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Abstract

The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic
inputs into action potential output. Traditionally, these computations have been characterized as both temporally and
spatially localized. Under this localist account, neurons compute near-instantaneous mappings from their current input to
their current output, brought about by somatic summation of dendritic contributions that are generated in functionally
segregated compartments. However, recent evidence about the presence of oscillations in dendrites suggests a
qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of
inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization.
Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations and the way these
interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic
arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-
locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic
segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the
dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able
to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic
spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global
temporal and spatial scales than previously thought; notably that local dendritic activity may be a mechanism for
generating on-going whole-cell voltage oscillations.
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Introduction

The dendritic tree contributes significantly to the elementary

computations a neuron can perform, both by its intricate

morphology and its composition of voltage-gated ionic conduc-

tances [1]. Such active conductances can underlie a wide variety of

dynamical behaviors, amongst others dendritic spikes and ongoing

oscillations of the dendritic membrane potential [2]. Such active

dendritic phenomena have been suggested as mechanisms

endowing single neurons with significant computational power

[3] and flexibility in the way the dendritic tree processes its inputs:

whether as a global element, effectively collapsing the tree into a

single functional compartment or with various parts of the tree

acting as independent processing elements [4,5]. While the

possibility of powerful and flexible dendritic processing has been

of great interest, the precise conditions under which dendrites can

act independently or globally remain largely to be determined. In

this report we address this key question, focusing specifically on the

case where active properties lead to sustained intrinsic membrane

potential oscillations in the dendrites. We develop a theoretical

formalism, allowing for a succinct yet powerful description of the

dendritic tree dynamics and yielding conditions under which the

tree acts as a global oscillatory unit and how such action in turn

controls spiking responses of the neuron.

Membrane potential oscillations have been demonstrated in

various types of neurons. Prominent intrinsic subthreshold oscilla-

tions have been found in stellate cells from entorhinal cortex layer 2

[6,7], neurons from the frontal cortex [8], neurons from the

amygdala complex [9,10], and pyramidal cells and interneurons

from the hippocampal CA1 area [11,12]. Although these

membrane potential oscillations are normally recorded at the soma

and thus are considered to be of somatic origin, several lines of

evidence suggest dendritic loci of generation. First, many of the

conductances thought to underlie the generation of such oscillations

reside predominantly in the dendrites, sometimes specifically in the

distal parts of the dendritic tree. For example, in the apical dendrites

of hippocampal CA1 pyramidal neurons, the density of Ih increases

strongly with distance from the soma [13], and reaches very high

values in the thin distal branches [14]. Second, several studies have

suggested the existence of clusters of ionic conductances that are

responsible for the generation of dendritic spikes [15]. While most of

the direct electrophysiological evidence regards excitable behavior,
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demonstrating the generation of dendritic spikes in response to

sufficient levels of depolarization, mathematical analysis has shown

that neural membranes exhibiting excitability can readily pass to

oscillatory regimes in an input-dependent manner (e.g. see [16]).

Third, in several cases, oscillations have been directly recorded in

dendrites. For example, recordings from hippocampal CA1

pyramidal neurons have demonstrated ongoing oscillations in the

dendrites that include repetitive dendritic spikes, presumably

involving Ca2z currents [17]. Furthermore, significant intrinsic

dendritic oscillations have been observed in several neuronal

preparations that depended on the interplay between the non-

linear properties of NMDA synaptic receptors and intrinsic voltage-

dependent currents [18,19]. Crucially, while the onset of these

oscillations was conditional on the activation of the NMDA

synapses, the oscillations themselves were produced by mechanisms

that were intrinsic to the postsynaptic cell and not by periodically

structured synaptic inputs. Since NMDA receptors are largely

localized on dendritic spines, and are hence electrotonically

removed from the soma, these data may also argue for a non-

uniform and local dendritic generation of membrane potential

oscillations. Taken together, these experimental results suggest that

dendritic trees can function as oscillators, perhaps conditional on

the level of background depolarization or the presence of

neuromodulators [20], while leaving open the question whether

global cell-wide voltage oscillations could result from local dendritic

mechanisms that are intrinsic even to distal dendrites and hence

only weakly coupled to the soma electrotonically.

Indeed, multiple intrinsic dendritic oscillators have been

proposed to underlie the recently discovered intricate firing pattern

of entorhinal grid cells [21–23]. This influential model suggests that

the functional responses of entorhinal neurons recorded in behaving

animals are a direct consequence of the generation of independent

oscillations that are intrinsic to individual dendrites. Hence, this

model presupposes the existence of multiple oscillators that are

integrated at the soma, leading to the questions of how such

dendritic oscillators may interact with the soma and with each other,

and what sorts of collective behaviors the electrotonic structure of

the dendritic tree might impose on the oscillations.

In this paper, we study the dynamics of such interacting

oscillators and their impact on signal propagation in single

neurons, using mathematical analysis corroborated by numerical

simulations of biophysical models. We treat the dendritic tree of a

neuron as a network of oscillators coupled by stretches of relatively

less active cable. This prompts us to combine two analytical

methods: weakly coupled oscillator theory and cable theory. The

theory of weakly coupled oscillators has been extensively used

previously to study synchronization of multiple oscillators residing

in separate cells interacting through synapses or gap junctions

[24]. Since we focus on intradendritic oscillators which are

continuously coupled via the membrane voltage, we use cable

theory [25] to compute their interactions.

We find that intradendritic oscillations can exhibit complex

patterns of phase-locking. We characterize how this phase-locking

depends on the intrinsic properties of the oscillators and on the

membrane properties of the segment connecting them. Finally, we

demonstrate how input to the dendritic oscillators can control the

phase-locking and how in turn the phase-locked configuration can

control somatic spike generation. These results provide a rigorous

mathematical framework for the study of interacting dendritic

oscillations that can be applied in the future to specific systems of

interest, and also point to ways in which such oscillations can be

utilized for non-trivial single cell computations.

Results

Our goal is to develop a theory for the behavior of a dendritic

tree that contains multiple intrinsic oscillators and then use this

framework to gain understanding of how such a tree would behave

dynamically and hence control the neuron’s output depending on

the input. In order to develop the mathematical framework we

begin by considering a minimal setup of two cable-coupled

oscillators. As we will see even this setup is too complicated for

direct analytical treatment hence we will go through a number of

reduction steps which we sketch out below.

We study the behavior of a system of two oscillators with period

T being connected via an active (though not intrinsically

oscillating) dendritic cable with length constant l and membrane

time constant t. The two oscillators A and B are located at the

ends of the cable at x~0 and x~l, separated by an electrotonic

distance L~l=l (figure 1Ai). In general form the system we will

consider for describing the membrane potential V x,tð Þ along the

dendritic cable is given by the following equations:

t
L
Lt

V x,tð Þ~l2 L2

Lx2
V x,tð Þ{ V x,tð Þ{ELð Þ{F V x,tð Þ, m x,tð Þð Þ ,ð1Þ

V 0,tð Þ~VA tð Þ ,
V l,tð Þ~VB tð Þ ,

ð2Þ

Cm

d

dt
VA tð Þ~{gL VA tð Þ{ELð Þ{IA VA tð Þ,~mmA tð Þð Þ{epA tð Þ ,

Cm

d

dt
VB tð Þ~{gL VB tð Þ{ELð Þ{IB VB tð Þ,~mmB tð Þð Þ{epB tð Þ ,

ð3Þ

where EL is the reversal potential of the passive membrane current,

the function F V ,mð Þ summarizes the voltage-dependent terms in the

cable, Cm is the membrane capacitance, gL is the leak conductance,

IA,B VA,B,~mmA,Bð Þ describes the voltage-dependent currents generating

the oscillations. The gating variable m x,tð Þ and the variables in the

Author Summary

A central issue in biology is how local processes yield
global consequences. This is especially relevant for
neurons since these spatially extended cells process local
synaptic inputs to generate global action potential output.
The dendritic tree of a neuron, which receives most of the
inputs, expresses ion channels that can generate nonlinear
dynamics. A prominent phenomenon resulting from such
ion channels are voltage oscillations. The distribution of
the active membrane channels throughout the cell is often
highly non-uniform. This can turn the dendritic tree into a
network of sparsely spaced local oscillators. Here we
analyze whether local dendritic oscillators can produce
cell-wide voltage oscillations. Our mathematical theory
shows that indeed even when the dendritic oscillators are
weakly coupled, they lock their phases and give global
oscillations. We show how the biophysical properties of
the dendrites determine the global locking and how it can
be controlled by synaptic inputs. As a consequence of
global locking, even individual synaptic inputs can affect
the timing of action potentials. In fact, dendrites locking in
synchrony can lead to sustained firing of the cell. We show
that dendritic trees can be bistable, with dendrites locking
in either synchrony or asynchrony, which may provide a
novel mechanism for single cell-based memory.

