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SRRM4 establishes neuronal splicing patterns in neuroen-
docrine prostate cancer. The splicing regulators Sam68 
and Tra2β increase expression in prostate cancer. The SR 
protein kinase SRPK1 that modulates the activity of SR 
proteins is up-regulated in prostate cancer and has already 
given encouraging results as a potential therapeutic target 
in mouse models.

Introduction

Alternative mRNA isoforms have important roles in normal 
development and physiology. Almost every human gene 
produces more than one mRNA isoform, vastly expand-
ing the information content of the human genome (Djebali 
et al. 2012). Alternative and aberrant pre-mRNA splice iso-
forms also play an important role in cancer. In fact, altered 
splicing patterns have been suggested as a new “hallmark” 
of cancer cells, in addition to other well-established hall-
marks of cancer such as evasion of cell death and metasta-
sis (Hanahan and Weinberg 2011; Ladomery 2013; Oltean 
and Bates 2014). Recent data indicate a key role for splic-
ing pattern changes in the pathology of prostate cancer. 
Alternative splicing programmes in prostate cancer have 
been the topic of excellent reviews (Hagen and Ladomery 
2012; Lu et al. 2015; Nakazawa et al. 2014; Rajan et al. 
2009b; Sette 2013). Here we particularly concentrate on 
developments in the last 3 years.

Alternative splicing patterns include whole exons being 
either spliced in or left out (exon skipping) and alternative 
utilisation of both 5′ and 3′ splice sites to insert exons of 
different sizes. Alternative mRNA isoforms can also be 
generated by the selection of different promoters and dif-
ferent polyadenylation sites. Each of these pathways pro-
duces mRNA splice variants that can impact on prostate 

Abstract Changes in mRNA splice patterns have been 
associated with key pathological mechanisms in prostate 
cancer progression. The androgen receptor (abbreviated 
AR) transcription factor is a major driver of prostate can-
cer pathology and activated by androgen steroid hormones. 
Selection of alternative promoters by the activated AR can 
critically alter gene function by switching mRNA isoform 
production, including creating a pro-oncogenic isoform of 
the normally tumour suppressor gene TSC2. A number of 
androgen-regulated genes generate alternatively spliced 
mRNA isoforms, including a prostate-specific splice iso-
form of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a 
sialyltransferase that catalyses the synthesis of the cancer-
associated sTn antigen important for cell mobility. Genetic 
rearrangements occurring early in prostate cancer devel-
opment place ERG oncogene expression under the control 
of the androgen-regulated TMPRSS2 promoter to hijack 
cell behaviour. This TMPRSS2–ERG fusion gene shows 
different patterns of alternative splicing in invasive ver-
sus localised prostate cancer. Alternative AR mRNA iso-
forms play a key role in the generation of prostate cancer 
drug resistance, by providing a mechanism through which 
prostate cancer cells can grow in limited serum androgen 
concentrations. A number of splicing regulator proteins 
change expression patterns in prostate cancer and may help 
drive key stages of disease progression. Up-regulation of 
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cancer development or response to treatment (summarised 
in Fig. 1).

Prostate cancer is the second most frequent male can-
cer in the UK, with 47,300 cases being diagnosed in the 
UK in 2014 (corresponding to 130 new cases diagnosed 
per day, http://www.cancerresearchuk.org/health-profes-
sional/cancer-statistics/statistics-by-cancer-type/prostate-
cancer#heading-Zero). The prostate is a small gland located 
just below the bladder that produces seminal fluid compo-
nents. Prostate cancers typically do not cause symptoms, but 
in some more advanced stages can block urine flow from 
the bladder, invade the adjacent seminal vesicles and metas-
tasise more distantly to bone. Primary prostate cancer leads 
to a breakdown in the normal glandular structure of the 
prostate gland. Prostate cancer is classified histologically by 
morphological features using the Gleason scoring system 
(Gleason and Mellinger 1974) (for example, see Fig. 2).

