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Cardiac damage is the major limiting factor for the clinical use of doxorubicin (DOX). Preclinical studies indicate that inflammatory
effects may be involved in DOX-induced cardiotoxicity. Ne-(carboxymethyl) lysine (CML) is suggested to be generated subsequent
to oxidative stress, including inflammation. Therefore, the aim of this study was to investigate whether CML increased in the heart
after DOX and whether anti-inflammatory agents reduced this effect in addition to their possible protection on DOX-induced
cardiotoxicity. These effects were compared with those of the potential cardioprotector 7-monohydroxyethylrutoside (monoHER).
BALB/c mice were treated with saline, DOX alone or DOX preceded by ketoprofen (KP), dexamethasone (DEX) or monoHER.
Cardiac damage was evaluated according to Billingham. Ne-(carboxymethyl) lysine was quantified immunohistochemically.
Compared to saline, a 21.6-fold increase of damaged cardiomyocytes was observed in mice treated with DOX (Po0.001). Addition
of KP, DEX or monoHER before DOX significantly reduced the mean ratio of abnormal cardiomyocytes in comparison to mice
treated with DOX alone (Pp0.02). In addition, DOX induced a significant increase in the number of CML-stained intramyocardial
vessels per mm2 (P¼ 0.001) and also in the intensity of CML staining (P¼ 0.001) compared with the saline-treated group. Ne-
(carboxymethyl) lysine positivity was significantly reduced (Pp0.01) by DOX-DEX, DOX-KP and DOX-monoHER. These results
confirm that inflammation plays a role in DOX-induced cardiotoxicity, which is strengthened by the observed DOX-induced
accumulation of CML, which can be reduced by anti-inflammatory agents and monoHER.
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Doxorubicin (DOX) is a successfully used anticancer drug.
However, DOX-induced cumulative cardiotoxic effects, including
cardiomyopathy and congestive heart failure, limit the use of this
agent (Von Hoff et al, 1979; Signal and Iliskovic, 1998; Gharib and
Burnett, 2002). Various molecular mechanisms have been sug-
gested. Doxorubicin-induced free radicals are believed to play a
central role in its cardiotoxicity (Yen et al, 1996; Horenstein et al,
2000; Xu et al, 2001).

Earlier studies illustrated that DOX also induces inflammatory
effects in the vasculature and in the myocardium (Hecker, 1990;
Fujihira et al, 1993) and increases proinflammatory cytokines
(TNF-a, IL-1b and IL-2). Doxorubicin elevates NF-kB (Baeuerle,
1991; Read et al, 1994; Goto et al, 1999; Hou et al, 2005; Deepa and
Varalakshmi, 2006) and the adhesion molecules VCAM-1 and
E-selectin (Abou El Hassan et al, 2003). In vitro data showed that
DOX affected both the viability and neutrophil adhesion of

endothelial cells with clinically achievable concentrations (Abou
El Hassan et al, 2003). These inflammatory effects may play a role
in DOX-induced cardiotoxicity and results of some studies support
these indications (Inchiosa Jr and Smith, 1990; Chen et al, 2005;
Hou et al, 2005).

Protein damage caused by oxidative stress, inflammation or
hyperglycaemia leads to carbohydrate-derived advanced glycation
end products (AGEs) such as Ne-(carboxymethyl)lysine (CML)
(Miyata et al, 1997; Hudson et al, 2003). Elevated levels of CML
were demonstrated in patients with renal failure, in intramyo-
cardial arteries of the heart of diabetic patients (Schalkwijk et al,
2004) and in patients with atherosclerosis having inflammatory/
pro-oxidative environments (Degenhardt et al, 1997; Schleicher
et al, 1997). Ne-(carboxymethyl) lysine is produced under
oxidative stress (Miyata et al, 1997; Nagai et al, 1997) and may
therefore be regarded as a biomarker for local endogenous
oxidative stress, next to local inflammatory stress (Baynes, 1991;
Nerlich and Schleicher, 1999). After binding to the receptor for
AGE, CML activates endothelial cells as indicated by the induction
of adhesion molecules such as VCAM-1 (Boulanger et al, 2002).
Therefore, the first aim of our study was to investigate whether
CML increases in intramyocardial arteries after treatment with
DOX. Because inflammatory processes are involved the second aim
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of our study was to investigate whether anti-inflammatory agents
would reduce DOX-induced CML increase.