Dendritic Oscillations and Single-Neuron Dynamics
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vector ~mmA,B are described by standard kinetic equations (e.g. see

Equations 28 and 29 in Methods). The terms epA,B describe the

perturbing currents that each oscillator receives from the cable and

are proportional to
L
Lx

V 0,tð Þ and
L
Lx

V l,tð Þ. A more detailed

description for the above is given in the Methods.

The two oscillators described by Equation 3 form the boundary

conditions Equation 2 for the cable Equation 1. In turn, the cable

yields the current flux through its ends into (and thereby

perturbing) the two oscillators: the terms epA,B in Equation 3. It

is clear that it is next to impossible to solve Equations 1–3 directly.

However, we will use a number of reductions to arrive at a phase

description of the system that is simple enough to handle

analytically. This allows us to derive interaction functions for the

two oscillators, describing how much they perturb each other

through the dendrite depending on their phases. We then use these

interaction functions to determine the stable phase relationship

between the oscillators for different parameters, i.e. the properties

of the cable and the type of oscillators. The analysis follows along

the lines of previous work [26–28] and extends those results to the

analysis of intradendritically coupled oscillators.

We begin by observing that the oscillators from Equation 3 can

be reduced to a phase description (see Methods for further detail)

[24]. The phases hA and hB (in radians) describe the state of each

oscillator. The dynamics of the phases are then described by

_hhA~
2p

T
zeZA tð ÞpA tð Þ ,

_hhB~
2p

T
zeZB tð ÞpB tð Þ :

ð4Þ

Here the first term in the right hand side of each equation is the

natural frequency of each oscillator and the second term describes

the interaction between the oscillators. The crux of the analysis is

thus to derive this function which we do explicitly in Methods.

The interaction between the two oscillators depends on two

factors: the intrinsic properties of the oscillators, as reflected by

their phase response curves ZA,B, and the perturbations pA,B to

each oscillator via the cable. A phase response curve of an

oscillator describes the phase shift induced by a perturbation

delivered at a given phase. It can be determined using standard

methods [24]. The perturbations to the oscillators come from

solving Equation 1 with the oscillators described by Equation 3 as

the boundary conditions described by Equation 2. For the active

cable this task can be greatly simplified if we consider a quasi-

active approximation of the cable, and if we realize that the cable

should behave periodically. The former can be done by linearizing

the cable Equation 1 about the voltage to which the cable would

relax if it was not driven by the oscillators [29,30]. Under such

approximations the active properties of the dendritic cable can be

summarized by a single parameter, m, which can be derived from

its basic biophysical properties (see Methods). The sign of m
indicates whether the active conductance that is present in the

cable is regenerative (mv0), restorative (mw0), or passive (m~0)

(see also [28]). A regenerative current will amplify perturbations

(e.g. a persistent sodium current INaP), while a restorative current

actively counteracts such perturbations (e.g. the hyperpolarization

activated inward current Ih).

Since the solution to the cable equation with periodically forced

end conditions is also periodic, it depends only on the difference of

the phases of the two oscillators w~hB tð Þ{hA tð Þ. The dynamics

Figure 1. Passive cable coupling. Ai: The oscillators with voltage trajectories VA tð Þ and VB tð Þ and phase difference w determine the membrane
potential at the ends of a cable with electrotonic length L. Aii: The interaction function HA wð Þ gives the phase shift of oscillator A as a function of w.
This interaction function is shifted along the w-axis by the parameters f and j, which capture the oscillator and cable properties, respectively. Aiii: The
stable phase-locked solution is determined by _ww~0 and d

dw
_wwv0 and is either at w~0 (e.g. for the solid curve) or at w~p (e.g. for the dash-dotted

curve). Aiv: The stable phase-locked solution as a function of j. The value of j uniquely determines where the in-phase (black solid line) or the anti-
phase solution (red dotted line) is stable, given a fixed value of f. B: j as a function of the electrotonic distance L between the oscillators, t~20 ms
and T~20 ms (dotted line in panel D). For illustrative purposes we chose f~p=3 so that the stable in-phase and anti-phase solutions are given by
the white and gray areas, respectively. C: j as a function of the membrane resistance Rm for cable diameter d~1 mm, distance between the
oscillators 1000 mm, membrane capacitance Cm~1mF/cm2 , intracellular resistivity Ri~0:2 kVcm and oscillator period T~20 ms. D: j as a function
of the oscillator frequency 1000=T . The distance between the oscillators is L~2 (dotted line in B), t~20 ms.
doi:10.1371/journal.pcbi.1000493.g001

Dendritic Oscillations and Single-Neuron Dynamics
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of w is the central object of our interest. Assuming that the

oscillator interactions via the cable are relatively weak, we can

obtain the interaction functions HA wð Þ and HB wð Þ (see [24] and

Methods). These describe the change in the oscillators’ phases as a

function of the phase difference. Now the phase difference

between the oscillators evolves, on a slower time-scale, as

_ww~e HB wð Þ{HA wð Þð Þ : ð5Þ

It is easy to see that phase-locked states for our dendrite can be

identified as values of w where _ww~0. The derivative of _ww with

respect to w gives the stability of such states (negative implies

stable, positive unstable). Hence for the rest of the analysis we

study how stable phase-locked configurations are determined by

the key biophysical parameters of the system described by

Equations 1–3: the electrotonic length and membrane time

constant of the cable, the nature of the active cable-currents, the

frequency of the oscillators, as well as the properties of the

oscillators as given by the phase response curves and the voltage

trajectory shape.

Phase-locking with simplified dendritic oscillators
The basic behavior of the system can be most easily understood

by examining a simplified situation where the oscillators have a

phase response curve that is approximately sinusoid and the

perturbations from the cable are also nearly sinusoidal (e.g. when

the oscillators are subthreshold with simple sinusoidal voltage

traces). Hence the first Fourier component dominates in both ZA

and pA. The interaction function is then

HA wð Þ&rcos wzj{fð Þzn , ð6Þ

where r is a positive coefficient characterizing the strength of the

coupling (see Equation 22 in Methods). The term j{f gives the

effective phase delay in the interaction between the two oscillators

(figure 1Aii). In this term f depends on the properties of the

oscillators and j[ {p,p½ � summarizes the effect of cable filtering. It

depends on the properties of the dendritic cable: L, t, and m (see

Methods). Using Equation 5 it is easy to show that the evolution of

the phase difference w between two identical oscillators is given by

_ww~2ersin j{fð Þsinw : ð7Þ

The fixed points are the in-phase solution w~0 and the anti-

phase solution w~p (figure 1Aiii). The stable phase-locked

solutions are those fixed points where the derivative of Equation

7 with respect to w is negative:

d

dw
_ww~2ersin j{fð Þcoswv0 : ð8Þ

The synchronous solution w~0 is thus stable when

sin j{fð Þv0. When this solution is stable the anti-phase solution

w~p is unstable and vice versa.

Notice that if we fix the properties of the oscillators, the constant

f is fixed. Then the value of j uniquely determines which is the

stable state (figure 1Aiv). Hence, to understand how the dendrite

behaves as a function of the key properties of the cable we need

only to look at how these affect j. In the next sections we describe

the behavior of j with the consequent effect on phase-locking. The

explicit expressions for the scaling of j with the various parameters

considered below are given in the Methods.

Passive cable properties and oscillator period set the

phase-locked states. First let us consider a setup where the

cable is passive (i.e. m~0). We show how j depends on the various

cable parameters as well as the oscillator period and by extension

how these properties affect the phase-locking.

