity 

and young controls revealed that the CGAC haplotypes 

(pe3=1.340 x 10-10, ORe3 = 1.285, 95%CIe3: 1.190-1.387) 

and (pe2 = 2.720 x 10-4, ORe2 = 1.320, 95%CIe2: 1.137-

1.533) were associated with longevity in either APOE 

e3 or e2. Therefore, the CGAC haplotypes increased the 

likelihood of attaining a longevity age independently 

(Supplementary Table 3). 

 

Genotypes and haplotype in genetic model analysis 

 

According to genetic model analysis, the carriers, along 

with genotypes and phenotype haplotype, i.e., rs687621 

GG (p-value = 2.728 x 10-107, OR = 4.341, 95%CI: 

3.775-4.992), rs643434 AX (AG+AA) (p-value = 8.271 x 

10-26, OR = 1.497, 95%CI: 1.388-1.614), rs505922 CX 

(CT+CC) (p-value = 8.354 x 10-26, OR = 1.497, 95%CI: 

1.388-1.614), and CGAC/XGXX (CGAC/-GGT+ 

CGAC/CGAC) (p-value = 2.557 x 10-27, OR = 2.255, 

95%CI: 1.940-2.621) were found to be significantly 

associated with longevity (Table 3). The longer-lived 

populations were then divided into nonagenarians and 

centenarians, who have been compared to young controls 

individually. Three variants, i.e., rs687621 GG, rs643434 

AX (AG+AA), and rs505922 CX (CT+CC) (p range = 

5.940 x 10-14 - 2.187 x 10-95, OR range = 1.460-4.354),  

and haplotype genotype CGAC/XGXX (CGAC/-GGT+ 

CGAC/CGAC) (p range = 1.458 x 10-18 - 3.466 x 10-22,  

OR range = 2.224-2.310) were all associated with 

nonagenarians and centenarians (Table 3). 

 

Genotype-phenotype study of longevity-associated 

variants and plasma lipid or BMI 

 

There were 2,527 longevity subjects with an average 

age of 96.06 years and 3,259 young controls with an 

 

 
 

Figure 2. A flow chart of the consecutive analysis steps. 
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Table 1. Identification and replication of ABO variants in healthy longevity. 

Gene ID(Ref/Alt) Group 

Phase I + phase II of GWAS (80%) 

Major homo Hetro Minor homo P 

Bonferroni 

Major allele  Minor allele  P 

Bonferroni 
OR 95%IC 

Case/control Case/control Case/control  Case/control  Case/control  

ABO 

rs8176719(-/C) Longevity/Control 1342/1570 1838/2419 684/894 0.020 4522/5559 3206/4207 0.017 1.067 1.005-1.134 

rs687621(A/G) Longevity/Control 1423/1759 1904/2648 744/1013 0.018 4750/6166 3392/4674 0.022 1.062 1.002-1.125 

rs643434(G/A) Longevity/Control 1593/1885 2047/2700 797/1036 0.023 5233/6470 3641/4772 0.022 1.060 1.002-1.122 

rs505922(T/C) Longevity/Control 1597/1896 2033/2698 794/1033 0.020 5227/6490 3621/4764 0.023 1.060 1.001-1.121 

Gene ID Group 

Phase I + phase II of GWAS (20%) 

Major homo Hetro Minor homo P 

Bonferroni 

Major allele  Minor allele  P 

Bonferroni 
OR 95%IC 

Case/control  Case/control  Case/control  Case/control  Case/control  

ABO 

rs8176719(-/C) Longevity/Control 337/417 447/570 140/239 0.016 1121/1404 727/1048 0.013 1.151 1.018-1.302 

rs687621(A/G) Longevity/Control 360/408 554/608 185/280 0.006 1274/1424 924/1168 0.018 1.131 1.008-1.268 

rs643434(G/A) Longevity/Control 389/464 561/663 167/270 0.008 1339/1591 895/1203 0.016 1.131 1.010-1.267 

rs505922(T/C) Longevity/Control 376/452 579/651 173/283 0.002 1331/1555 925/1217 0.020 1.126 1.006-1.260 

 

Table 2. Haplotype analysis of rs8176719, rs687621, rs643434 and rs505922. 

Haplotype Longevity Control P OR 95%CI 

-AGT 3964 4720    

CGAC 3503 3173 4.926*10-17 1.315 1.233-1.401 

 Nonagenarians Control    

-AGT 2558 4720    

CGAC 1938 3173 1.589*10-3 1.127 1.046-1.214 

 Centenarians Control    

-AGT 1406 4720    

CGAC 1115 3173 3.460*10-4 1.180 1.078-1.291 

 

Table 3. Genotypes and haplotype in genetic model analysis. 

Variants  Case/control  Case/control  P OR 95%CI 

rs687621 

Genotype GG AX    

Longevity/Control 929/279 4241/5529 2.728*10-107 4.341 3.775-4.992 

Nonagenarians/Controls 630/279 2880/5529 2.187*10-95 4.335 3.739-5.026 

Centenarians/Controls 299/279 1361/5529 1.441*10-70 4.354 3.660-5.179 

Centenarians/Nonagenarians 299/630 1361/2880 0.956 1.004 0.863-1.169 

rs643434 

Genotype AX GG    

Longevity/Control 3572/3173 1982/2635 8.271*10-26 1.497 1.388-1.614 

Nonagenarians/Controls 2428/3173 1378/2635 5.134*10-19 1.463 1.345-1.591 

Centenarians/Controls 1144/3173 604/2635 5.940*10-14 1.532 1.370-1.713 

Centenarians/Nonagenarians 1144/2428 604/1378 0.452 1.047 0.929-1.179 

rs505922 

Genotype CX TT    

Longevity/Control 3579/3182 1973/2626 8.354*10-26 1.497 1.388-1.614 

Nonagenarians/Controls 2430/3182 1374/2626 9.168*10-19 1.460 1.342-1.587 

Centenarians/Controls 1149/3182 599/2626 4.988*10-16 1.583 1.416-1.770 

Centenarians/Nonagenarians 1149/2430 599/1374 0.181 1.085 0.963-1.222 

Haplotype of Genotype CGAC/XGXX -AGT/-XGT    
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rs8176719, 

rs687621, 

rs643434, 

rs505922  

Longevity/Control 541/279 4091/4758 2.557*10-27 2.255 1.940-2.621 

Nonagenarians/Controls 342/279 2622/4758 3.466*10-22 2.224 1.886-2.624 

Centenarians/Controls 199/279 1469/4758 1.458*10-18 2.310 1.908-2.797 

Centenarians/Nonagenarians 199/342 1469/2622 0.690 1.039 0.862-1.251 

Note: X represents the major allele or minor allele of the corresponding SNP. 