Alternative splicing of genes under androgen 
control in prostate cancer

Clinical progression of prostate cancer is fuelled by a group 
of steroid hormones called androgens (Livermore 2016; 

Mills 2014). Androgens are small hydrophobic molecules 
that can cross the cell membrane, and include the male 
hormone testosterone. Once within cells, androgens bind 
to a nuclear hormone receptor protein called the androgen 
receptor (AR). The AR typically has a default cytoplasmic 
location in the absence of androgens, but translocates into 
the nucleus after binding to androgens via its ligand-bind-
ing domain (LBD). Once inside the nucleus, the AR binds 
to DNA target sequences via its DNA-binding domain 
(DBD) and controls patterns of downstream gene transcrip-
tion via its N-terminal TF domain (Fig. 3a). The AR tran-
scriptionally controls in the order of 700 genes within pros-
tate cancer cells (Munkley et al. 2016).

Androgen hormones can affect splicing patterns as 
well as transcription. Many splicing decisions are made 
on nascent RNAs while their transcription is still in pro-
gress (Kornblihtt 2006). Increased transcriptional speeds 
from androgen-regulated promoters in the presence of 
androgens could potentially provide the spliceosome with 
a choice of exons to include into the mRNA. Consist-
ent with this, transcripts from a CD44 minigene driven 
from a steroid-responsive promoter show increased exon 
skipping in response to the joint presence of the AR and 
androgens (Rajan et al. 2008). The AR also recruits some 

Fig. 1  Different kinds of splicing pattern and their effect on prostate cancer cell biology. The most common form of alternative splicing in 
human cells is shown, with key examples from prostate cancer (not shown, whole introns can also be left in the mRNA)

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer%23heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer%23heading-Zero
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer%23heading-Zero
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RNA-binding proteins as cofactors that can affect splic-
ing. These include the RNA-binding protein Sam68 that 
decreases skipping of CD44 variable exons, and the RNA 
helicase p68 that increases skipping of CD44 variable 
exons (Fig. 1) (Clark et al. 2008; Rajan et al. 2008).

The above experiments used artificial model mini-
genes to investigate splicing control of AR target genes. 
Initial searches to find endogenous androgen-dependent 
splice isoforms used exon microarrays to probe the entire 
transcriptome (Rajan et al. 2011). These initial experi-
ments identified two endogenous androgen-dependent 
cassette exons, one in the ZNF121 gene that encodes a 
zinc finger-containing protein (this ZNF121 exon was 
activated by androgens) and one in the NDUFV3 gene 
that encodes a mitochondrial respiratory protein (this 

NDUFV3 exon was repressed by androgens). Although 
these ZNF121 and NDUFV3 exons changed splicing in 
response to androgens, their clinical importance is not 
known, nor if these genes are direct targets for the AR. 
However, this same study also identified a number of 
androgen-dependent mRNAs made from alternative pro-
moters, including an alternative mRNA isoform of the 
normally tumour suppressor TSC2 (Tuberous Sclerosis 
2) gene that is transcribed from an internal promoter (so 
only contains downstream TSC2 exons). The well-char-
acterised full-length TSC2 protein represses cell growth 
via the mTOR pathway. The androgen-driven alternative 
TSC2 mRNA isoform encodes a shorter (C-terminal only) 
TSC2 protein that promotes rather than represses cell 
growth (Munkley et al. 2014).

Fig. 2  Prostate tissue visualised using tissue biopsies. a, b. Histolog-
ical sections made from benign prostatic hyperplasia (BPH, with nor-
mal glandular structure embedded in stroma). Prostate cancer devel-
opment is clinically described as a series of Gleason grades (1–5, 
with 1 corresponding to well-differentiated tissue containing a glan-
dular structure and 5 being the most advanced with only few glands 
still visible) (Gleason and Mellinger 1974; Mellinger et al. 1967). c, 