The electrotonic distance L between the oscillators is one of the

major determinants of j. For a fixed membrane time constant and

oscillator period, the electrotonic distance controls the amplitude of

j. For example, let us set the membrane time constant t~20 ms

and the oscillator period T~20 ms. As we let L increase from 0 to

8, j moves through almost two whole cycles (figure 1B). Thus, the

in-phase and the anti-phase states exchange stability as a function of

L. There are ranges of L where j{f is negative so the right hand

side of Equation 8 is below zero and the in-phase solution is stable

(white area in figure 1B), and ranges where j{f is positive and the

anti-phase solution is stable (grey areas in figure 1B). Hence for

different electrotonic lengths we observe either coherent synchro-

nous or anti-phase voltage oscillations. Our analysis also shows that,

for large enough L, the transitions between the stability of in-phase

and anti-phase solutions are periodic with respect to L (see Equation

26 in Methods). The period DL of these transitions depends on the

cable time constant t: e.g. for increasing t the transitions between

the phase-locked modes come at shorter cable lengths. Note that we

vary the electrotonic distance L here over a large range in order to

highlight the periodicity of the transitions. A more physiologically

realistic limit on the maximal L that is attainable within a neuron is

on the order of 4 length constants [31].

Thus we see that the spacing of the oscillators can determine if

they would produce global synchronous oscillations or not.

Interestingly, the relationship between the spacing and synchrony

is not trivial since synchrony can result both at short and long

electrotonic distance. The electrotonic distance can be influenced

by the conductance state of the cable, hinting that the level of

synaptic input impinging on the cable may determine the phase-

locked states in a non-trivial manner. To examine this issue

explicitly we look at the relationship between j and the membrane

resistance Rm of the cable.

Both the membrane time constant t and the electrotonic length

L of the cable depend on Rm. In a low conductance state, as Rm

grows large, j approaches a constant. So the influence of Rm on j
and hence the phase-locked state saturates. For example in

figure 1C, only the anti-phase solution is stable for large Rm. On

the other hand, in a high conductance state of the dendrite Rm

becomes small, driving j towards zero. In this range Rm has a

strong effect on j and can therefore change the stable phase-

locked solution. For example, see in figure 1C when Rm is below

10 kV cm2 (corresponding to a membrane time constant of

10 ms).

So far we have shown how basic properties of the cable

connecting the oscillators determine the phase-locking regimes.

However, the period T of the oscillators also plays an important

role in setting the phase-locking by affecting the amplitude and

sign of j. In figure 1D we plot j as a function of the oscillation

frequency (in Hz) with an electrotonic distance between the

oscillators of L~2 with t~20 ms. We can see that by changing

the frequency of the oscillators one can change the stable phase-

locked solution from in-phase to anti-phase or vice versa as the

value of j{f changes sign (i.e. as j moves from the white to the

grey areas or vice versa in figure 1D).

Hence the stability of the phase-locked solutions can be

determined by basic properties of the cable, such as the

Dendritic Oscillations and Single-Neuron Dynamics
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electrotonic distance and/or the membrane resistance, as well as

the properties of the oscillators, such as their frequency. Next we

see how active properties of the cable can set the phase-locking

regimes.

Active cable properties influence phase-locking

regimes. Voltage-dependent ionic conductances in the

dendritic cable that connects the oscillators strongly modulate j.

Let us consider phase-locking as a function of L for the various

active cable currents, such as INaP (regenerative) and Ih

(restorative).

Regenerative currents (mv0) make j more sensitive to L,

causing transitions of stability to occur on shorter intervals L as

compared to an equivalent passive case. This is illustrated in

figure 2A: with a regenerative current (green curve) j goes through

more than two complete cycles as L increases from 0 to 10. For the

passive cable case (black curve) there is a shift of only about a third

of a cycle for the same range of L. In contrast, restorative currents

(mw0) typically have the opposite effect, making the intervals L

between the transitions longer. For example, in figure 2A one can

see that the restorative current (red curve) leads to a small increase

in j with increasing L and effectively removes the effect of the

electrotonic distance on j.

The way active currents modulate the relationship between j
and L also depends on the frequency of the oscillators. In panel 2B

we plot the frequency-dependence of the j for the regenerative,

restorative and passive cable currents when L~1:75. The

restorative current yields a positive value of j up to a frequency

of *10 Hz. The regenerative current increases j compared to the

passive cable most strongly for low frequencies. For both

restorative and regenerative currents the effects on j disappear

for very high frequencies.

Phase-locking dynamics of multiple complex oscillators
In the previous section we limited our description and analysis

to oscillators with a nearly sinusoidal phase response curve that

receive perturbations which are also sinusoidal. In this way we

could demonstrate how the parameters that define the oscillator

and cable properties affect the phase-locking behavior of the

system. However, as consequence, we only obtained and analyzed

symmetric interaction functions HA wð Þ. For such coupling

functions, only the in-phase and anti-phase solutions are possible

of which one is stable and one unstable. When ZA and pA cannot

be well approximated by a single Fourier component we need to

take into account higher order terms. Including more Fourier

components is likely to lead to asymmetry or skew of HA wð Þ and,

as we will show next, this affects the possible phase-locking

behaviors.
Skew of the interaction function determines the possible

phase-locked states. We will now consider how the skew of

the interaction function HA wð Þ affects the phase-locking behavior.

To illustrate this point let us look at a sawtooth-shaped HA wð Þ with

period T~2p that increases from {1 to 1 over the interval 0 to

k:2p and decreases back to {1 on the remaining interval. The

parameter k[ 0,1½ � thus specifies the location of the peak such that

for k~0:5 we have a standard triangle wave. We assume identical

oscillators such that HB wð Þ~HA {wð Þ. For illustrative purposes

we first consider a somewhat artificial yet illustrative example, in

which the cable filtering does not affect the shape of the interaction

function but only shifts the interaction function along the w-axis.

We define a single parameter j� that determines the position of the

interaction function HA wzj�ð Þ, analogous to j in the above

analysis. This parameter j� depends on the various parameters in

a way similar to j, for example with the electrotonic separation of

the oscillators.

The skew of HA leads to a richer repertoire of phase-locking

which we demonstrate in figure 3. We first consider a right-skewed

HA with k~0:1. The top panels in figure 3A show HA and HB for

three different values of j�. Below these panels we plot the

difference HB{HA from which we can read the phase-locked

solutions since these are given by HB{HA~0 (see Equation 5).

We see that the interaction functions HA and HB move in opposite

directions along the w-axis as j� varies from 0 to 2p=5 to 4p=5.

The bifurcation diagram in figure 3A (lower panel) shows the

stable and unstable phase-locked solutions as a function of j�.
Hence we see that not only in-phase and anti-phase solutions are

possible, but also phase-locked solutions at intermediate values of

w. Thus, a right-skewed HA (i.e. when kv0:5) leads to gradual

transitions between in-phase and anti-phase solutions. As we noted

above, when HA is symmetrical (k~0:5) we find only instanta-

neous transitions between in-phase and anti-phase solutions

(figure 3B). Finally, for a left-skewed HA (kw0:5) one finds

parameter ranges with simultaneous stability of both the in-phase

and the anti-phase solution (figure 3C).

Figure 2. Active cable coupling. A: Parameter j as a function of the electrotonic distance L between the oscillators when the cable is passive
(black) or with a regenerative (green) or a restorative (red) active current. The oscillator frequency is 8 Hz (dotted line in panel B). The membrane time
constant of the connecting dendrite is t~20 ms. The parameters for the active currents were determined for Ih (restorative) and INaP (regenerative)
which are described in the Methods (see Equation 29). The current parameters when linearized around VR~{50:25 mV are m~{4:1, cR~1:3 and
tm~1 ms for the regenerative current, and m~2:1, cR~1:5 and tm~52 ms for the restorative current, using the conductance densities given in the
Methods. B: j as a function of the frequency of the oscillator (in Hz). The oscillators are separated by a cable with electrotonic length L~1:75 (dotted
line in panel A) for the same three conditions as in panel A.
doi:10.1371/journal.pcbi.1000493.g002