 

average age of 70.00 years in the samples with 

integrated epidemiological data. CLHLS participants 

were 1455 nonagenarians and 1072 centenarians.  

Sex, disease history, BMI, plasma lipids, blood 

pressure, and blood glucose were compared between 

different age groups. We found a statistical difference 

in the distribution of sex (p = 1.575 x 10-57), BMI (p = 

2.359 x 10-3), and lipid levels (p = 8.000 x 10-5) 

between longevity and young controls (Supplementary 

Table 4). 

 

In the normal plasma lipid and the BMI group, the 

recessive model GG of rs687621 (p lipid = 0.036, OR 

lipid = 1.709, 95%CIlipid: 1.031-2.834; p BMI = 0.026,  

OR BMI = 1.997, 95%CI BMI: 1.077-3.706), the 

dominant model AX (AG+AA) of rs643434 (p lipid = 

2.200 x 10-5, OR lipid = 1.550, 95%CI lipid: 1.264-1.891; 

p BMI = 2.690 x 10-4, OR BMI = 1.530, 95%CI BMI: 

1.216-1.924), and CX (CT+CC) of rs505922 (p lipid = 

2.200 x 10-5, OR lipid = 1.546, 95%CI lipid: 1.264-1.891; 

p BMI = 2.690 x 10-4, OR BMI = 1.530, 95%CI BMI: 

1.216-1.924), were positively correlated with plasma 

lipid and BMI separately. On combining the normal 

plasma lipid and the BMI levels, the dominant model 

GG of rs687621 (p = 0.038, OR = 2.106, 95%CI: 

1.027-4.319), the recessive model AX (AG+AA) of 

rs643434 (p = 7.590 x 10-3, OR = 1.450, 95%CI: 

1.103-1.905), and CX (CT+CC) of rs505922 (p = 

7.590 x 10-3, OR = 1.450, 95%CI: 1.103-1.905) also 

showed significant differences compared with the 

young controls (Table 4). 

 

Relationship between longevity-associated variants 

and plasma lipid homeostasis 

 

The analysis of the lipid metabolism index (HDL-c, 

LDL-c, TG, and TC) showed that the longevity samples 

possessed lower LDL-c levels (p-value = 1.700 x 10-5), 

TG (p-value = 1.275 x 10-22), and TC (p-value = 0.011). 

There were significant differences in the levels of LDL-

c (p-value = 7.669 x 10-7), TG (p-value = 2.522 x 10-16), 

and TC (p-value = 6.400 x 10-5) between nonagenarians 

and the young controls. Only two indices, TG (p-value 

= 2.941 x 10-13) and HDL (p-value = 0.049) showed 

significant differences between centenarians and the 

young controls. TG was a common difference index in 

comparison between the different age groups 

(Supplementary Table 5). 

Next, we analyzed the subgroups of plasma lipid levels 

in both longevity samples and the young controls. 

Based on the criteria for plasma lipid levels, the 

rs687621 AG genotype (p-value = 0.018, OR = 1.638, 

95%CI: 1.085-2.473), the rs643434 GA genotype (p-

value = 0.016, OR = 1.651, 95%CI: 1.096-2.488), and 

the rs505922 TC genotype (p = 0.016, OR = 1.651, 

95%CI: 1.096-2.488) were significantly increased with 

normal TG levels in the longevity subjects. The 

rs687621 G allele carriers showed better TG levels 

compared with the A allele carriers (p-value = 0.042, 

OR = 1.387, 95%CI: 1.012-1.901) (Supplementary 

Table 8). 

 

The recessive model GG of rs687621 (p = 0.044, OR = 

1.620, 95%CI: 1.008-2.604), the dominant model AX 

(AG+AA) of rs643434 (p = 3.977 x 10-7, OR = 1.612, 

95%CI: 1.340-1.940), and CX (CT+CC) of rs505922 (p 

= 3.977 x 10-7, OR = 1.612, 95%CI: 1.340-1.940) were 

positively correlated with normal TG levels consistently 

(Figure 3 and Supplementary Table 9). 

 

DISCUSSION 
 

Identification of longevity-associated variants and 

haplotypes 

 

Longevity is a highly complicated phenotype that is 

influenced by genetic as well as environmental factors. 

The various cut-off to define longevity have been used, 

varying from 85+, 90+ and 100+ years, and the impact 

of these differences have been addressed in Broer’s 

paper (2015) [3]. In this study, the longevity phenotype 

is considered as individuals (≥90yrs old) without major 

health complications, including CVD, cancer, diabetes, 

hypertension, etc. Individuals that have a longer life 

span with a lower risk of aging-associated diseases are 

regarded as a model of healthy aging. Our previous 

genetic research has identified some longevity-

associated factors, such as FOXO3 [27], IGFBP-3 [28], 

CETP [29], SIRT1 [30], and HLA-DQB1 [10]. 

 

According to the reported studies, ABO has been 

associated with blood transfusions, organ transplants, 

and diseases such as cancer, coronary heart disease 

(CHD), and lower circulating cholesterol levels [31–34]. 

However, after multiple GWAS database analyses, 

Fortney et al. proposed the ABO may be associated with 
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Table 4. Plasma lipids and BMI analysis in different genotype group. 