In the past, we have shown the cardioprotective properties of
the antioxidant 7-monohydroxyethylrutoside (monoHER) against
DOX-induced cardiotoxicity in mouse (Van Acker et al, 1997; Van
Acker et al, 2000). In vitro, we have also shown that monoHER
protects against DOX-induced inflammatory effects (Abou El
Hassan et al, 2003). Therefore, the effect of monoHER on DOX-
induced CML increase was also investigated in the in vivo mouse
model.

Furthermore, a possible protective effect of the anti-inflamma-
tory drugs ketoprofen (KP) and dexamethasone (DEX) on DOX-
induced cardiotoxicity in comparison to the protective effect of
monoHER was investigated in this model.

MATERIALS AND METHODS

Chemicals

7-Monohydroxyethylrutoside was kindly provided by Novartis
Consumer Health (Nyon, Switzerland). The drug was formulated
and dissolved as described before, giving a final concentration of
33 mg/ml (Bruynzeel et al, 2006). Formulated DEX (dexametha-
sone 4 mg/ml) was obtained from the Pharmacy Department, VU
Medical Center (Amsterdam, the Netherlands). Before injection,
the content of the ampoule was diluted in sterile saline to obtain
a concentration of 2 mg/ml. Formulated KP (1% ketoprofen)
was obtained from Merial B.V. (Amstelveen, the Netherlands). A
volume of 0.5 ml KP was added to 19.5 ml PBS to obtain a
concentration of 0.025% KP (0.25 mg/ml). Formulated DOX
(doxorubicin hydrochloride, 2 mg/ml) was obtained from Phar-
machemie B.V. (Haarlem, the Netherlands). Before injection, the
content of the vial was diluted in a sterile 0.9% NaCl solution to a
concentration of 1 mg/ml.

Animals

Thirty-six male BALB/c mice (20– 25 g) obtained from Harlan
Nederland (Horst, the Netherlands) were kept in a light and
temperature-controlled room (21–221C; humidity 60–65%). The
animals were fed a standard diet (Harlan Teklad) and allowed to
eat and drink tap water ad libitum. The animals were allowed to
adapt to the laboratory housing conditions for 2 weeks before
starting the experiment.

Experimental design

The protocol was approved by the ethics committee for animal
experiments of the Vrije Universiteit (Amsterdam, the Nether-
lands) and the methodology was also in compliance with the
UKCCCR guidelines on ethical use of animals.

Thirty mice were submitted to one of the following weekly
dosing schedules for 6 weeks:

Group 1 (n¼ 6) 0.1 ml 0.9% NaCl solution i.v.þ 0.3 ml 0.9%
NaCl solution s.c. 60 min before i.v. injection,
and 6, 24 and 48 h after i.v. injection

Group 2 (n¼ 6) 4 mg/kg DOX i.v.þ 0.3 ml 0.9% NaCl solution
s.c. 60 min before DOX and 6, 24 and 48 h after
DOX

Group 3 (n¼ 6) 4 mg/kg DOX i.v.þ 2 mg/kg KP s.c. 30 min
before DOX, and 6, 24 and 48 h after DOX

Group 4 (n¼ 6) 4 mg/kg DOX i.v.þ 8 mg/kg DEX s.c. 60 min
before DOX, and 6, 24 and 48 h after DOX

Group 5 (n¼ 6) 4 mg/kg DOX i.v.þ 500 mg/kg monoHER i.p.
60 min before DOX

DOX was administered via the tail vein. Six mice were killed just
before starting treatment (control group) and their heart tissue was
used as a control at the beginning.

During treatment and a 2-week observation period thereafter,
body weight was determined twice a week as a measure of general
toxicity. After the treatments and the observation period, the mice
were killed.

Tissue samples

The hearts were excised and the central part of both ventricles was
cut into 5-mm-thick pieces of 2–3 mm, which were fixed in 2%
phosphate-buffered glutaraldehyde solution or in 4% formalin.