Dendritic Oscillations and Single-Neuron Dynamics
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Figure 3. HA skewness controls phase-locking regimes and transitions. The three panels A-B-C show triangular HA functions with different
skewness with their peaks at w~k:2pzj� where j� is a phase shift that results from the cable coupling. The oscillators are identical so that
HB wð Þ~HA {wð Þ. A: Right-skewed HA with k~0:1 (solid black line) plotted from left to right for three values of j� together with the corresponding
HB (dashed blue line). Below each graph HB{HA is plotted (green lines) with the stable (black dots) and unstable (red dots) phase-locked solutions.
The lower right panel shows the bifurcation diagram with the stable (solid black line) and unstable (dotted red line) phase-locked solutions. The right-
skewed HA yields gradual transitions between the in-phase and anti-phase solutions. B: Symmetrical HA with k~0:5 yields abrupt transitions
between in-phase and anti-phase solutions. C: Left-skewed HA with k~0:9 yields bistable regions where both the in-phase and the anti-phase
solution are stable.
doi:10.1371/journal.pcbi.1000493.g003
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Factors determining the shape of the interaction

function. The actual shape of HA wð Þ, and consequently the

bifurcation diagram governing the dendritic phase-locking,

depends on the properties of the oscillators and the cable. If we

know the voltage trace and phase response function of an

oscillator, we can easily compute the interaction function for

direct coupling using Equation 27 in the Methods. The skew of the

interaction function then predicts the type of phase-locking

behaviors that can be expected. For spiking oscillators one will

typically find a left-skewed voltage trace as the membrane

potential gradually approaches the threshold and the spike is

followed by a quick reset. For such an oscillator, a symmetric

phase response function will yield a left-skewed interaction

function and one expects to find bistable phase-locking regimes.

For subthreshold oscillators, the voltage trajectory is more likely to

be symmetric. The skew of the phase response function will then

determine the skew of HA.

However, when we introduce an electrotonic separation L
between the oscillators, the shape of the interaction function HA

will change as a result of the cable filtering. As L increases, the

increasing cable filtering leads to dominance of a single Fourier

component. Thus, for large L the shape of the interaction function

will always approach that of a sinusoid. As a consequence one

expects to see abrupt transitions between the phase-locked

solutions as L becomes large. See also the ‘‘Skew of interaction

function’’ section in the Methods.

Behavior of specific oscillator models. As we mentioned

above, the shape of the interaction function depends critically on

the biophysics of the oscillators considered. Hence, we now turn to

illustrating our analysis for two different oscillator types: one that

generates action potentials and the other a model for subthreshold

oscillations.

As a first example we analyze the phase-locking for the type II

Morris-Lecar neural oscillator [32] (see Methods). We also validate

our analysis with direct numerical simulations. We first focus on

the relationship between L and the shape of HA for this oscillator

type. The voltage trace and the phase response function of this

oscillator are plotted in figure 4A for one oscillation cycle, starting

at the peak of the voltage trace. The interaction function HA is

shown in figure 4B for three values of L. For L~0 we have two

directly coupled Morris-Lecar oscillators, resulting in a left-skewed

HA (solid curve). For L~2 (dashed curve) the interaction function

has become smoother, though it is still left-skewed. For L~4
(dash-dotted curve), most high frequency components are filtered

out as a result of the cable filtering, and we have an almost

symmetric HA. From this we expect that if there is a transition

between stability of the in-phase solution and stability of the anti-

phase solution for L smaller than *3, that this transition will be

Figure 4. Phase-locking of two Morris-Lecar type II oscillators. The oscillators (described in Methods) are coupled via a passive cable of
electrotonic length L, t~20 ms. A: Voltage trajectory (blue) and phase response function (black) of the Morris-Lecar type II oscillator, period
T~21 ms. B: Shape of HA wð Þ for L~0 (solid curve), L~2 (dashed curve) and L~4 (dash-dotted curve). The functions have been rescaled and
aligned in order to show the different degrees of skewness. C: Bifurcation diagram showing the stable (solid black line) and unstable (dashed red line)
phase-locked solutions as a function of L. Cross marks give the stable phase difference determined with numerical simulations using e~0:175mS
cm{1 with t~20 ms, and EL~{50 mV. D: The middle two panels show simulations of the phase difference dynamics (red curves) for L~1:1 (top)
and L~2:1 (bottom) with e~0:14mS cm{1 . Space-time plots of the membrane potential along the dendritic cable cable are plotted for the first
200 ms (left) and for the final 200 ms (right) of the two simulations.
doi:10.1371/journal.pcbi.1000493.g004
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accompanied by a bistable region surrounding that transition. For

larger L the transition will be practically instantaneous. This is

indeed what we see in the bifurcation diagram in figure 4C, which

shows the stable (black) and unstable (red) phase-locked solutions

as a function of the electrotonic distance L. As expected for a left-

skewed HA, the dendrite shows a bistable region where both the

in-phase and the anti-phase solution are stable (around L*1:65).

For smaller L, the in-phase solution is stable. As the electrotonic

separation between the oscillators approaches L~4, there is also a

transition from a stable anti-phase to a stable in-phase solution.

This transition is very sharp, as was expected for the almost

symmetric shape of HA at this electrotonic distance.

Using numerical simulations of Equations 1–3 (see Methods) we

can demonstrate the dynamics of the phase difference between the

two Morris-Lecar oscillators, as well as the membrane potential

dynamics along the cable. Figure 4D illustrates these dynamics

when the oscillators are separated by an electrotonic distance of

L~1:1 (top panels) or L~2:1 (bottom panels). The oscillators

start out with a phase difference of w~2p=3. As expected from the

bifurcation diagram in figure 4C, the two oscillators move to the

in-phase configuration w~0 when L~1:1, synchronizing the

voltage oscillations along the cable. When L~2:1 the two

oscillators settle in the anti-phase solution w~p, producing large

voltage gradients along the cable.

Finally, we determine the phase-locking under both passive and

active cable coupling for a model of subthreshold oscillations in

entorhinal stellate cells [6,33] (see Methods). These oscillations are

thought to arise from an interaction between a persistent sodium

current INaP and a hyperpolarization-activated inward current Ih

(see Methods). Both the voltage trajectory and the phase response

function are close to a sinusoid (figure 5A). We compute the

bifurcation diagrams (figure 5B) for two oscillators coupled via a

passive cable (top), a cable with a regenerative current (middle),

and a cable with a restorative current (bottom). As was expected

from our above analysis for simplified oscillators, the regenerative

current makes the transition between in-phase and anti-phase

solutions to occur for smaller L, compared to passive cable

coupling. In contrast, adding the restorative current to the cable

causes the transition to occur at larger L, making the synchronous

phase-locked solution stable up to L*3:8.

Numerical simulations agree with predictions of weak

coupling analysis. Our mathematical analysis assumes that the

oscillators are weakly perturbed by the coupling via the dendritic

cable. This implies that the currents in the stretch of cell

membrane that generate the intrinsic oscillations are much

stronger than the perturbing currents that arrive from the

dendritic cable. Hence, central parameters determining the

coupling are the amplitude of the oscillator’s intrinsic currents

and the parameter e in Equation 3, which should be such that the

ratio of the amplitudes of the perturbing current and the intrinsic

currents epA,Bj j= gL VA,B{ELð ÞzIA,Bj j%1. For a cable with

diameter d (in cm) and oscillators that are described as a single

isopotential compartment with membrane surface area A (in cm2),

the parameter e~pd2
�

4Ri A, where Ri is the intracellular

resistivity of the dendritic cable (in kVcm). The analytical

prediction of the stable phase-locked state will become less

accurate as e grows, for example when the oscillator’s length

and hence its surface area become smaller.

Using numerical simulations of Equations 1–3 (see Methods) we

tested how well the weak coupling approximation predicts the

phase-locking of the oscillators, both for the type II Morris-Lecar

oscillators (figure 4) and the subthreshold oscillators (figure 5) when

coupled via a cable with an electrotonic length ranging from 0 to 4

length constants, with membrane time constant t~20 ms. We

find that the analytical predictions agree very well (cross marks in

figure 4C and figure 5B) when we use up to the maximal e that still

allows for oscillations (e~0:175mS cm{1 for the Morris-Lecar

oscillators and e~0:21mS cm{1 for the subthreshold oscillators).