SNP rs687621 

Genotype GG AG+AA P OR 95%CI 

Longevity/Control      

Lipids (-)      

Longevity 34 644 0.036 1.709 1.031-2.834 

Control 29 939    

BMI (-)      

Longevity 23 480 0.026 1.997 1.077-3.706 

Control 19 792    

Lipids (-)+BMI (-)      

Longevity 19 354 0.038 2.106 1.027-4.319 

Control 13 510    

SNP rs643434 

Genotype GA+AA GG P OR 95%CI 

Longevity/Control      

Lipids (-)      

Longevity 436 242 2.200*10-5 1.550 1.264-1.891 

Control 521 447    

BMI (-)      

Longevity 326 177 2.690*10-4 1.530 1.216-1.924 

Control 443 368    

Lipids (-)+BMI (-)      

Longevity 240 133 7.590*10-3 1.450 1.103-1.905 

Control 290 233    

SNP rs505922 

Genotype TC+CC TT P OR 95%CI 

Longevity/Control      

Lipids (-)      

Longevity 436 242 2.200*10-5 1.546 1.264-1.891 

Control 521 447    

BMI (-)      

Longevity 326 177 2.690*10-4 1.530 1.216-1.924 

Control 443 368    

Lipids (-)+BMI (-)      

Longevity 240 133 7.590*10-3 1.450 1.103-1.905 

Control 290 233    

Note: (-) represents the normal level of plasma lipids or BMI. 

 

longevity [17]. We hypothesized that there are some 

ABO variations associated with longevity in Chinese. 

 

In our cohort, we identified and replicated four SNPs  

in the ABO gene that were associated with healthy  

aging and longevity, including rs8176719, rs687621, 

rs643434, and rs505922, and three of these variants 

have never been identified in previous studies on 

longevity. Compared with the young controls, all four 

variants showed a significant difference in longevity, 

which suggested that these four variants were 

longevity-associated genetic variances that could 

increase the lifespan by healthy aging. Next, by 

analyzing 5803 longevity subjects and 7026 young 

controls, we showed that a single-nucleotide insertion 

in codon 87 (rs8176719) constructed a strong linkage 
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disequilibrium block (LD; r2 = 0.944) between 

rs687621, rs643434, and rs505922 in the ABO gene. 

This is the first study to report that rs8176719 C, 

rs687621 G, rs643434 A, rs505922 C (p Bonferroni range = 

0.013-0.020; OR range = 1.126-1.151) and the CGAC (p 

= 4.926 x 10-17, OR = 1.315) significantly increased 

the probability of healthy life with a longer life span 

(Tables 1, 2). The results of genetic model analysis 

showed that individuals carrying rs687621 GG, 

rs643434 AX (AG+AA), rs505922 CX (CT+CC)  

(p range = 2.728 x 10-107-5.940 x 10-14; OR range = 1.004-

4.354), and CGAC/XGXX (CGAC/-GGT+ CGAC/ 

CGAC) (p = 2.557 x 10-27; OR = 2.255) were also 

significantly associated with longevity. 

 

Our study focused on ABO variants associated with 

longevity in Chinese. We have identified three novel 

variants (rs687621, rs643434, and rs505922) of the 

ABO gene different from Caucasians and replicated one 

allele (rs8176719) in ABO reported before [17, 18]. The 

obtained results revealed that ABO gene variants are 

associated with human longevity, but there existed 

many different variants in the ABO gene among 

different populations. 

 

Longevity variants associated with lipid homeostasis 

in individuals with a longer life span 

 

Many longevity-associated variants were found that 

were potentially associated with maintaining the 

balance of plasma lipids. Several observational studies 

have found that increases in TG levels are associated 

with an increase in the risk of morbidity and mortality 

related to aging-associated diseases [35, 36]. In the 

Leiden Longevity Study (LLS), lower levels of TG,  

one of the biomarkers of healthy aging, were found  

to decrease morbidity associated with aging-related 

disorders [37, 38]. 

 

In this study, we found that these novel longevity-

associated variants were also healthy-lipid-associated 

variants, as the longevity individuals with ABO 

rs687621, rs643434, and rs505922 were significantly 

associated with normal lipid (p range = 2.200 x 10-5-0.036, 

OR range = 1.546-1.709) and normal BMI level (p range = 

2.690 x 10-4-0.026, OR range = 1.530-1.997) (Table 4 and 

Supplementary Figure 1). 

 

Hence, we identified ABO variants associated with two 

phenotypes in the Chinese population: longevity and 

normal lipid levels. Considering the potential bias 

existed in the selection of longevity and local control 

individuals for analysis, we compared the major 

demographic and characteristics of the participants 

between the included (2527 longevity, 3259 controls) 

and excluded (3276 longevity, 3767 controls). 

Meanwhile, we also compared them of the participants 

between the included (2527 longevity, 3259 controls) 

and total (5803 longevity, 7026 controls). There was not 

statistically significance between any pair’s comparison 

identified (Supplementary Table 6). Therefore, we 

justify our included subjects (2527 longevity, 3259 

controls) are equally balanced or objectively 

represented with all participants of ours. Besides, we 

did stratification analysis of lipid metabolism by 

genotype and age, and also showed that there was no 

 

 
 

Figure 3. Comparison of genotype frequencies between the longevity and the control group. *p≤0.05; **p≤0.01. 
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selection bias (Supplementary Tables 7–10). Therefore, 

we hypothesized that there was a significant correlation 

between ABO variants and longevity and lipid normal 

levels in the Chinese population, which needs further 

investigation. 

 

Functional analysis of the new healthy-associated 

variants in ABO 

 

The ABO gene (chromosome 9q34.2) is known to 

determine the presence of antigens on the surface of red 

blood cells. Our results showed that except for 

rs8176719, the other three novel SNPs, i.e., rs687621, 

rs643434, and rs505922 that were identified in our study 

were all located in the intron region. Data from 

ENCODE showed that rs687621 was located in a region 

featured by enhancer histone marks and could act as an 

expression Quantitative Trait Locus (eQTL). It was 

possible that the expression of ABO was being increased 

by other variants proxied by rs687621 [39]. The other 

two SNPs, i.e., rs643434 and rs505922, located in intron 

1 of the ABO gene were highly linked (LD; r2 = 0.994). 