Histological analyses

After fixation in 2% phosphate-buffered glutaraldehyde solution
the heart tissue was post-fixed in 1% osmium tetroxide. The tissue
was then dehydrated through a graded series of ethanol solutions
of 70– 95% and embedded in JB-4 Plus resin. Thereafter 0.5– 3.0-
mm-thick sections were cut with a glass knife. These semithin
sections were examined by light microscopy and DOX-induced
cardiac damage was evaluated according to Billingham et al (1978).
For this purpose the percentage of cardiac cells that had been
damaged was established. Cardiac myocytes with more than two
vacuoles or loss of myofibrils were counted as deviant. The scoring
area was measured using a commercially available interactive
video overlay-based measuring system (Q-Prodit, Leica, Cam-
bridge, UK; Vermeulen et al, 2001). For each mouse the number of
aberrant myocytes per mm2 was scored.

Immunohistochemical methods

After fixation in 4% formalin the heart tissue was embedded in
paraffin. Paraffin-embedded cardiac tissue sections (4 mm) were
mounted on microscope slides and were deparaffinised for 10 min
in xylene at room temperature and dehydrated by decreasing
concentrations of ethanol. Sections were then stained with
haematoxylin and eosin. Subsequent to deparaffinisation and
dehydration, sections were incubated with 0.3% hydrogen
peroxide in methanol for 30 min to block endogenous peroxidase
activity. Sections were not heated to prevent artificial induction
of CML by this procedure (Dunn et al, 1989). Sections were
preincubated with normal rabbit serum (1:50, Dako, Glostrup,
Denmark) for 10 min and incubated for 60 min with anti-CML
(1 : 500), both at room temperature. After washing in phosphate-
buffered saline (PBS), pH 7.4, sections were incubated for 30 min
with rabbit anti-mouse biotin-labelled antibody (1 : 500, Dako)
at room temperature and subsequently washed in PBS. After
incubation with streptavidin horseradish peroxidase (1 : 200,
Dako) for 60 min at room temperature, peroxidase was visualised
with 3,3-diamino-benzidine-tetrahydrochloride/H2O2 (Sigma Che-
mical Company, St Louis, MO, USA) for 3–5 min.

The CML staining intensity was scored in the intramyocardial
arteries. For the intensity scoring each positive vessel was given a
score of: 1¼weak positivity, 2¼moderate positivity or 3¼ strong
positivity, according to a previous study (Schalkwijk et al, 2004).
Subsequently, the scoring area was calculated as described before
(Vermeulen et al, 2001). For each mouse the total number of CML
staining arteries per mm2 was scored. Thereafter the difference in
the CML staining intensity of the intramyocardial arteries per mm2

was investigated between the experimental groups.

Statistical analysis

For the analyses, the number of aberrant cardiac myocytes was log-
transformed, yielding an unskewed variable. Differences between
experimental groups were assessed using Student’s two-sided
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t-test. The level of significance was set at 5%. Ninety-five percent
confidence intervals (CI) on the original scale were obtained by
exponentiating the upper and lower bounds of the 95% confidence
intervals constructed on the log-scale. All calculations were
performed with SPSS version 9.0 (SPSS, Chicago, IL, USA). For
the analyses, the difference between the experimental groups
regarding the number of vessels positive for CML staining and the
intensity scoring per mm2 was assessed using Student’s two-sided
t-test. The level of significance was chosen at 5%. These
calculations were also performed with SPSS version 9.0. To
examine whether the contribution of moderately and strongly
stained CML vessel walls differed among treatment groups,
Fisher’s exact test was applied and also Student’s two-sided t-test.

RESULTS

Animals appeared lively throughout the study and no behavioral
changes were observed between the treatment groups. There were
no signs of decreased activity, indicating low general toxicity.
No significant differences were observed in weight between the
experimental groups. No signs of gastrointestinal toxicity were
observed in the mice treated with KP.

Histological examination of the cardiomyocytes

Histology of the hearts from the control and saline group did not
show damaged cardiac myocytes, indicating that environmental
factors and treatment with saline did not influence cardiac health
of the animals. Treatment with DOX alone induced a significant
21.6-fold (95% CI 6.2–74.5) increase of damaged cardiac myocytes
in comparison to the saline-treated group (Po0.001). Heart tissue
of all mice treated with DOX alone or in combination with KP,
DEX or monoHER, particularly showed vacuolar degeneration,
whereas loss of myofibrils was rarely detected.