Larger values of e lead to such strong interaction currents that the

oscillations are annihilated. Numerical simulations of Equations 1–

3 using voltage-dependent cable currents (see Methods) match

Figure 5. Phase-locking behavior of subthreshold oscillators.
The oscillations are generated by interactions between INaP and Ih (see
Methods). A: Voltage trajectory (blue) and phase response function
(black) of the oscillator. B: Corresponding bifurcation diagrams showing
the stable (solid black lines) and unstable (dashed red lines) phase-
locked solutions as a function of L. The bifurcation diagram is shown
for a passive cable (top), a cable with a regenerative current (middle),
and a cable with a restorative current (bottom). The restorative current
Ih and regenerative current INaP (described in Methods) are inserted in
the cable with relative densities of cm~0:25 and cm~6, respectively.
Linearizing these currents around VR~{50:25 mV gives the param-
eters m~{1:35, cR~1:1 and tm~1 ms for the regenerative current,
and m~0:84, cR~1:21 and tm~52:3 ms for the restorative current. The
membrane time constant of the connecting dendrite is t~20 ms. Cross
marks in the bifurcation diagrams give the stable phase difference
determined with numerical simulations using e~0:21mS cm{1 ,
t~20 ms, and EL is {50 mV, {60:5 mV and {56 mV, respectively
for the three panels, so that the cable’s resting potential is {50 mV.
Note that the numerical simulations use the original (i.e. not the
linearized) active currents in the connecting cable.
doi:10.1371/journal.pcbi.1000493.g005
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exactly with the predictions of the weak coupling analysis (bottom

two panels in figure 5B), thereby also emphasizing the validity of

using linearized descriptions of those active currents in our

analytical framework.

Finally, we also simulated a cable in which we inserted the

voltage-dependent conductances that underlie the Morris-Lecar

type II oscillator in the end segments (see text S1 in Supporting

information). Hence, this continuous cable model does not use the

explicit assumption of weak coupling. Results from these

simulations also agree with our analytical predictions, showing

synchronized phase-locking for small L, a bistable regime around

L*1:5 and anti-phase locking for larger L (see text S1 and figure

S1 in Supporting information).

Multiple oscillators: chains and branched structures. So

far we have focused on a minimal configuration of two oscillators

connected by a cable. However, our analysis can be easily

extended to predict phase-locking of a chain of oscillators. This

follows since the phase-locking behavior only depends on each

neighboring pair of oscillators. Figure 6A shows numerical

simulations of a chain of three oscillators, using the same

Morris-Lecar model as in figure 4. The two pairs are separated

by a passive dendritic cable of either L~1:1 (top panel) or L~2:1
(bottom panel). The phase-locked solutions follow from the

bifurcation diagram in figure 4C: the three oscillators move into

an in-phase solution for L~1:1, whereas for L~2:1 each

neighboring pair of oscillators moves into the anti-phase solution.

Our framework also allows us to understand phase-locking in a

branched cable structure. Hence we examined the phase difference

dynamics of a triangular configuration of three Morris-Lecar

oscillators (figure 6B). In this situation, each oscillator is separated

from the other two oscillators by a passive dendritic cable with

electrotonic length L~1:1 (top panel) or L~2:1 (bottom panel).

For L~1:1, all three oscillators synchronize. When L~2:1, we

expect from the bifurcation diagram in figure 4C that the oscillators

go into anti-phase. However, as we have three mutually coupled

oscillators, two pairs of anti-phase locked oscillators would lead to an

in-phase configuration of the the final pair of oscillators. The

bifurcation diagram shows that the in-phase configuration is

unstable. We see from the simulation that the system settles into

the solution closest to the anti-phase solution, which is a phase

difference of 2p=3 between each pair of oscillators.

Dendritic phase-locked states: controlled by inputs and
read out with spikes

Above we developed a framework for analyzing the behavior of

local oscillators embedded in the dendritic tree. Now we turn to the

question of how such oscillating dendrites respond to inputs and

impact the output of the neuron. We will show that the external

Figure 6. Phase difference dynamics of three oscillators in a chain or a branched configuration. The Morris-Lecar type II oscillators are
separated by a passive cable, t~20 ms. Panels A and B show from left to right: a scheme of the model with below it the membrane potential of the
oscillators at the start of the simulation; the dynamics of the phase difference w between the oscillators for L~1:1 (top) and L~2:1 (bottom); and the
membrane potential of the oscillators at the end of the simulation. The properties of the Morris-Lecar oscillators and the dendritic cable are as in
figure 4.
doi:10.1371/journal.pcbi.1000493.g006
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synaptic input can control the phase-locked configuration of the

dendritic oscillators and that this phase-locked configuration can

then be transmitted through patterning of the cell’s action potentials.

While a thorough analysis is beyond the scope of the present study,

we give several salient illustrative examples using a model with a

branched oscillating dendritic tree and a spike-generating soma.

More specifically the model consists of a passive branching dendritic

compartment with two Morris-Lecar type II oscillators at its two

distal ends and an excitable soma that, for simplicity, we describe

with an integrate and fire mechanism (figure 7A).

Above we showed that under certain conditions, depending on

the skew of the interaction function HA, the dendritic tree can be

in a phase-locking regime where two stable phase-locked states co-

exist (see figures 3C and 4C). In such a bistable regime, well-timed

inputs to one or more dendritic oscillators can switch the locking

between in-phase and anti-phase. Clearly, the membrane potential

fluctuations at the soma depend on whether the dendritic

oscillators are synchronized or not. In our model, they are largest

in amplitude when the dendritic oscillators are in-phase. The soma

can show this difference with its spiking pattern when such large

amplitude fluctuations are supra-threshold, while smaller fluctu-

ations (e.g. with asynchronous oscillators) are not.

In figure 7 we illustrate the above mechanism. The initial

parameters are such that both the in-phase and anti-phase state of

the dendritic oscillators are stable (black dotted line in figure 7C).

Oscillators starting from an initial phase difference w~p=4 move

into the synchronous phase-locked state (red curve in figure 7B).

This consequently leads to repetitive somatic spiking (blue traces in

middle and bottom panel). A brief depolarizing current pulse to

one of the oscillators (see black trace in top panel of figure 7B)

moves them into the anti-synchronous state and the somatic

spiking ceases. A subsequent synchronous current pulse to both

dendritic oscillators can switch them back into the synchronous

state and hence restart the spiking. Note that all the stimuli here

are excitatory, yet depending on their timing, they can have a net

excitatory or inhibitory effects on the cell’s spiking.

We have also hinted, in a previous section, at another

mechanism by which inputs to the dendrites can affect the

phase-locked state. The input amplitude can change the oscillator

frequency which in turn has an effect on the stability of the phase-

locked state (see figure 1D). In figure 7B at time t~6 sec we

increase the amplitude of the current input impinging on the

oscillators which causes the system to move out of the bistable

regime. The synchronized state loses stability and the oscillators

gradually move into anti-phase locking. As a result, the soma stops

spiking (at time t*17 sec). Note that the electrotonic separation

between the oscillators remains constant (black dotted line in

figure 7D) but that the bifurcation diagram itself changes. In turn,

Figure 7. Changing the phase-locked solution of dendritic oscillators with external input and its detection with an excitable soma.
A: Schematic drawing showing the configuration of two dendritic Morris-Lecar type II oscillators and a spike-generating soma (see Methods). All are
separated by a passive cable with electrotonic length L~1:65 and t~20 ms, with e~0:175mS cm{1 . B: From top to bottom are shown the inputs to
the two dendritic oscillators, the phase difference dynamics (red) and somatic firing rate (black), and the somatic membrane potential Vm (blue) with
the spike threshold (dotted black line). Note that the spikes have been cut off in order to show the subthreshold membrane potential. C–D:
Bifurcation diagrams describing the phase-locked solutions up to t~6 seconds (C, see also figure 4C) and after t~6 seconds (D) with dotted line at
L~1:65 giving the electrotonic distance between the dendritic oscillators.
doi:10.1371/journal.pcbi.1000493.g007
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a decrease in the excitatory input would reinstate spiking. Hence,

this mechanism allows the cell to encode an inverse of the input

amplitude, or the inverse of the excitatory input rate.

Discussion

The question of how local cellular processes may lead to global

behavior has been of great interest for some time, in particular with

respect to the signal propagation in extended structures such as the

dendritic trees of cortical neurons. One of the aspects that remains a

subject of active debate, is the dendritic mechanisms that ensure that

local inputs on the dendrites – and in particular on the distal

dendrites – have an impact on the global signal processing in the cell

and ultimately on spike generation. We addressed this key question

focusing specifically on the case of oscillatory dendrites. Thus, we

studied the dynamics of dendrites that show intrinsic oscillations due

to active voltage-dependent currents that present strong spatial

inhomogeneities, hence leading to discrete oscillatory segments.