Noncoding transcript exon variant rs8176719 was a 

frameshift mutation in exon 6. Because of a potential 

open chromatin region, several epigenetic markers, a 

transcription factor binding site, and evolutionary 

conservation, the combined prediction results from 

ENCODE, ChIP-seq, and UCSC suggested that 

rs8176719 might be crucial for gene regulation [40]. 

 

The glycosylation of soluble cell adhesion molecules 

links the ABO blood group antigens to E-selectin ligand-

1 and P-selectin glycoprotein ligand-1 [41]. ABO SNPs 

altered lipid levels by working on the clearance and 

glycosylation of membrane molecules, including 

biomarkers (such as soluble cell adhesion molecules: sE-

selectin, sP-selectin, ICAM1) [42]. Glycosylation can 

occur on the ligand itself, the receptor, as well as on key 

signaling enzymes and effector proteins. Regarding the 

glycosylation of lipids, the process of O-linked 

glycosylation, which is generally initiated by the addition 

of the monosaccharide, i.e., N-acetylgalactosamine to the 

hydroxyl group of serine and threonine amino acids 

(GalNAca1-O-Ser/Thr) is critical for the LDL receptor 

stability, and stable expression of the very low-density 

lipoprotein receptors on the cell surface. Interaction 

analysis of genes revealed an interaction relationship 

between ABO and ADAMTS13, as represented in  

Figure 1 (Supplementary Figure 2). Some studies 

indicated that individuals carrying rs8176719 CC have 

plasma levels of von Willebrand Factor (VWF) 25% 

lower than individuals carrying rs8176746 A allele due to 

increased proteolysis and clearance of VWF at the 

Tyr1605-Met1606 bond by ADAMTS13 [20, 43], which 

specifically inhibits platelet deposition and inflammation, 

and reducing the risk of death [41]. 

 

Individuals carrying rs687621, rs643434, and rs505922 

altered TG concentrations by glycosylating the target 

molecules using the O-linked sugar domain, and may 

stabilize circulating inflammatory markers and lipid 

levels by promoting healthy lipid metabolism, thus 

contributing to individual healthy longevity (Figure 4).  

 

Hence, we identified and replicated the presence of four 

longevity-associated variants in our cohort, as well as a 

 

 
 

Figure 4. The possible mechanism or interactive pathway from relevant information on ABO and plasma lipids phenotype. 
Mechanism of action for ABO variants may result in the vWF/ADAMTS13 and sE-selectin/ICAM1 functional change. Lastly, two pathways 
involving vWF/ADAMTS13 and the inflammatory markers (sE-selectin/ICAM1) that co-regulated lipid levels by O-linked glycosylation and 
effects on each other were speculated. 
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new haplotype (on the ABO gene) linked to longevity. 

Then, the analysis of genotype and metabolic 

phenotypes showed that the longevity individuals with 

rs687621 GG, rs643434 AX (AG+AA), and rs505922 

CX (CT+CC) were associated with normal levels of 

lipid and BMI. Lastly, two pathways involving 

vWF/ADAMTS13 and the inflammatory markers that 

co-regulated lipid levels by glycosylation and effects on 

each other were speculated. As a result, we can deduce 

that individuals with longevity-associated variants have 

an improved cardiovascular profile, which may lower 

the risk of aging-related disorders and maintain healthy 

physical circumstances, resulting in longer life. 

Although we indicated the relationship between the 

ABO blood group and healthy longevity, several pieces 

of evidence involved the mechanism of ABO blood 

group antigens and lipids metabolism. Additionally, 

healthy longevity could be studied in cell or animal 

models by using new technologies, such as single-cell 

sequencing, CRISPR/Cas 9, and 3D organ models. Thus, 

we need to understand the mechanism of longevity and 

achieve healthy aging for all human communities. 

 

CONCLUSIONS 
 

The present study revealed that rs8176719 C, rs687621 

G, rs643434 A, and rs505922 C of the ABO gene were 

not only longevity-associated genetic variants but also 

lipid homeostasis-associated variants in our cohort. These 

variants probably altered triglyceride concentrations by 

glycosylation on the target molecules by the O-linked 

sugar domain, and promoted healthy lipid metabolism, 

thereby contributing to longevity. Our results showed that 

ABO longevity-associated genotypes (rs687621 GG, 

rs643434 AX, and rs505922 CX) could promote lipid 

homeostasis. In the future, further functional and 

mechanism studies should be conducted to better 

understand the molecular mechanism of longevity 

associated with ABO and lipid homeostasis. 

 

MATERIALS AND METHODS 
 

Subjects 

 

All experimental procedures were reviewed and 

approved by the Ethics Committee of Beijing Hospital, 

Ministry of Health, China. We obtained written consent 

forms from all participants before study initiation. All 

clinical investigations were conducted following the 

principles of the Declarations of Helsinki. 

 

The Chinese Longitudinal Healthy Longevity Surveys 

(CLHLS), which enrolled in 1998, 2000, 2002, 2005, 

2008, 2011, and 2014 in a randomly selected half of the 

counties and cities in 22 out of 31 provinces in China, 

provided the samples for this study, which included 

12567 people with a longer life span and 16821 young 

controls. The CLHLS covers approximately 85% of the 

total population of China. We interviewed all consented 

longevity in the sampled counties and cities. Young 

middle-aged controls (30–85 years old) were obtained 

in the same country/city as long-lived individuals, who 

needed to satisfy one specific criterion of having a non-

family history of longevity (no lineal family members 

within three generations aged above 85) [4, 44]. 

 

DNA extraction and genotyping 

 

DNA was extracted from the whole blood and 

hybridized following the manufacturer’s instructions. A 

total of 257 longevity individuals (aged 102.04±2.05 

years) were genotyped using the Illumina 

HumanOmniZhongHua-8 Bead Chips, that were created 

by strategically selecting optimized tag SNP content 

from all three HapMap phases and the 1000 Genomes 

Project (1 kGP). The chip represents a state-of-the-art 

choice for GWAS in Asian populations to maximize 

international compatibility [4]. After standard GWAS 

quality-control filtering for subjects, we obtained a total 

of 818048 genotyped SNPs. 