d Histological sections made from prostate cancer (Gleason grade 5, 
notice breakdown of glandular structure). Left panels, sections pro-
cessed using H&E staining. Right panels, sections processed by stain-
ing with haematoxylin and counterstaining with the RNA-binding 
protein Sam68 (brown stain). Figure adapted from (Rajan et al. 2008) 
with permission from the Journal of Pathology
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More recent RNAseq analysis of prostate cancer cell 
transcriptomes identified an androgen-regulated and 
prostate-specific ST6GALNAC1 mRNA splice isoform. 
ST6GALNAC1 encodes the important ST6GalNac1 
enzyme that synthesises the cancer-associated sialyl-Tn 
(sTn) antigen (Munkley et al. 2015). In prostate cancer 
cells, an alternative spliced ST6GALNAC1 mRNA iso-
form that encodes a shorter ST6GalNac1 protein isoform 
is made. This shorter ST6GalNac1 protein isoform is 
actually made from a longer mRNA, since an extra exon 
is included within the 5′ untranslated region (UTR) of the 
ST6GALNAC1 mRNA in the prostate. The presence of 
this extra exon causes an alternative start codon to be uti-
lised, resulting in the shorter version of the ST6GalNac1 
protein (Munkley et al. 2015). This shorter ST6GalNac1 
protein is produced at higher levels in prostate cancer 
cells than the previously reported full-length protein; yet 
it is able to synthesise the sTn antigen which is linked 
to patient survival and metastasis, and controls cell adhe-
sion (Munkley et al. 2015). The changed 5′ UTR struc-
ture of the prostate-specific mRNA isoform of ST6Gal-
Nac1 might even enhance its translation, resulting in 

increased ST6GalNAc1 enzyme levels and more synthe-
sis of sTn antigen (Munkley 2016). Both the short and 
long isoforms of ST6GalNac1 use the same androgen-
driven promoter, but the 5′ UTR exon-skipped isoform 
has only been reported thus far in the prostate.

Alternative splicing patterns of an androgen-regulated 
oncogenic fusion gene called ETS-related gene (ERG) are 
associated with more advanced forms of prostate cancer 
progression. ERG is a proto-oncogene that plays a key 
role in the pathology of prostate cancer. ERG encodes 
a transcription factor that controls the expression of 
many genes during normal development (Adamo and 
Ladomery 2016). ERG is not normally transcriptionally 
controlled by androgens, but gene fusions can place ERG 
under transcriptional control by the androgen-regulated 
TMPRSS2 gene on the transition between prostatic epi-
thelial neoplasia to prostate carcinoma. Such genetic 
rearrangements frequently link exon 1 or exons 1 and 2 
of the TMPRSS2 gene, and the upstream TMPRSS2 gene 
promoter, to exon 4 and downstream regions of the ERG 
gene, by removing intervening regions of chromosome 
21.

Fig. 3  Transcriptional control by a the full-length androgen receptor 
and b constitutively active AR isoforms made by splice variants. In 
(a), testosterone enters the prostate cancer cell and becomes modi-
fied to dihydroxytestosterone (DHT) by 5α-reductase. DHT binds to 
the androgen receptor (AR), displacing heat shock protein 90 (HSP) 
and resulting in AR translocation into the nucleus. Once inside the 

nucleus, the AR binds to consensus DNA sequence elements called 
androgen response elements (AREs) to control target gene expres-
sion. In (b), an androgen receptor variant protein (AR-V) lacking the 
ligand-binding domain is able to directly translocate into the nucleus 
without binding to DHT, resulting in androgen-independent control of 
gene expression
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The TMPRSS2–ERG fusion gene is one of the most 
frequently over-expressed genes in prostate cancer. The 
encoded TMPRSS2–ERG fusion protein controls many 
important properties of prostate cancer cells, including 
cytoskeletal organisation, cell proliferation, expression of 
prostate-specific antigen (abbreviated PSA; this is a key 
serum biomarker for detecting prostate cancer) and epi-
thelial–mesenchymal transitions (EMT) crucial for pros-
tate cancer cell metastasis (Adamo and Ladomery 2016). 
Reverse transcription PCR (RT-PCR) analyses of tumour 
mRNA from patients show that more clinically advanced 
prostate cancers with histological evidence for seminal 
gland invasion have decreased skipping of two cassette 
exons within the ERG gene, compared with more localised 
prostate cancers and benign prostate tissue (Hagen et al. 
2014). Increased splicing inclusion of these two ERG exons 
might contribute to the production of more oncogenic iso-
forms of the ERG fusion protein. One of these alternatively 
spliced ERG exons (of 72 nucleotides in length) encodes an 
in-frame peptide sequence. Inclusion of this 72-nucleotide 
exon might affect the interactions of the encoded ERG pro-
tein with transcription factors and other nuclear proteins, 
since it is immediately adjacent to the region of the ETS 
gene that encodes a protein–protein interaction domain 
called the sterile alpha motif (SAM)/pointed domain 
(http://pfam.xfam.org/family/SAM_PNT).