Our prime question was to understand how global dendritic

behavior, in this case the phase-locked oscillations, can arise from

interactions between such local oscillators. To do so we developed

an analytical framework to describe and understand the behavior of

interacting dendritic oscillators and their impact on signal

propagation within a neuron. Our goal was to understand when

the oscillators within the dendrite would lock and hence the whole

dendritic tree would act as a single oscillatory unit.

Using the weakly coupled oscillator framework we have

identified the requirements for the various phase-locking regimes

of the dendritic oscillators. We characterized how the type of phase-

locking depends on the intrinsic properties of the oscillators as well

as on the membrane properties of the dendrite segment connecting

them. We find that a central parameter in determining the phase-

locked solutions is the electrotonic distance between the oscillators.

This distance determines how strongly the dendritic cable filters the

interactions between the oscillators, thereby determining the delay

between the interactions. As a function of the electrotonic distance

the phase-locking of identical oscillators alternates between in-phase

or synchronized solutions and anti-phase solutions.

We also showed how the phase-locking is affected by the

presence of voltage-dependent conductances in the cable that

connects the oscillators. Using the quasi-active approximation of

the cable [29,30] we found that the dependence of the stable

phase-locked solution on the electrotonic distance is typically

amplified by regenerative conductances (i.e. ionic conductances

that amplify a voltage perturbation), whereas it is counteracted by

restorative conductances (i.e. ionic conductances that counteract

voltage perturbations) (see also [28]). It should be noted that the

linearization of the active conductances in the dendrites is

appropriate for small amplitude oscillations in the dendrite and

is therefore in general a better approximation for subthreshold

oscillations than for spiking oscillators.

The mathematical approach that we used, builds on several

studies which focused on the interaction between two neurons with

repetitively spiking somata that interact via inputs at the dendrites

[26–28]. A crucial difference with these studies is that rather than

coupling via discrete synaptic events, we treat continuous coupling

between the oscillators via the current-conducting cables. One

consequence of the continuous coupling is that one needs both the

phase response function and the voltage trajectory of the oscillators

in order to compute the interaction functions and ultimately the

phase-locked solutions. By computing the convolution of the

voltage trajectory and the phase response function, which yields

the interaction function for directly coupled oscillators, it is

possible to get some insight into the types of phase-locked solutions

that can be expected. The skew of the interaction function can

show whether regimes can be expected in which both in-phase and

anti-phase solutions are stable. Both the voltage trajectory of an

oscillator and its phase response function can be determined

numerically from a model of an oscillator and, at least in principle,

also experimentally (see, for example, [34]).

In the final section of our study we demonstrated how inputs to

the dendritic tree can set the phase-locked state and how in turn

the phase-locked configuration can control somatic spike gener-

ation. The first can for instance be accomplished by changing the

frequency of the oscillators with the external input. The soma can

subsequently detect the amplitude of the membrane potential

fluctuations since this is affected by the phase-locked configuration.

The time scale at which the dendritic oscillators move from one

solution to another is set by the strength of the interactions

between the oscillators. This time scale can be much longer than

that of the different components of the system, e.g. the membrane

time constant or the period of the oscillators. In this way, the phase

difference between the oscillators can function as a memory.

Related ideas have been previously discussed by Huhn et al [35].

We also showed that in the bistable phase-locked regime the state

of the dendrites is easily set by transient inputs and ‘‘read-out’’ by

the soma. This also can endow the neuron with a memory since

brief external inputs can switch the neuron from a spiking to a

quiescent mode and vice versa. Interestingly we showed that both

the turn-on and turn-off signals (inputs) can be excitatory, their

final effects defined by their timing.

The focus of our report is complementary to that of a recent

theoretical study of the subthreshold oscillations in the dendrites of

mesencephalic dopaminergic neurons [36]. As these cells do not

show any indication of distinct dendritic oscillators, the whole cell

was modeled as one continuous oscillator with gradients in

oscillator properties along the dendrites. Moreover, since there

were no distinct oscillators, in their analysis Medvedev and

colleagues assumed strong voltage coupling between neighboring

compartments, enforcing synchronized oscillations throughout the

cell. In contrast, our approach assumed weak coupling between

the dendritic oscillators. This would not be appropriate for a

spatially continuous oscillator. However, it is not possible to state

in general at what precise electrotonic distance between two

oscillators the weak coupling assumption becomes valid, since it

depends on the strength of the interaction currents with respect to

the intrinsic currents of the oscillators. However, our numerical

simulations for a dendritic cable without the assumption of weak

coupling, show that the phase-locking behavior of Morris-Lecar

oscillators is consistent with weak coupling.

One of the aims of the present paper was to set up an analytical

framework for studying interacting dendritic oscillators. This

opens up a wide range of questions that were outside the scope of

the present study. For example, we focused our analysis on

identical oscillators, while it is likely that dendritic oscillators will

vary in their properties throughout the dendritic tree. For

example, the diameter of the dendrites, which typically becomes

smaller with increasing distance from the soma, can affect the

intrinsic frequency of the oscillators. A gradient in the frequency of

distinct oscillators is likely to lead to more complex phenomena

such as traveling waves (see, for example, [37]).

In fact the major focus of our study is to explore how local

dendritic mechanisms may lead to oscillations expressed globally in

the cell and hence visible at the soma, for example in somatic

intracellular recordings. Our analysis showed that even electroton-

ically far removed dendritic oscillators can lead to voltage oscillations

that significantly affect the soma voltage and hence spike generation.

This suggests several experimentally testable predictions. In one
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possible experiment one can take advantage of imperfect space

clamp in a electrotonically extended neuron. As a proof of principle,

in a neuron where the oscillations are generated distally in the

dendritic tree, voltage clamping the soma would not block such

oscillations, and these should be seen in the current necessary to hold

the somatic potential. In fact, results from [18] point in this direction,

where in chick spinal cord neuron NMDA-dependent intrinsic

oscillations were not blocked by somatic voltage clamp. A further

prediction stems from the weak coupling between active dendrites. If

active oscillations, such as periodically generated dendritic spikes, are

generated in different segments of the dendritic tree, our analysis

predicts that such spikes should interact and should exist in a stable

phase-locked configuration, e.g. synchrony. Hence, should one of the

dendritic segments be phase-shifted, such perturbation should 1.

propagate to the other segment (the other segment should be phase

reset) 2. the dendritic spikes should return to the phase-locked

configuration 3. the time scale of this return should be relatively long

and determined by the electrotonic distance between the active

segments. While difficult such experiments are possible using the

multiple dendritic recording techniques, such as those developed by

Davie et al [38] in Purkinje cells.

A recent model for the grid field properties of the entorhinal

cortex layer II stellate cells [21,22,39] relies precisely on the

ingredients considered in the present study. The model assumes

that different dendritic branches emanating from the soma of these

cells function as distinct oscillators. The oscillations are modulated

by external inputs and the interference of the oscillators eventually

determines the somatic spiking. Crucially, the model assumes that

the dendritic oscillators operate independently. At a first glance,

our results appear to argue against this: the various oscillators

should phase-lock (hence lose their independence) even when the

mutual coupling is weak. However, in principle, the locking may

be slower than the behavioral time scale, allowing the oscillators to

act quasi-independently on the behavioral time scale. Our analysis

provides the appropriate framework to examine these issues: the

scaling of locking in time and the biophysical implementation of

grid-field formation via dendritic oscillators.

Above we studied relatively simple cell geometries, however

these form basic building blocks for more complex dendritic trees.

Thus our framework should be valid for understanding global

voltage oscillations in more realistic models of spatially extended

cells. We would like to emphasize at this point that our general

framework should also hold when – in addition to the distinct

oscillators distributed throughout the dendritic tree – also the soma

is regarded as an oscillator. These and other issues will be

addressed in future publications.

The framework we have developed, builds on the extensive

mathematical theory of coupled oscillators and nestles nicely below

the complexity of full compartmental models of neuronal dendritic

trees. Yet our framework is sufficiently powerful and clear to both

take into account certain key aspects of the dendritic tree structure

and to be amenable to theoretical analysis of the dynamics of

active dendrites and the computational function of such dendritic

structures. These remain an active focus for further investigations.