 

The phase II of GWAS was from 5546 longevity 

subjects (97.66±4.96 years) and 7026 young controls 

(aged 67.72±13.65 years) in CLHLS. Based on previous 

research, phase II of GWAS used a custom SNP chip 

with 27,656 selected longevity and disease-related 

SNPs for targeted genotyping [44]. 

 

Genome-wide association analysis 

 

We combined the raw data from GWAS phases I and II 

and completed the sample filtering data quality control 

procedures. There were 5803 longevity subjects and 

7026 young controls with genotype. Then we randomly 

selected 80% and 20% of participants with genotype for 

discovery and validation, respectively. 

 

All data from GWAS were analyzed by PLINK (v1.06) 

[4]. Genotypic distributions of all single nucleotide 

polymorphisms (SNPs) in the population were analyzed 

based on the Hardy-Weinberg Equilibrium (HWE) (all 

p-values > 0.05) (Supplementary Table 2). 

 

Laboratory parameters and genotypic data of the present 

GWAS were from CLHLS, which were offered by the 

Center for Healthy Aging and Development Studies, 

National School of Development, Peking University. 

 

Selection of variations and genotyping 

 

We identified the variants associated with longevity 

from 80% of GWAS phase I + II samples (4437 
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longevity subjects and 5627 young controls) by the 

chromosomal location of the ABO gene (chromosome 

9: 136125788-136150617). There were 4 variants  

in the ABO gene identified as candidate variants  

with a MAF (minor allele frequency) greater than 

10%. We included duplicate samples with 1128 

longevity subjects and 1397 young controls as  

quality controls to verify the reliability of the variants 

(Supplementary Table 11). Finally, four genetic variants 

were identified as longevity-associated genetic 

variants. The multiple comparisons of CLHLS GWAS 

phase I and II study of our group were performed the 

Bonferroni correction. P-value thresholds ≤ 0.025 were 

considered significant. The Haploview software was 

used to perform haplotype analysis. The 3D Genome 

Browser (http://3dgenome.fsm.northwestern.edu/) was 

used to examine three-dimensional genome interactions. 

 

Association of variation and metabolic genotype in 

longevity 

 

In CLHLS, there were 2527 individuals (aged 90-114 

years) and 3259 young controls (aged 38-85 years). 

Both sets included an integrated questionnaire of an 

epidemiological survey as well as biochemical indexes. 

(Supplementary Table 4). Laboratory parameters, 

including blood pressure, high-density lipoprotein-

cholesterol (HDL-c), low-density lipoprotein-

cholesterol (LDL-c), total cholesterol (TC), triglyceride 

(TG), body mass index (BMI), and blood glucose 

(FBG) were recorded. The normal plasma lipids and 

BMI levels are according to the guide and reported at 

home and abroad (FPG normal=2.80-5.60 mmol/L; BMI 

normal=18.5-25; TC normal≤5.18 mmol/L; TG normal≤1.70 

mmol/L; HDL normal≥1.04 mmol/L; LDL normal≤3.37 

mmol/L) [45–48]. The relationships of alleles, 

genotypes, and haplotypes with phenotypes were 

studied individually using univariate or multifactorial 

stratification analysis, as applicable. 

 

Genetic model analysis 

 

Long-lived individuals carry special mutations 

associated with longevity. The base sequence of the 

gene has been changed (partially or completely) in 

longevity compared to a normal individual. A variation 

in the degrees of association between the genotypes and 

phenotype of the risk and non-risk SNPs has been 

clearly understood. Therefore, according to Mendel's 

mode of inheritance, we compared the frequency of 

longevity and controls who carries mutations or not. 

The strength of association between the genotypes and 

phenotype was estimated using the odds ratio (OR). P-

value threshold≤0.05 was considered statistically 

significant and p≤0.01 was considered extremely 

significant. 

Statistical analysis 
 

The Statistical Package for Social Sciences (SPSS Inc, 

Chicago, IL, USA) Windows, v 19.0 was used for 

statistical analysis. Gene counting was done to 

determine the differences in the distribution of genotype 

and allele frequencies, and the χ2 goodness-fit test was 

used to test the deviations from the Hardy-Weinberg 

equilibrium (HWE) for all SNPs. The odds ratio (OR) 

was used to estimate the strength of association between 

the variables, with 95% confidence intervals (95%CI). 

p≤0.05 was considered statistically significant. The 

mean and standard deviation (SD) were used to describe 

the normally distributed plasma lipid levels as 

continuous variables. 
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SUPPLEMENTARY MATERIALS 

 
Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Interaction analysis between plasma lipids level and variants on age. ABO longevity variant allele 
carriers take a trend of better blood lipid homeostasis (A) interaction analysis between rs8176719 and rs687621 (B) interaction analysis 
between rs687621, rs643434 and TG. 
 

 
 

Supplementary Figure 2. Interaction analysis between ABO and ADAMTS13. The green arc shows the interaction between ABO and 

ADAMTS13 genes. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 8. 

 

Supplementary Table 1. Replication of ABO variants in healthy longevity. 

Gene ID(Ref/Alt) Group 

Phase I + phase II of GWAS 

Major homo Hetro Minor homo P 

Bonferroni 

Minor allele  Major allele  P 

Bonferroni 
OR 95%IC 

Case/control Case/control Case/control Case/control Case/control 

ABO 

rs8176719(-/C) 

Longevity/Control 1679/1987 2285/2989 824/1133 0.007 3933/5255 5643/6963 0.002 1.083 1.026-1.143 

Nonagenarians/Controls 1098/1987 1460/2989 534/1133 0.007 2528/5255 3656/6963 0.003 1.091 1.026-1.161 

Centenarians/Controls 581/1987 825/2989 290/1133 0.126 1405/5255 1987/6963 0.049 1.067 0.988-1.153 

Centenarians/Nonagenarians 581/1098 825/1460 290/534 0.307 1405/2528 1987/3656 0.304 0.978 0.898-1.065 

rs687621(A/G) 

Longevity/Control 1783/2167 2458/3256 929/1293 0.012 4316/5842 6024/7590 0.004 1.074 1.020-1.131 