Changes in AR mRNA splicing patterns enable 
prostate cancer cells to become hormone resistant

The primary therapeutic strategy for advanced prostate 
cancer treatment is to block androgen signalling through 
androgen deprivation therapy or AR blockade, thereby halt-
ing tumour progression. Abiraterone is a drug that inhibits 
androgen biosynthesis and so reduces the levels of andro-
gens within prostate cancer cells. Enzalutamide is a drug 
that antagonises the interaction of androgens with AR pro-
tein. Although prostate tumours initially respond to andro-
gen deprivation therapy, later stages of the disease can 
develop into a treatment-resistant form of the disease called 
castration-resistant prostate cancer. Mechanisms of pros-
tate cancer cell resistance cross over, so a prostate cancer 
cell developing resistance to enzalutamide will also show 
a reduced (~20%) response to abiraterone, and vice versa 
(Liu et al. 2016).

Changing patterns of AR pre-mRNA splicing play a 
critical role in enabling prostate cancer cells to develop 
castration resistance. Changed splicing patterns generate 
variant AR protein isoforms (abbreviated AR-V) that lack 
ligand-binding domains, frequently as a result of splicing 
inclusion of cryptic exons (abbreviated CE), making them 
independent of androgen control. Some AR-V protein 

variants translocate into the nucleus even in the presence of 
enzalutamide (Fig. 3). AR pre-mRNA splicing changes thus 
enable prostate cancer cells to proliferate during andro-
gen deprivation therapy in reduced circulating androgen 
concentrations.

Around 20 AR variant splice isoforms have been impli-
cated in the development of hormone refractory prostate 
cancer [reviewed by Lu and Luo (2013)]. The clinically 
most frequent AR splice variant, called ARv7, is produced 
by splicing inclusion of a cryptic exon called CE3 located 
within intron 3 (Fig. 4). AR CE3 is a terminal exon, mean-
ing that splicing inclusion is linked to the selection of a 
new poly(A) site, thus creating a truncated AR mRNA that 
lacks coding information for the Ligand-Binding Domain 
(abbreviated LBD). As a result, ARv7 encodes a short 
yet constitutively active isoform of the AR (active in the 
absence of androgens). While full-length AR protein is 
dependent on androgen binding via its LBD to translocate 
into the nucleus and control transcriptional activity, ARv7 
protein is constitutively present in the nucleus even in the 
absence of androgens and so can provide AR activity in 
androgen-depleted prostate cancer cells (Cao et al. 2014). 
Expression of ARv7 is important for prostate cancer cell 
growth: siRNA-mediated depletion of ARv7 (using siRNAs 
complementary to CE3) inhibits the growth of the VCaP 
cell line in androgen-limiting conditions (Liu et al. 2014b).

Supporting ARv7 protein or RNA expression being a 
potentially useful biomarker for disease progression, AR 
variant splice isoform levels change during prostate cancer 
development. Expression levels of ARv7 mRNA in patients 
with prostate cancer predict their pharmacological response 
to enzalutamide and abiraterone (Antonarakis et al. 2014). 
Levels of nuclear Arv7 protein can also be monitored by 
immunohistochemistry using a monoclonal antibody and 
are predictive of overall survival (Welti et al. 2016). Pros-
tate cancer cells metastasise to bone via circulating tumour 
cells which are released from the primary tumour. Single-
cell RNAseq analysis of circulating tumour cells puri-
fied from the bloodstream identified AR splice variants in 
most (8 out of 11 sequenced) patients, but less frequently 
in primary tumours (Miyamoto et al. 2015). Consistent 
with ARv7 expression being an adaptive response of cells 
to reduced androgen levels, ARv7 splice isoform levels 
increase in response to androgen deprivation therapy and 
decrease on the reintroduction of androgens (Yu et al. 
2014). Expression of ARv7 is controlled by the transcrip-
tion factors Myc (Myc also controls the expression of full-
length AR) and NFκβ2, both of which increase expression 
in prostate cancer (Nadiminty et al. 2015).