Methods

Interaction functions for two weakly coupled dendritic
oscillators

We analyze the behavior of a system of two oscillators that are

coupled via a cable. For this we need to compute the interaction

between the two oscillators. Our approach is as follows. The

oscillators provide the periodically forced end conditions for the cable

equation. Assuming weak coupling the phase difference between the

oscillators does not change significantly within one period of the

oscillation. Thus we can solve the cable equation with such boundary

conditions and leave the phase difference as a free parameter. In

turn, the solution of the cable equation yields the currents flowing

into and thereby perturbing the two oscillators at its ends.

We let V x,tð Þ denote the membrane potential (in millivolts) along

the cable at position x (in centimeters) and at time t (in milliseconds).

The passive properties of the cable are determined by a membrane

time constant t (in milliseconds) and a length constant l (in

centimeters). The cable also expresses a voltage-dependent

conductance with a gating variable m x,tð Þ with activation function

m? Vð Þ and time constant tm (in milliseconds). The equations

governing the membrane potential V x,tð Þ and the gating variable

m x,tð Þ along the cable (excluding the oscillators) are

t
L
Lt

V x,tð Þ~l2 L2

Lx2
V x,tð Þ{ V x,tð Þ{ELð Þ

{cm m x,tð Þ V x,tð Þ{Emð Þ ,

tm

L
Lt

m x,tð Þ~m? V x,tð Þð Þ{m x,tð Þ ,

ð9Þ

where EL is the leak reversal potential, Em is the reversal potential of

the active current, and cm is the ratio of the maximal conductance of

the active current to the leak conductance. The two oscillators form

the periodically forced end conditions of the cable:

V 0,tð Þ~VA tð Þ ,
V l,tð Þ~VB tð Þ ,

ð10Þ

with VA tð Þ and VB tð Þ being the voltage traces of the two oscillators

A and B that evolve according to

Cm

d

dt
VA tð Þ~{gL VA tð Þ{ELð Þ{IA VA tð Þ,~mmA tð Þð Þ{epA tð Þ ,

Cm

d

dt
VB tð Þ~{gL VB tð Þ{ELð Þ{IB VB tð Þ,~mmB tð Þð Þ{epB tð Þ ,

ð11Þ

where Cm is the membrane capacitance (in mF/cm2), gL is the leak

conductance (in mS/cm2), IA,B summarizes the voltage-dependent

membrane currents generating the oscillations with the vector of

gating variables ~mmA,B given by standard kinetic equations (e.g. see

Equations 28 and 29). The terms epA,B tð Þ describe the perturbing

currents from the cable to each oscillator with the small parameter e
denoting the coupling. For a cable with diameter d (in cm) and

oscillators with membrane surface area A (in cm2), e~pd2
�

4Ri A,

where Ri is the intracellular resistivity of the dendritic cable (in

kVcm). The functions pA,B are given by

pA tð Þ~ L
Lx

V 0,tð Þ ,

pB tð Þ~{
L
Lx

V l,tð Þ:
ð12Þ

Determining the perturbations from the cable to the

oscillators. In order to determine the perturbations epA,B in

Equation 11, we need to solve Equation 9 with the boundary

conditions from Equation 10. To do so, we linearize Equation 9

about the membrane potential VR to which the cable would relax

if it was not driven by the oscillators, yielding the quasi-active

approximation for the cable [29,30]. This approximation is

appropriate as long as the voltage fluctuations around VR are
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sufficiently small. We define U x,tð Þ as the difference between the

oscillating solution and the resting membrane potential VR, i.e.

U x,tð Þ:V x,tð Þ{VR and we define w x,tð Þ analogously as

w x,tð Þ:m x,tð Þ{m? VRð Þ. The equations describing the quasi-

active cable now read

t
L
Lt

U x,tð Þ~l2 L2

Lx2
U x,tð Þ{cR U x,tð Þ{cm VR{Emð Þw x,tð Þ ,

tm

L
Lt

w x,tð Þ~ L
LV

m? VRð ÞU x,tð Þ{w x,tð Þ ,
ð13Þ

where cR~1zcmm? VRð Þ is the total membrane conductance of

the cable at VR divided by the cable’s membrane leak conductance.

The oscillators determine the voltage of the cable at x~0 and

x~l. These voltages would need to be computed by solving the

full system of equations for the dynamics of each oscillator,

however since we consider weak coupling (meaning that the

trajectories are only weakly perturbed by the cable currents) we

can make use of the fact that the trajectories are periodic. Hence

we expand UA and UB in a Fourier series, allowing for a possible

phase difference w (in radians) between the oscillators:

U 0,tð Þ~UA tð Þ~
X

n

~UUA
n eivnt,

U l,tð Þ~UB tzw
T

2p

� �
~
X

n

~UUB
n ei vntz nj jwð Þ,

ð14Þ

where vn~ nj j 2p

T
, n is an integer, T is the intrinsic oscillator

period, and membrane voltages UA and UB (in mV) are measured

relative to VR.

The solution of the cable Equation 13 will also be periodic and

we can write the equation in the frequency domain as

l2 d2

dx2
~UUn xð Þ{ cRz

m

1z vntmð Þ2
zivn t{

mtm

1z vntmð Þ2

 ! !
~UUn xð Þ~0: ð15Þ

Using the boundary conditions defined by Equation 14 yields

the solution:

U x,tð Þ~Re
X

n

eivnt ~UUA
n

sinh bn L{xð =lð ÞÞ
sinh bnLð Þ z

X
n

ei vn tz nj jwð Þ ~UUB
n

sinh bnx=lð Þ
sinh bnLð Þ

" #
, ð16Þ

where

bn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRz

m

1z vntmð Þ2
zivn t{

mtm

1z vntmð Þ2

 !vuut , ð17Þ

with m~cm VR{Emð Þ L
LV

m? VRð Þ and Re z½ � is the real part of

the complex number z. The parameter m determines whether the

active conductance that is present in the cable is regenerative

(mv0), meaning that perturbations are amplified (e.g. a persistent

sodium current), or restorative (mw0), meaning that the active

conductance counteracts perturbations from VR (e.g. the hyper-

polarization activated inward current). As mentioned above, the

perturbations that the oscillators receive from the cable is

proportional to the derivative of the voltage with respect to x.

For the oscillator at x~0 the perturbation from the cable is

pA t; wð Þ~ L
Lx

U 0,tð Þ

~Re
1

l

X
n

ei vntz nj jwð Þ ~UUB
n

bn

sinh bnLð Þ{
1

l

X
n

eivnt ~UUA
n bncoth bnLð Þ

" #

~Re
1

l

X
n

eivnt bn

sinh bnLð Þ
~UUB

n ei nj jw{ ~UUA
n cosh bnLð Þ

� �" #
:

ð18Þ

The perturbation from the cable at x~l can be derived in the

same way.

Phase description and interaction function. We have now

derived the perturbations that an oscillator receives depending on

the phase difference w between the oscillators. In order to

complete our analysis, we also need to compute how these

perturbations act back on the phases of the two oscillators and thus

on the phase difference. Each of the oscillators is described

explicitly by a system of equations determining the dynamics of its

voltage Equation 11. However, if we assume that the periodic

solutions of such a system of equations are sufficiently attractive

and the coupling is sufficiently weak we can write an equivalent

phase model, see [24]. The phases of the two dendritic oscillators,

hA(t) and hB tð Þ (in radians), evolve as

_hhA~
2p

T
zeZA hAð ÞpA h

T

2p
; w

� �
,

_hhB~
2p

T
zeZB hBð ÞpB h

T

2p
; w

� �
,

ð19Þ

where
2p

T
is the intrinsic oscillator frequency. The second term

describes the effect of the cable on the phase. ZA,B hð Þ are the

infinitesimal phase response functions of the respective oscillators

and describe how much their phases are advanced or delayed in

response to an infinitesimally small and short perturbation.

Since we consider weak interactions between the oscillators, w
changes slowly with respect to the oscillation period. Therefore we

can average the interaction between the oscillators (i.e. the

products ZA pA and ZB pB in Equation 19) over a cycle and obtain

the interaction functions HA,B wð Þ. HA wð Þ describes the average

effect on the phase of oscillator A over one cycle as a function of w:

HA wð Þ~ 1

2p

ð2p

0

ZA hð ÞpA h
T

2p
; w

� �
dh , ð20Þ

with pA given by Equation 18. The interaction function HB wð Þ can

be determined analogously. Note that with identical oscillators, we

have HB wð Þ~HA {wð Þ.