Nonagenarians/Controls 1229/2167 1651/3256 630/1293 0.008 2911/5842 4109/7590 0.003 1.086 1.025-1.152 

Centenarians/Controls 554/2167 807/3256 299/1293 0.227 1405/5842 1915/7590 0.111 1.049 0.971-1.133 

Centenarians/Nonagenarians 554/1229 807/1651 299/630 0.240 1405/2911 1915/4109 0.206 0.966 0.888-1.050 

rs643434(G/A) 

Longevity/Control 1982/2349 2608/3363 964/1306 0.011 4536/5975 6572/8061 0.003 1.074 1.021-1.130 

Nonagenarians/Controls 1378/2349 1765/3363 663/1306 0.007 3091/5975 4521/8061 0.003 1.084 1.024-1.147 

Centenarians/Controls 604/2349 843/3363 301/1306 0.185 1445/5975 2051/8061 0.083 1.052 0.976-1.134 

Centenarians/Nonagenarians 604/1378 843/1765 301/663 0.202 1445/3091 2051/4521 0.235 0.97 0.895-1.053 

rs505922(T/C) 

Longevity/Control 1973/2348 2612/3356 967/1316 0.013 4546/5988 6558/8052 0.003 1.073 1.020-1.128 

Nonagenarians/Controls 1374/2348 1765/3356 665/1316 0.008 3095/5988 4513/8052 0.003 1.084 1.025-1.148 

Centenarians/Controls 599/2348 847/3356 302/1316 0.180 1451/5988 2045/8052 0.110 1.048 0.972-1.130 

Centenarians/Nonagenarians 599/1374 847/1765 302/665 0.162 1451/3095 2045/4513 0.206 0.967 0.891-1.048 

 

Supplementary Table 2. Hardy-Weinberg equilibrium of ABO variants in cases and controls. 

P rs8176719 rs687621 rs643434 rs505922 

Longevity 0.329 0.106 0.036 0.043 

Control 0.879 0.263 0.094 0.057 

 

Supplementary Table 3. Haplotype analysis of rs8176719, rs687621, rs643434 and rs505922 by APOE allele. 

APOE Haplotype Longevity Control P OR 95%CI 

e3e3 

-AGT 3297.00(0.59) 3940.00(0.57) 0.047 1.075 1.001-1.155 

CAGT 172.98(0.03) 689.00(0.10) 2.361*10-46 0.300 0.252-0.357 

CGGT 254.02(0.05) 326.01(0.05) 0.617 0.958 0.810-1.133 

CGAC 1870.98(0.33) 1937.99(0.28) 1.340*10-10 1.285 1.190-1.387 

e2 

-AGT 914.00(0.59) 1002.00(0.56) 0.105 1.121 0.976-1.287 

CAGT 52.00(0.03) 204.00(0.12) 2.340*10-18 0.269 0.196-0.367 

CGGT 74.00(0.05) 93.00(0.05) 0.560 0.911 0.666-1.246 

CGAC 503.00(0.33) 475.99(0.27) 2.720*10-4 1.320 1.137-1.533 

e4 

-AGT 582.00(0.60) 812.00(0.56) 0.073 1.163 0.986-1.372 

CAGT 31.00(0.03) 153.00(0.11) 1.770*10-11 0.278 0.187-0.413 

CGGT 35.00(0.04) 58.00(0.04) 0.604 0.893 0.582-1.370 

CGAC 321.00(0.33) 417.00(0.29) 0.030 1.215 1.019-1.449 
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Supplementary Table 4. Base information of population in longevity and controls. 

Characteristic 

Groups 
Longevity  

vs. control 

Nonagenarians  

vs. control 

Centenarians  

vs. control 

Nonagenarians  

vs. centenarians 

Controls Longevity Nonagenarians Centenarians P-value OR 
95%  

CI 
P-value OR 

95%  

CI 
P-value OR 

95%  

CI 
P-value OR 

95%  

CI 

Na 3259 2527 1455 1072             

Mean Age(yr) 
70.000± 

11.854 

96.059± 

5.470 

93.000± 

3.238 

102.000± 

2.235 
            

Sex                 

Male 1067 369 288 105 
1.575* 

10-57 
3.359 

2.887- 

3.907 

5.539* 

10-25 
2.425 

2.046- 

2.876 

8.048* 

10-65 
6.324 

5.028- 

7.955 

6.063* 

10-14 
2.608 

2.021- 

3.364 

Female 805 935 527 501             

Disease 

History 
                

No 1738 1100 679 528 0.128 0.744 
0.507- 

1.091 
0.283 0.783 

0.500- 

1.226 
0.119 0.658 

0.388- 

1.118 
0.584 0.841 

0.452- 

1.566 

Yes 85 40 26 17             

BMI                 

Normal 997 749 504 319 
2.359* 

10-3 
0.736 

0.604- 

0.897 

1.960* 

10-4 
0.641 

0.507- 

0.811 
0.497 0.917 

0.713- 

1.179 
0.019 1.430 

1.061- 

1.928 

Abnormal 358 198 116 105             

Lipids                 

Normal 1193 926 576 436 
8.000* 

10-5 
0.703 

0.602- 

0.821 
3.950*10-4 0.721 

0.602- 

0.864 

8.100* 

10-4 
0.662 

0.539- 

0.813 
0.481 0.918 

0.723- 

1.165 

Abnormal 649 354 226 157             

Blood 

pressure 
                

Normal 844 546 354 255 0.088 1.133 
0.981- 

1.307 
0.473 1.063 

0.900- 

1.255 
0.222 1.123 

0.932- 

1.352 
0.614 1.057 

0.853- 

1.308 

Abnormal 1014 743 452 344             

Blood glucose                 

Normal 1685 1166 721 553 0.827 1.027 
0.806- 

1.310 
0.322 1.148 

0.873- 

1.510 
0.223 0.810 

0.577- 

1.137 
0.068 0.706 

0.485- 

1.027 

Abnormal 173 123 85 46             

a: N, number. 

 

Supplementary Table 5. Base line of plasma lipids in different age groups. 