Rather than providing a like-for-like replacement with 
the full-length androgen receptor, ARv7 protein instead 
preferentially regulates the expression of genes involved 
in active cell division and so promotes cell division rather 

http://pfam.xfam.org/family/SAM_PNT
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than differentiation (Hu et al. 2012; Nakazawa et al. 2014). 
ARv7 expression in the LNCaP prostate cancer cell line 
also changes patterns of cell metabolism, decreasing the 
production of citrate and increasing the breakdown of glu-
tamine—features of the “Warburg effect” changes in can-
cer metabolism that are also observed in prostate tumours 
(Shafi et al. 2015).

ARv567es is a further cancer-associated AR splice form 
observed in patients and also encodes a constitutively 
active AR protein (Fig. 4). ARv567es mRNA is made 
through skipping of exons 5–7 of the AR pre-mRNA and is 
only expressed within prostate cancer (and not the normal 
prostate). The ARv567es protein isoform regulates the tran-
scription of genes involved in cell cycle control and par-
ticularly activates the expression of the oncogene UBE2C. 
UBE2C is a ubiquitin-conjugating protein active during 
mitosis, as part of the anaphase-promoting complex (APC) 
that inactivates the mitotic checkpoint control. UBE2C pro-
tein is highly expressed in solid tumours and promotes cell 
proliferation. Transcriptional activation by the ARv567es 
AR isoform occurs via a DNA looping mechanism that 

involves interaction with the transcription factor MED1 
(part of the mediator complex involved in transcriptional 
initiation), and within castration-resistant but not hormone-
responsive prostate cancer (Liu et al. 2015). In mice, the 
expression of AR variant isoforms can be sufficient them-
selves to induce cancer development. Transgenic mouse 
models expressing ARv567es and ARv7 proteins within 
their prostate glands develop prostate cancer (Liu et al. 
2013; Sun et al. 2014).

AR splice variants and the pathways that generate 
them are therapeutic targets in prostate cancer

The clinical importance of aberrant AR splice isoforms has 
generated a lot of interest in their generation. A good model 
for investigating this is the 22Rv1 prostate cancer cell line, 
which expresses ARv7 protein as well as full-length AR 
protein. Depletion of ARv7 is sufficient to sensitise 22Rv1 
cells to abiraterone (Liu et al. 2016). A genomic dele-
tion removes 48 nucleotides of intron 1 from the AR gene 

Fig. 4  Exon–intron organisation of the AR gene and frequent patho-
genic AR mRNA splice isoforms. a The AR protein is encoded by the 
8-exon AR gene on the X chromosome. The full-length AR mRNA 
is made by splicing of exons 1–8. ARv7 mRNA is made by splicing 
cryptic exon 3 (CE3) after exons 1–3. Splicing of CE3 is associated 
with transcriptional termination, so this makes a truncated mRNA 
and truncated AR protein (aberrant splicing pathway shown above 
the AR gene). ARv567 is made by skipping of exons 5–7 in the AR 
mRNA (aberrant splicing pathway shown below the AR gene). Exons 
1–8 are spliced together to produce the canonical AR splice iso-
form that encodes a full-length AR protein isoform. Aberrant splic-

ing patterns include splicing of exon 3 to cryptic exon CE3, which 
is linked to premature termination of transcription (using an intron 
3-internal polyA site) and a truncated mRNA, and skipping of exons 
5–7. b Both full-length and AR variants are translated from differ-
ent mRNA isoforms. Full-length AR protein contains an N-terminal 
domain (important for transcriptional activation) encoded by exon 1, 
a C4-type zinc finger DNA-binding domain encoded by exons 2–3 
and a ligand-binding domain (which binds to androgens) encoded by 
exons 4–8. ARv7 is lacking the ligand-binding domain. ARv567es is 
lacking most of the ligand-binding domain
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within 22Rv1 cells. This genomic deletion might contrib-
ute to altered splicing patterns of CE3, through changing 
intronic binding sites available for splicing regulator pro-
teins (Li et al. 2012).