Interaction function for simplified dendritic oscillators
Consider identical oscillators when both Z hð Þ~

P
n

~ZZnei nj jh

and pA h
T

2p
; w

� �
are dominated by the first Fourier component.

One can show that the interaction function is given by

HA wð Þ&rcos wzj{fð Þzn , ð21Þ

where r is a positive coefficient, j[ {p,p½ � is a constant resulting

from the cable filtering, f[ {p,p½ � is a constant that results from

the specific properties of the oscillators and n is a constant (see

figure 1A). The expressions for the parameters are
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r~
1

2
~ZZ1

~UU1
b1

sinh b1Lð Þ

����
����, ð22Þ

j~arg
b1

sinh(b1L)

� �
, ð23Þ

f~arg
~ZZ1

~UU1

� �
, ð24Þ

n~{r cosh b1Lð Þj jcos j{fzarg cosh b1Lð Þð Þð Þ , ð25Þ

where zj j and arg zð Þ are, respectively, the absolute value and the

angle of the complex number z.

Scaling of j with L. When e2b1L
�� ��&1 one can approximate j

from Equation 23 by

j&arg b1ð Þ{L:Im b1ð Þ , ð26Þ

where Im zð Þ is the imaginary part of the complex number z, while

making sure that j[ {p,p½ �.
Scaling of j with membrane resistance Rm. The

membrane resistance Rm affects both the membrane resistance

and the electrotonic length: t~Rm Cm and L~l=l~
l
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rm d=4Ri

p
, where d is the diameter of the cable, Ri is the

intracellular resistivity and Cm is the membrane capacitance. For

small Rm the imaginary part of Equation 17 vanishes and j is zero

from Equation 23. For large Rm, arg b1ð Þ approaches p=4 and the

product b1 L in Equation 23 tends to a constant proportional to

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv1CmRi=d

p
; j also saturates since it is equal to the sum of

arg b1ð Þ and arg 1=sinh b1 Lð Þð Þ.
Scaling of j with oscillator frequency v1. For low

oscillator frequency v1, the value of j approaches zero as the

imaginary part in Equation 17 goes to zero. With increasing

frequency the term arg b1ð Þ in Equation 26 approaches p=4, while

the term L:Im b1ð Þ scales as the square root of the frequency.

Hence for large v1, j also scales as the square root of v1.

Effects of active currents on j. The effects of active

currents on the phase-locking regimes can be seen from Equations

17 and 26: a regenerative current (mv0) increases j compared to a

passive cable since it increases the imaginary part of the complex

factor b1. Equation 26 shows that therefore the ranges of L for the

different phase-locking regimes shorten. In contrast, a restorative

current (mw0) typically decreases the imaginary part of b1 and

therefore decreases j, lengthening the phase-locking regimes. Note

that for a range of frequencies v1, the imaginary part of b1 will

change sign so that a restorative current can in fact make j grow

with increasing L (see figure 2A).

For both restorative and regenerative currents the effects on j
disappear for very high frequencies: the terms involving m in

Equation 17 go to zero. The only effect on j that remains is the

decrease of the membrane resistance that results from the addition

of the active current to the cable membrane (expressed in cR).

Skew of interaction function
The shape of the interaction function HA wð Þ is determined by

Equations 17, 18 and 20. When the electrotonic separation L
between the two oscillators goes to zero, we have a system of

directly coupled oscillators and the interaction function HA wð Þ
reduces to

HA wð Þ~ 1

2p

ð2p

0

ZA hð ÞUB hzwð ÞT
2p

� �
dh{k , ð27Þ

where the constant k~
1

2p

ð2p

0

ZA hð ÞUA h
T

2p

� �
dh.

Introducing an electrotonic separation L between the oscillators

changes the shape of HA wð Þ as a result of the cable filtering. When

substituting Equation 18 into Equation 20 one sees that the

symmetry of HA wð Þ can only be affected by the w-dependent term

involving the voltage trace of oscillator B. As L increases, the

increasing cable filtering – determined by the absolute value of the

term bn=sinh bnLð Þ in Equation 18 – leads to dominance of a single

Fourier component. Note that it is not necessarily the first Fourier

component that will dominate. When mw0 a higher order Fourier

component can be the dominant one.

Oscillator models
The equations for the Morris-Lecar type II oscillator [32] with

parameters as in [40] read

Cm

dV

dt
~{gL V{ELð Þ{gK w V{EKð Þ

{gCa m? Vð Þ V{ECað ÞzI ,

dw

dt
~r

w? Vð Þ{w

tw Vð Þ ,

ð28Þ

with Cm~1m F/cm2, gL~0:5 mS/cm2, gK~2 mS/cm2,

gCa~1:1 mS/cm2, EL~{50 mV, EK~{70 mV, ECa~

100 mV, r~0:2, I~25mA/cm2, and where m? Vð Þ~ 1

2
1z½

tanh Vz1ð Þ=15ð Þ�, w? Vð Þ~ 1
2

1ztanh V=30ð Þ½ �, and tw Vð Þ~
1=cosh V=60ð Þ.

The equations describing the subthreshold oscillator are of the

same form as those used by Morris and Lecar [32]. The oscillatory

dynamics emerge from the interaction between the persistent

sodium current INaP and the hyperpolarization activated inward

current Ih. The current descriptions are based on the data from

[33,41]. The dynamics of Ih are described by a single gating

variable w tð Þ with activation function w? Vð Þ and time constant

tw Vð Þ=r (in milliseconds). The voltage-dependent activation of

INaP is described by m? Vð Þ and is instantaneous. The equations

read

Cm

dV

dt
~{gL V{ELð Þ{gh w V{Ehð Þ

{gNaP m? Vð Þ V{ENað ÞzI ,

dw

dt
~r

w? Vð Þ{w

tw Vð Þ ,

ð29Þ

with Cm~1mF/cm2, gL~0:3 mS/cm2, gh~1:5 mS/cm2,

gNaP~0:076 mS/cm2, EL~{69 mV, Eh~{20 mV, ENa~

48 mV, r~0:014, I~0:9mA/cm2, and where m? Vð Þ~ 1

2
1z½

tanh Vz48:7ð Þ=8:8ð Þ�, w? Vð Þ~ 1
2

1ztanh Vz74:2ð Þ={14:4ð Þ½ �,
and tw Vð Þ~1=cosh Vz74:2ð Þ={28:8ð Þ.

Numerical simulations
The numerical simulations for figure 4, 6 and 7 used Morris-

Lecar type II oscillators and simulations for figure 5 used the

subthreshold oscillator model described above. The cable was
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discretized into isopotential compartments with electrotonic length

Dx~0:05l. The perturbing currents from the cable to, for

example, oscillator A are of the form e V2 tð Þ{V1 tð Þð Þ=Dx with V1

and V2 denoting the membrane potential of the first two

compartments. The parameter e determines the coupling between

the cable and the oscillators and is specified in the different figure

captions. Simulations for figure 7 include a soma with an integrate

and fire mechanism with a fixed threshold at {38:3 mV. When

the threshold is reached a spike is generated with a 1 ms peak at

30 mV after which the somatic Vm is reset to {45 mV for 4 ms.

The phase response curves were calculated by determining the

system’s adjoint [24].

Supporting Information

Text S1 Direct compartmental simulations support the weak

coupling assumption

Found at: doi:10.1371/journal.pcbi.1000493.s001 (0.03 MB PDF)

Figure S1 Results from numerical simulations with a continuous

cable model agree with weak coupling predictions. Voltage

dependent conductances of the Morris-Lecar type II oscillators

are inserted in the ends of a cable with diameter 1 micro;m,

membrane capacitance Cm = 1 micro;F/cm2, intracellular resis-

tivity Ri = 0.2 kV cm and membrane resistance Rm = 20 kV cm2.

Panels A, B and C show the voltage trajectories recorded at the

ends of the cable for an electrotonic distance between the active

segments of 1.1, 2.1 and 1.5, respectively. Black bars denote

perturbations of 100 ms duration to test for stability of the phase-

locked state.

Found at: doi:10.1371/journal.pcbi.1000493.s002 (0.89 MB EPS)
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