 
N 

(centenarians) 

Mean± 

Std 

N 

(nonagenarians) 

Mean± 

std 

N 

(controls) 

Mean± 

std 

N 

(longevity) 

Mean± 

std 

P 

(longevity vs. 

controls) 

P 

(centenarians 

vs.  

controls) 

P 

(nonagenarians 

vs.  

controls ) 

P 

(centenarians 

vs. 

nonagenarians) 

HDL 581 
1.271± 

0.311 
979 

1.245± 

0.345 
2228 

1.239± 

0.365 
1560 

1.255± 

0.333 
0.154 0.049 0.595 0.172 

LDL 581 
2.407± 

0.859 
979 

2.300± 

0.833 
2228 

2.459± 

0.834 
1560 

2.340± 

0.844 
1.700*10-5 0.182 7.669*10-7 0.015 

TG 581 
1.034± 

0.598 
979 

1.061± 

0.720 
2228 

1.384± 

1.211 
1560 

1.051± 

0.677 
1.275*10-22 2.941*10-13 2.522*10-16 0.625 

TC 581 
4.163± 

1.058 
979 

3.947± 

1.145 
2228 

4.126± 

1.197 
1560 

4.027± 

1.118 
0.011 0.492 6.400*10-5 4.040*10-4 

N, number. 
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Supplementary Table 6. The comparison of phenotype selection bias. 

Group  
NPhenotype (included) NPhenotype (excluded) NTotal 

Phenotype (included) 

vs. Total 

Phenotype (included) vs. 

phenotype (excluded) 

Longevity Control Longevity Control Longevity Control Plongevity Pcontrol Plongevity Pcontrol 

Sex 
Male 115 885 254 182 369 1067 0.588 0.727 0.460 0.239 

Female 272 684 663 121 935 805     

rs8176749 

-- 142 498 1537 1489 1679 1987 0.784 0.298 0.751 0.130 

-C 182 800 2103 2189 2285 2989     

CC 63 271 761 862 824 1133     

- 466 1796 5177 5167 5643 6963 0.487 0.805 0.451 0.749 

C 308 1342 3625 3913 3933 5255     

rs687621 

AA 168 595 1615 1572 1783 2167 0.594 0.387 0.536 0.197 

AG 210 884 2248 2372 2458 3256     

GG 78 321 851 972 929 1293     

A 546 2074 5478 5516 6024 7590 0.345 0.235 0.302 0.118 

G 366 1526 3950 4316 4316 5842     

rs643434 

GG 194 638 1788 1711 1982 2349 0.687 0.348 0.636 0.165 

GA 235 913 2373 2450 2608 3363     

AA 87 321 877 985 964 1306     

G 623 2189 5949 5872 6572 8061 0.452 0.254 0.409 0.134 

A 409 1555 4127 4420 4536 5975     

rs505922 

TT 193 638 1780 1710 1973 2348 0.717 0.289 0.669 0.120 

TC 236 912 2376 2444 2612 3356     

CC 88 321 879 995 967 1316     

T 622 2188 5936 5864 6558 8052 0.493 0.218 0.452 0.105 

C 412 1554 4134 4434 4546 5988     

Lipids 
Normal 678 968 248 225 926 1193 0.756 0.568 0.422 0.088 

Abnormal 267 505 87 144 354 649     

BMI 
Normal 503 811 246 186 749 997 0.299 0.934 0.328 0.798 

Abnormal 151 289 86 69 198 358     

N, number. 
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Supplementary Table 7. Association between genotype and plasma lipid levels in longevity and controls. 

 Longevity Control 

rs8176719 HDL LDL TG TC HDL LDL TG TC 

-- 1.270±0.361 2.320±0.879 1.131±0.789 4.091±1.195 1.244±0.365 2.465±0.825 1.478±1.189 4.041±1.252 