Androgen deprivation therapy results in increased bind-
ing of SRSF1 and U2AF65 near the 3′ splice site of cryptic 
CE3, although the levels of these splicing regulator pro-
teins themselves do not change in response to androgen 
deprivation (Liu et al. 2014b). However, the expression 
levels of U2AF2 (the gene which encodes U2AF65) do 
increase in hormone-resistant prostate cancer compared to 
primary prostate cancer (Stockley et al. 2015). Expression 
levels of the splicing regulator Sam68 protein also increase 
in prostate cancer (Busa et al. 2007; Rajan et al. 2008) 
and can drive AR CE3 splicing inclusion (Stockley et al. 
2015). ARv7 splicing production is also stimulated by the 
expression of the splicing regulator hnRNPA1 (Nadiminty 
et al. 2015). This is particularly important, since the lev-
els of hnRNPA1 increase in prostate cancer, and hnRNPA1 
expression has been observed as an early marker for tumour 
development in several cancers. Genomic rearrangements 
including intron sequences also occur in situ within pros-
tate cancers expressing AR mRNA splice variants, although 
the major factor leading to the expression of AR splice var-
iants is the corresponding increased expression levels of the 
full-length AR isoform (Henzler et al. 2016).

It is hoped that understanding the splicing pathways gen-
erating AR splice variants will lead to downstream clinical 
applications used to treat prostate cancer. Supporting this 
idea, siRNA-mediated depletion of hnRNA1 re-sensitises 
a cell line model of castration-resistant prostate cancer to 
enzalutamide (Nadiminty et al. 2015). Thus, the connection 
between hnRNPA1 expression and splicing pathways pro-
ducing ARv7 might prove to be clinically relevant. Interest-
ingly, increased levels of the RNA-binding protein Lin28 
also correlate with increased ARv7 expression. Down-reg-
ulation of Lin28 sensitises prostate cancer cells to enzalu-
tamide. Lin28 expression increases in prostate cancer and 
regulates the expression of Let7 family microRNAs that 
operate upstream of Myc and a number of splicing factors 
including hnRNPA1 that in turn control ARv7 production 
(Tummala et al. 2013, 2016).

Small-molecule inhibitors might be used to block splic-
ing pathways leading to ARv7 production. One such small 
molecule is Onalespib, which inhibits the heat shock pro-
tein HSP90. Ordinarily, translocation of full-length AR 
protein into the nucleus following androgen stimulation is 
achieved via interactions with HSP90 (Fig. 3a). Onalespib 
does not affect the splicing pathway generating the full-
length AR protein isoform (although full-length AR pro-
tein stability is decreased by Onalespib). Onalespib does 
inhibit the splicing pathways that generate the ARv7 
splice isoform (in addition to >500 other splice isoforms) 

(Ferraldeschi et al. 2016). In an in vivo model, Onalespib 
treatment also increases survival of nude mice xenografted 
with the ARv7-expressing 22Rv1 cell line. Mechanistically, 
HSP90 inhibition in prostate cancer cells might affect sig-
nalling pathways operating upstream of SR proteins like 
SRSF1 that are involved in AR CE3 splicing inclusion 
(possibly including effects on the protein kinase SRPK1, 
see below). However, it is worth noting that other HSP90 
inhibitors have been reported to have different effects on 
ARv7 splice isoform variant production (Gillis et al. 2013; 
Shafi et al. 2015).

Alternative splicing patterns could help guide the 
development of personalised therapies for prostate cancer 
patients (Anand and Bjartell 2015; Antonarakis et al. 2014; 
Palapattu 2016; Savage 2015; Sun and Abdollah 2015; 
Taneja 2015). Since the production of ARv7 is predictive 
of abiraterone and enzalutamide sensitivity in advanced 
prostate cancer, this may guide treatment options towards 
selection of other drug regimes that should be used instead. 
Such drugs include taxanes (which inhibit microtubule 
function) and galeterone (targets the AR for degradation, as 
well as blocking binding of androgens) (Antonarakis et al. 
2014, 2015; Onstenk et al. 2015; Savage 2015; Thadani-
Mulero et al. 2014). An FDA-approved drug called niclosa-
mide, originally developed against helminths, strongly 
targets ARv7 and restores susceptibility of prostate cancer 
cells to abiraterone, both in vitro and by oral administration 
into nude mice with 22Rv1 cell line xenografts (Liu et al. 
2014a, 2016).