Table 1 shows the ratio of the mean number of aberrant cardiac
myocytes per mm2 in all groups in comparison to the group
treated with DOX. The addition of KP 30 min before and 6, 24 and
48 h after DOX injection resulted in a significant protective effect
by reducing the ratio of the mean number of abnormal cardiac
cells per mm2 with a factor 4.4 (95% CI 1.4–14.3, P¼ 0.021). When
DEX was added 60 min before DOX injection and 6, 24 and 48 h
after DOX administration, a significant protective effect was also
detected (P¼ 0.006). Cotreatment with DEX led to a 6.2-fold
reduction of deviant cardiac cells (95% CI 1.9– 20.0) compared to
the mice treated with DOX alone. The protective effect by adding
monoHER before DOX led to a significant 8.6-fold (P¼ 0.002, 95%
CI 2.6–27.8) reduction of abnormal cardiomyocytes.

Table 1 also shows the ratio of the mean number of aberrant
cardiac myocytes per mm2 in treated versus saline treated animals.
When KP or DEX was added before DOX administration,

significantly more abnormal cardiac myocytes were observed in
comparison to the saline group, indicating that the protection was
not complete (for KP a 4.9-fold increase, 95% CI 1.4–17.0,
P¼ 0.014; for DEX a 3.5-fold increase, 95% CI 1.0– 12.0, P¼ 0.049).
When monoHER was added before DOX treatment, no significant
increase of aberrant cardiac myocytes was detected compared with
the saline-treated group (P¼ 0.137). No significant difference was
found between the groups treated with the combinations DOX-
monoHER, DOX-KP and DOX-DEX (P40.05).

Immunohistochemical staining of CML

Ne-(carboxymethyl)lysine positivity was found in intramyocardial
blood vessels, especially endothelium and partly smooth muscle
cells in DOX-treated mice. Doxorubicin treatment induced a
significant increase in the number of CML-stained vessels per mm2

compared with the group treated with saline (P¼ 0.001) irrespec-
tive of the intensity score. Figure 1A illustrates immunohisto-
chemical detection of CML in heart tissue of a mouse after
treatment with DOX alone, whereas Figure 1B is a slide without
addition of the primary antibody. Treatment of the animals with
DOX in combination with DEX, KP or monoHER significantly
reduced the amount of blood vessels positive for CML compared
with the DOX-treated animals (P¼ 0.004, 0.009 and 0.006,
respectively). No difference was found in the number of vessels
positive for CML between the groups treated with DOX combined
with DEX, KP or monoHER and the animals treated with saline
(P¼ 0.633, 0.424 and 0.514, respectively). When comparing the
amount of vessels positive for one of the three categories of
intensity scores for CML (weak, moderate and strong) no
difference was found between the five treatment groups for weakly
stained positive CML vessels per mm2 (P¼ 0.887), but when the
mean number of moderately and strongly stained vessels per mm2

were combined for each experimental group, a significantly
enhanced staining for CML (P¼ 0.001) was found between the
mice treated with DOX alone and the animals treated with saline
(Figure 2). Dexamethasone, KP and monoHER reduced this
enhancing effect of DOX significantly (P¼ 0.003, 0.014 and 0.007,
respectively). No significant difference in staining was found
between the animals treated with saline and those treated with the
combination DOX-DEX, DOX-KP or DOX-monoHER (P¼ 0.659,
0.275 and 0.424, respectively). These results indicate that all three
combinations significantly reduce the enhancing effect of DOX on
CML intensity.

DISCUSSION

In this study, we showed that addition of ketoprofen and
dexamethasone during treatment with DOX reduced its cardiac
damage in vivo. In addition, it was demonstrated that treatment
with DOX induces an increase of CML in intramyocardial arteries
in mice, which is reduced by these anti-inflammatory agents and
monoHER.