-C 1.274±0.334 2.432±0.935 1.131±0.746 4.138±1.247 1.257±0.358 2.545±0.865 1.468±1.420 4.161±1.297 

CC 1.292±0.340 2.439±0.935 1.097±0.849 4.184±1.231 1.209±0.375 2.456±0.822 1.412±1.331 4.191±1.187 

P(-- VS.CC) 0.430 0.664 0.652 0.387 0.237 0.271 0.350 0.721 

P(-C VS.CC) 0.387 0.446 0.571 0.466 0.201 0.376 0.709 0.784 

-C+CC 1.279±0.336 2.434±0.934 1.122±0.774 4.150±1.242 1.245±0.363 2.523±0.855 1.454±1.397 4.169±1.269 

P(-C+CC VS.--) 0.123 0.817 0.674 0.457 0.914 0.524 0.321 0.682 

rs687621         

AA 1.217±0.324 2.228±0.825 1.201±0.918 3.850±1.196 1.235±0.356 2.448±0.827 1.598±1.278 3.916±1.371 

AG 1.267±0.321 2.414±0.900 1.059±0.634 4.143±1.127 1.256±0.367 2.553±0.849 1.360±1.338 4.266±1.174 

GG 1.204±0.281 2.176±0.820 0.925±0.436 3.856±1.006 1.152±0.379 2.267±0.951 1.709±1.766 4.157±1.188 

P(AA VS.GG) 0.867 0.484 0.961 0.768 0.009 0.271 0.16 0.435 

P(AG VS.GG) 0.514 0.457 0.644 0.406 0.007 0.006 0.086 0.108 

AG+GG 1.263±0.319 2.397±0.897 1.049±0.623 4.124±1.120 1.251±0.368 2.539±0.856 1.376±1.362 4.261±1.175 

P(AG+GG VS.AA) 0.122 0.847 0.394 0.449 0.826 0.442 0.097 0.511 

rs643434         

GG 1.217±0.324 2.224±0.827 1.198±0.918 3.845±1.198 1.240±0.360 2.488±0.862 1.605±1.528 3.998±1.379 

GA 1.264±0.322 2.400±0.903 1.053±0.631 4.126±1.133 1.254±0.367 2.525±0.827 1.326±1.104 4.258±1.134 

AA 1.235±0.247 2.409±0.695 0.994±0.378 4.162±0.688 1.054±0.347 2.251±0.975 1.329±1.165 3.907±1.083 

P(GG VS.AA) 0.966 0.690 0.823 0.804 0.013 0.289 0.358 0.988 

P(GA VS.AA) 0.832 0.850 0.338 0.974 3.000*10-6 9.890*10-4 0.873 0.041 

GA+AA 1.263±0.319 2.400±0.895 1.051±0.623 4.127±1.118 1.250±0.367 2.519±0.831 1.326±1.105 4.251±1.134 

P(GA+AA VS.GG) 0.133 0.860 0.377 0.440 0.686 0.498 0.056 0.421 

rs505922         

TT 1.217±0.324 2.224±0.827 1.198±0.918 3.845±1.198 1.240±0.360 2.488±0.862 1.605±1.528 3.998±1.379 

TC 1.264±0.322 2.400±0.903 1.053±0.631 4.126±1.133 1.254±0.367 2.526±0.827 1.327±1.104 4.260±1.134 

CC 1.235±0.247 2.409±0.695 0.994±0.378 4.162±0.688 1.067±0.340 2.194±0.973 1.271±1.513 3.837±1.088 

P(TT VS.CC) 0.966 0.690 0.823 0.804 0.034 0.060 0.477 0.896 

P(TC VS.CC) 0.832 0.850 0.338 0.974 2.200*10-5 0.004 0.867 0.045 

TC+CC 1.263±0.319 2.400±0.895 1.051±0.623 4.127±1.118 1.250±0.367 2.519±0.831 1.326±1.105 4.251±1.134 

P(TC+CC VS.TT) 0.133 0.860 0.377 0.440 0.686 0.498 0.056 0.421 

 

Supplementary Table 8. Association between genotype and plasma lipids level in different group. 

 

Supplementary Table 9. Comparison of genotype frequencies with normal TG level between the longevity and 
the control group. 

SNP Genetic model 
 Longevity Control 

P OR 95% CI  TG≤1.7 TG≤1.7 

rs8176719 Dominant Model 
N(--) 317 366 ref   

N(CC+-C) 566 810 0.023 0.807 0.671-0.971 

rs687621 Recessive Model 
N(AA+AG) 767 1142 ref   

N(GG) 37 34 0.044 1.620 1.008-2.604 

rs643434 Dominant Model 
N(GG) 278 541 ref   

N(AA+GA) 526 635 3.977*10-7 1.612 1.340-1.940 

rs505922 Dominant Model 
N(TT) 278 541 ref   

N(CC+TC) 526 635 3.977*10-7 1.612 1.340-1.940 

N, number. 

 



 

www.aging-us.com 24674 AGING 

Supplementary Table 10. Analysis of plasma lipid levels and healthy-associated haplotypes. 

 Longevity Nonagenarians Centenarians 

HDL Case Control P OR 95%CI Case Control P OR 95%CI Case Control P OR 95%CI 

-AGT 280 797 - - - 147 322 - - - 133 475 - - - 

CAGT 31 92 0.849 0.959 0.624-1.473 18 39 0.971 1.011 0.560-1.827 13 53 0.683 0.876 0.464-1.655 

CGAC 142 464 0.244 0.871 0.691-1.099 70 172 0.507 0.891 0.635-1.252 72 292 0.438 0.881 0.638-1.215 

LDL                

-AGT 120 957 - - - 39 430 - - - 81 527 - - - 

CAGT 23 100 0.014 1.834 1.122-2.998 10 47 0.024 2.346 1.100-5.002 13 53 0.156 1.596 0.833-3.057 

CGAC 86 520 0.067 1.319 0.980-1.775 27 215 0.216 1.385 0.825-2.323 59 305 0.215 1.259 0.875-1.811 

TG                

-AGT 132 943 - - - 67 402 - - - 65 541 - - - 

CAGT 22 101 0.078 1.556 0.948-2.555 15 42 0.018 2.143 1.126-4.079 7 59 0.976 0.987 0.433-2.253 

CGAC 59 547 0.115 0.771 0.557-1.066 23 219 0.069 0.630 0.382-1.040 35 328 0.591 0.888 0.576-1.370 

TC                

-AGT 157 918 - - - 60 409 - - - 97 509 - - - 

CAGT 23 100 0.229 1.345 0.829-2.182 9 48 0.527 1.278 0.597-2.738 14 52 0.279 1.413 0.753-2.649 

CGAC 103 503 0.193 1.197 0.913-1.570 37 205 0.358 1.230 0.790-1.915 66 298 0.391 1.162 0.824-1.639 

HDL                

CAGT 31 92 - - - 18 39 - - - 13 53 - - - 

CGAC 142 464 0.674 0.908 0.580-1.422 70 172 0.693 0.882 0.473-1.645 72 292 0.988 1.005 0.520-1.943 

LDL                

CAGT 23 100 - - - 10 47 - - - 13 53 - - - 

CGAC 86 520 0.201 0.719 0.433-1.194 27 215 0.188 0.590 0.268-1.302 59 305 0.485 0.789 0.405-1.538 

TG                

CAGT 22 101 - - - 15 42 - - - 7 59 - - - 

CGAC 59 547 0.009 0.495 0.290-0.844 23 219 6.000*10-4 0.294 0.142-0.610 35 328 0.808 0.899 0.382-2.120 

TC                

CAGT 23 100 - - - 9 48 - - - 14 52 - - - 

CGAC 103 503 0.649 0.890 0.540-1.468 37 205 0.925 0.963 0.435-2.128 66 298 0.554 0.823 0.430-1.572 

 

Supplementary Table 11. Primers of sequencing genotyping. 

Variants Forward primer Reverse primer Product length 

rs8176719 TGAACTGCTCGTTGAGGATG GTGGTCAGAGGAGGCAGAAG 185bp 

rs687621 GCCACGCACTTCGACCTAT GGGCTTAGGACCCCGTAAC 782bp 

rs643434 CACATTACCTTAGCACCCTT CTGAGGTGAGAGGATGACTT 432bp 

rs505922 AACTGTGTTTGCCATCAAGAAAT CCCACCATGAAGTGCTTCTC 456bp 

 