Splicing regulators can change expression patterns 
in prostate cancer

A number of splicing regulator proteins change expres-
sion patterns in prostate cancer, including in neuroen-
docrine prostate cancer. Neuroendocrine prostate cancer 
is an aggressive form of prostate cancer thought to result 
from trans-differentiation of castration-resistant prostate 
cancer cells into cells harbouring a neuroendocrine phe-
notype. This transition occurs at low androgen conditions. 
Neuroendocrine prostate cancer does not respond to AR-
directed therapies. Recent data indicate that the develop-
ment of neuroendocrine prostate cancer is driven by an 
increased expression of the splicing factor SRRM4 (serine/
arginine repetitive matrix 4 protein). SRRM4 is a splicing 
factor normally needed in the body (outside of the prostate 
gland) for neural differentiation. SRRM4 up-regulation 
drives splicing switches towards neuronal splicing patterns 
and the trans-differentiation of prostate cells towards neu-
roendocrine prostate cancer cells (Li et al. 2016; Zhang 
et al. 2015). Important SRRM4-regulated events include 
a splicing switch in the transcription factor REST1 (RE1 
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silencing transcription factor) which is a master regulator 
of neurogenesis, thus providing a possible molecular expla-
nation for the neuroendocrine prostate cancer phenotype 
(Li et al. 2016).

The KH domain-containing protein Sam68 is also up-
regulated in prostate cancer (Busa et al. 2007; Rajan et al. 
2008). Sam68 interacts with RNA via its STAR domain 
[comprising a KH domain and flanking protein sequences 
(Feracci et al. 2016)]. Sam68 regulates splicing of the 
CD44 mRNA (controlling the production of splice isoforms 
important in metastasis), BCLx (controlling splice isoforms 
important in cell death via apoptosis) and CCND1 (control-
ling splice isoforms important in the cell cycle) [Fig. 1, and 
reviewed by (Sette 2013)]. Recent work shows that Sam68 
protein interacts with the transcriptional co-activator pro-
tein SND1, to switch splicing of CD44 pre-mRNA towards 
the production of more metastasis-associated splice iso-
forms [including CD44 exon v5 (Cappellari et al. 2014)]. 
Levels of both SND1 and Sam68 protein increase in pros-
tate cancer cells. Sam68 also interacts with the transcrip-
tion factor FBI-1 to control BCLx splicing patterns, with 
FBI-1 inhibiting the production of the apoptotic BCLx iso-
form (Bielli et al. 2014). Sam68 protein additionally inter-
acts with the RNA splicing regulator hnRNPA2/B1, which 
is also up-regulated in prostate cancer, and controls the 
expression of β-catenin (Rajan et al. 2009a; Stockley et al. 
2014).

The splicing regulator protein Tra2β also increases the 
expression in prostate cancer tissues, and this is associated 
with preoperative prostate-specific antigen, lymph node 
metastasis, clinical stage, Gleason score and biochemical 
recurrence (Diao et al. 2015). Global studies carried out in 
breast cancer cells discovered CHK1 exon 3 as an impor-
tant splicing target for Tra2β (Best et al. 2014). CHK1 is a 
key checkpoint protein that monitors DNA integrity after 
replication stress. Interestingly, joint depletion of Tra2β 
and its ortholog Tra2α inhibits CHK1 exon 3 splicing in the 
LNCaP prostate cancer cell line (Best et al. 2014). Since 
CHK1 exon 3 is not a multiple of 3, this skipping event 
leads to loss of function, accumulation of DNA damage 
and cell death.