Although DOX-induced free radicals are believed to play a
central role in its cardiotoxicity (Yen et al, 1996; Horenstein et al,
2000, 57; Xu et al, 2001), the precise mechanism of myocardial
impairment remains unclear. Several studies showed that inflam-
matory effects are directly and indirectly caused by treatment with
DOX. In vitro it was shown that DOX directly induced neutrophil
adhesion of vascular endothelial cells via the overexpression of
VCAM and E-selectin (Abou El Hassan et al, 2003), whereas results
of another study suggest that treatment with DOX produced
marked inflammatory changes in heart tissue, liver and kidneys
(Deepa and Varalakshmi, 2005). Results of our study confirm the
contribution of inflammation in DOX-induced cardiotoxicity,
because anti-inflammatory agents can at least, in part, reduce
DOX-induced cardiotoxicity.

Table 1 Ratios of the mean number of aberrant cardiac myocytes/mm2

Treatment group
(n¼ 6 per group)

Fold increase
(95% CI, P)

Fold reduction
(95% CI, P)

1. Saline 1 (reference) 21.6 (6.2–74.5, o0.001)
2. DOX 21.6 (6.2–74.5, o0.001) 1 (reference)
3. DOX+KP 4.9 (1.4–17.0, 0.014) 4.4 (1.4–14.3, 0.021)
4. DOX+DEX 3.5 (1.0–12.0, 0.049) 6.2 (1.9–20.0, 0.006)
5. DOX+MH 2.5 (0.73–8.7, 0.137) 8.6 (2.6–27.8, 0.002)

Abbreviations: DEX¼ dexamethasone: DOX¼ doxorubicin; KP¼ ketoprofen;
MH¼ 7-monohydroxyethylrutoside. Fold increase¼ geometric mean number of
abnormal cells in treated animals/geometric mean number of abnormal cells in mice
treated with saline, fold reduction¼ geometric mean number of abnormal cells in
DOX-treated animals/geometric mean number of abnormal cells in other treatment
groups.
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It has been suggested that DOX also induces endothelial
dysfunctions (Kotamraju et al, 2002; Wolf and Baynes, 2006),
because it has been demonstrated in vivo that treatment with DOX
caused oxidative stress and myeloperoxidase (MPO) activity
(Fadillioglu et al, 2004). Ne-(carboxymethyl)lysine can be formed
by oxidative stress (Baynes, 1991; Nerlich and Schleicher, 1999),
and also by the enzyme MPO (Anderson et al, 1999). In a recent
study, was found that CML positivity colocalised with E-selectin-
positive endothelial cells in the heart (Baidoshvili et al, 2006).
Earlier it was demonstrated that DOX induced neutrophil adhesion
that was mediated via overexpression of E-selectin (Abou El
Hassan et al, 2003). Therefore, it is tempting to speculate that CML
is derived from these pathways and could play a role in DOX-
induced vascular endothelial injury and subsequent cardiotoxicity.

It is known that CML interacts with cells through a specific
receptor system for AGEs (RAGE) (Zill et al, 2001). Activation of
RAGE by binding of CML is thought to lead to the nuclear
translocation of NF-kB (Sousa et al, 2000) and the activation of

several secondary messenger systems that increase the production
of proinflammatory cytokines and adhesion molecules (Boulanger
et al, 2002). These events lead to progressing inflammation and a
further increase of formation and accumulation of CML. Several
approaches have been used to block the formation of AGE or the
interaction of AGEs with RAGE to reduce complications (Brownlee
et al, 1986; Panagiotopoulos et al, 1998; Bucciarelli et al, 2002).
From these studies it appeared that reduction or even prevention
of the formation of CML seems to be important to prevent
endothelial dysfunction, and besides, this also reduces inflamma-
tion.

In line with this, we have demonstrated in another study
increased accumulation of CML in intramyocardial arteries of
diabetic patients and suggested that CML contributes to the
increased risk of heart complications in diabetes mellitus (C
Schalkwijk and HWM Niessen, unpublished observation).

In the present study, we showed that monoHER significantly
reduced CML positivity and intensity of intramyocardial arteries.