Another splicing regulator that changes expression in 
prostate cancer is the protein kinase SRPK1. SRPK1 does 
not itself bind to pre-mRNA directly, but instead phos-
phorylates members of the important SR family of splic-
ing regulators, including SRSF1. SRSF1 is a critical splic-
ing regulator in the cell, and phosphorylation by SRPK1 
enables SRSF1 nuclear localisation. Once in the nucleus, 
SRSF1 controls splicing of VEGF (vascular epithelial 
growth factor) mRNA which is important for angiogenesis. 
SRSF1 switches VEGF splicing patterns between pro- and 
anti-angiogenic mRNA splice isoforms via selection of an 
alternative 3′ splice site (Fig. 1) (Amin et al. 2011). SRPK1 

is a promising target for therapy. SRPK1 inhibition keeps 
SRSF1 in the cytoplasm and, as a result, decreases the abil-
ity of the prostate cancer cell line PC-3 to form tumours 
in mouse xenografts, probably through changed patterns of 
VEGF mRNA splicing depriving prostate cancer cells from 
developing a blood supply (Mavrou et al. 2015). SRPK1 
expression increases in prostate cancer (Bullock and Oltean 
2016; Bullock et al. 2016; Mavrou et al. 2015). Existing 
drugs are available that can target SRPK1 and have already 
been tested in mouse models (Mavrou et al. 2015; Mavrou 
and Oltean 2016). A further important kinase that might 
impact on prostate cancer pathology is aurora A, which 
affects the production of ARv splice variants, likely also 
through control of SRSF1 (Jones et al. 2017).

Current developments

Investigation of splicing in prostate cancer is currently 
undergoing methodological change with the incorporation 
of analysis from big data sets, particularly with the global 
discovery of new splice isoforms. Future research in this 
area is likely to include comparison of large “-omics” level 
datasets to detect many splice isoform changes between dif-
ferent grades of prostate cancer tissue in parallel. Already, 
RNAseq datasets from patients with prostate cancer are 
available on sites like The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/) and the International Can-
cer Genome Consortia (ICGC, http://icgc.org/). Increased 
understanding of mRNA splice isoforms in prostate cancer 
will also come from integrating RNAseq data with peptide 
data from mass spectroscopy, thus enabling direct corre-
lation of alternative isoforms and their encoded proteins 
(Evans et al. 2012; Nesvizhskii 2014). Individual splice 
isoform functions can be dissected to assess their impor-
tance in disease pathology, and whether they might be 
useful targets for therapeutic intervention or as prognostic 
markers (in a similar way in which the AR splice variants 
have been investigated).

Integrating data from system-wide approaches will also 
be helpful for understanding how these splice isoforms 
are generated in prostate cancer cells. Transcriptome-wide 
binding maps of RNA splicing regulator proteins in cancer 
cells can be used to identify splicing targets important for 
therapy and diagnostics (Best et al. 2014; Sundararaman 
et al. 2016). The expression patterns of these RNA splic-
ing regulators themselves can also be globally analysed 
through transcriptome data, and at the genome level how 
these expression levels are impacted by copy number vari-
ation patterns of their genes (Sebestyen et al. 2016). Since 
splicing takes place co-transcriptionally on nascent pre-
mRNAs, other contributors to alternative splicing patterns 
to be investigated in prostate cancer cells will be chromatin 

https://portal.gdc.cancer.gov/
http://icgc.org/
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components and epigenetic marks (Allemand et al. 2016). 
These features might be particularly important also to func-
tions of the AR in both prostate cancer pathology and gen-
eration of alternative splice isoforms (Rajan et al. 2009b, 
2011).

Summary

Although research in this area has been very productive, 
still remaining open in this field is a full understanding of 
how alternative splicing programmes impact on prostate 
cancer pathology. Research in the past few years shows 
that splicing patterns change during prostate cancer pro-
gression and in response to therapeutic intervention. Some 
splicing changes enable prostate cancer cells to grow in 
limiting concentrations of androgens, and some cause the 
production of more oncogenic proteins contributing to dis-
ease pathology. Understanding these splicing changes, and 
the mechanisms driving them, opens up new possibilities 
for developing diagnostic and therapeutic strategies to treat 
prostate cancer. As a result of these investigations, future 
therapies might aim to target specific splice isoforms, for 
example using antisense oligonucleotide and morpholino 
techniques that have been developed for other diseases 
including Duchenne muscular dystrophy and spinal mus-
cular atrophy (Aartsma-Rus and Krieg 2017; Rigo et al. 
2012). For example, blocking splicing of exon 3 of CHK1 
mRNA might specifically kill cancer cells that rely on 
CHK1 in the absence of other checkpoints to control repli-
cation stress (Best et al. 2014, 2016).
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