A B

Figure 1 Immunohistochemical detection of CML in the mouse (� 63). Arrow: CML deposition on endothelial cells in intramyocardial blood vessel.
(A) immunohistochemical detection of CML in the heart tissue of a mouse after DOX treatment alone, whereas (B) is an image without addition of the
primary antibody.
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As monoHER has been shown to have radical scavenging
properties (Haenen et al, 1993; Van Acker et al, 1993, 1997,
2000), this again points to a role of free radicals in CML
production by DOX. We also found that anti-inflammatory agents
decreased CML positivity and intensity in intramyocardial arteries
(Figure 1). It has indeed been suggested that inflammation is
another source of CML formation (Daugherty et al, 1994;
Anderson and Heinecke, 2003). It has, however, to be noticed that
glucocorticoids and NSAIDs also have antioxidant properties
(Hamburger and Mc Cay, 1990; Kataoka et al, 1997; Ozmen, 2005;
Chen et al, 2005; Yamada et al, 2006) besides their anti-
inflammatory properties (Koehler et al, 1990; Masferrer and
Seibert, 1994; Auphan et al, 1995; Scheinman et al, 1995; Morteau,
2000).

As a representative of the NSAIDs, we used KP because it is a
strong non-selective COX-inhibitor and it is available for s.c.
injection. Dexamethasone was chosen as a representative of the
glucocorticosteroids, because of its known strong anti-inflamma-
tory properties.

By using the earlier mentioned treatment schedules for KP and
DEX, we intended to maintain the presence of the anti-
inflammatory agents when DOX was administered and during
the first 2 days thereafter, because the high peak levels of DOX
during that period (Van der Vijgh et al, 1990) are considered of
major importance in the development of DOX-induced cardio-
toxicity (Von Hoff et al, 1979).

Up to the present, two studies reported protective effects of
cotreatment with ibuprofen and glucocorticoids on DOX-induced
cardiac damage. The first study (Inchiosa Jr and Smith, 1990) only
evaluated survival, whereas the effect of glucocorticoids on DOX
toxicity was only evaluated in vitro (Chen et al, 2005). At present,
our study quantifies to what extent cardioprotection occurred in
animals cotreated with DEX, KP and monoHER. It strongly
confirms the role of inflammation in DOX-induced cardiotoxicity
and indicates a possible way to protect (in part) against this
toxicity.

High-dose DEX or prednisone is part of the DOX containing
therapeutic treatment regimens in patients with aggressive non-
Hodgkin’s lymphoma or multiple myeloma (VAD, CHOP).
Considering the results of our study, we reviewed data of these

clinical studies concerning the cardiac consequences of the
combined use of DOX and glucocorticoids for these patients and
found out that up to the present little is known about the long-
term effects on their cardiac tissue (Limat et al, 2003; Elbl et al,
2006). These clinical aspects merit further attention.

As mentioned earlier, it was believed that the cardioprotective
effect of monoHER was mainly owing to its radical scavenging and
iron-chelating properties; however, the results of the present
study in combination with the in vitro study of Abou El Hassan
et al (2003) indicate that monoHER also has anti-inflammatory
properties.

Recently, anti-inflammatory activity was also shown for the
flavonoids quercetin (Comalada et al, 2005), myricetin (Kang et al,
2005) and luteolin (Kim and Jobin, 2005).

A quantitative comparison between the three compounds (KP,
DEX and monoHER) regarding their intrinsic anti-inflammatory
and/or radical scavenging activities is not possible yet, because
none of the doses nor the dosing regimes of the investigated
protectors are optimised.

In conclusion, two anti-inflammatory agents of different classes,
ketoprofen (NSAID) and dexamethasone (synthetic glucocorti-
coid) clearly protected against DOX-induced cardiotoxicity in mice
by decreasing the number of abnormal cardiac myocytes. These
results establish the suggestion that inflammatory effects owing to
treatment with DOX are involved in the development of DOX-
induced cardiotoxicity. The role of DOX-induced inflammation
in the development of its cardiac damage is confirmed by the
observation that DOX induced accumulation of CML in intramyo-
cardial arteries, which is significantly reduced after treatment with
DEX, KP and monoHER. Further investigations are warranted to
develop anti-inflammatory agents as a protector against DOX-
induced cardiotoxicity.
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