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Glioblastoma (GBM) is a lethal cancer of the central nervous system with a median

survival rate of 15 months with treatment. Thus, there is a critical need to develop novel

therapies for GBM. Immunotherapy is emerging as a promising therapeutic strategy.

However, current therapies for GBM, in particular anti-angiogenic therapies that block

vascular endothelial growth factor (VEGF), may have undefined consequences on the

efficacy of immunotherapy. While this treatment is primarily prescribed to reduce tumor

vascularization, multiple immune cell types also express VEGF receptors, including the

most potent antigen-presenting cell, the dendritic cell (DC). Therefore, we assessed the

role of anti-VEGF therapy in modifying DC function. We found that VEGF blockade results

in a more mature DC phenotype in the brain, as demonstrated by an increase in the

expression of the co-stimulatory molecules B7-1, B7-2, and MHC II. Furthermore, we

observed reduced levels of the exhaustion markers PD-1 and Tim-3 on brain-infiltrating

CD8T cells, indicating improved functionality. Thus, anti-angiogenic therapy has the

potential to be used in conjunction with and enhance immunotherapy for GBM.
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INTRODUCTION

Glioblastoma (GBM) is a lethal cancer of the central nervous system (CNS). Patients diagnosed
with GBM have a median expected survival of about 15 months following diagnosis with treatment
(1, 2). As it currently stands, there is no cure for GBM, and even with surgical resection of the
tumor, a patient will universally recur and succumb to disease. Therefore, there is a clear need for
the development of new therapies for GBM treatment.

One such therapeutic strategy that has been rising in popularity are immunotherapies, which
aim to target the immune system to respond to the tumor. Immunotherapies provide a facet
of precision not possible with surgical techniques, which are unable to target the invasive edges
of the tumor, or chemotherapies, which nonspecifically target all dividing cells (3). As a result,
numerous research groups are testing a variety of immunotherapy strategies against GBM tumors,
both in pre-clinical models and in clinical trials (2). In particular, strategies to activate tumor
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antigen-specific CD8T cells, which will then kill tumor cells
using cytotoxic granules, have been promising (4). While these
therapies have demonstrated some success, there are still no
curative strategies for GBM. This is primarily due to the
immune suppressive nature of the tumormicroenvironment, and
the global immune dysregulation patients present with despite
immunotherapy treatments.

To simultaneously bypass the immune suppressive tumor
environment and stimulate anti-tumor immune responses,
concomitant therapies have become highly prevalent. These
treatment regimens often combine a therapy that is currently
in use with a novel immunotherapy, including vaccination (2).
Importantly, the synergy between many of these combination
treatments has not been defined. For example, combining anti-
angiogenic therapies, often used in patients with recurrent GBM
following surgical resection, with immunotherapies, improves
survival in pre-clinical models (5). However, the extent to which
anti-angiogenic therapy blocking vascular endothelial growth
factor (VEGF) impacts the immune response to GBM directly,
is unclear. Studies in other tumor models and in in vitro assays
have suggested a regulatory role of VEGF on the immune system
(6, 7). These studies in particular demonstrate a role for VEGF
on retention of dendritic cells, a potent antigen presenting
cell (APC), in state of reduced activation. This would in turn
reduce T cell activation and subsequently negate the impact T
cell-based immunotherapy strategies, including tumor antigen-
specific vaccination.

We hypothesized that blockade of VEGF using the
clinically available anti-angiogenic therapy, VEGF-Trap
(Eylea/Aflibercept), we would improve dendritic cell maturation
and in turn improve antitumor T cell responses in a murine
model of GBM, the GL261-quad cassette syngeneic glioma.
Our group has previously demonstrated that treatment with
VEGF-Trap, which is a VEGF receptor (VEGFR) fusion
protein conjugated to a human IgG Fc region, results in similar
outcomes as GBM patients treated with bevacizumab anti-
angiogenic therapies as measured by T1- and T2-weighted
magnetic resonance imaging (MRI) and histology (5). Likewise,
VEGF-trap treatment improves survival in GL261-quad cassette
bearing animals (5). Importantly, VEGF-Trap is used in place
of bevacizumab due to improved cross-reactivity with murine
VEGF (8).

To address this hypothesis, we first assessed the expression
of VEGFRs on the surface of dendritic cells, which we contend
are the most potent APC to generate CD8T cell responses in the
CNS (9). We also treated GL261-quad cassette bearing animals
with VEGF-Trap weekly and assessed the quality of dendritic
cell activation in the tumor draining lymph nodes (TLDNs)
14 days post treatment. We also evaluated the proportion
of tumor antigen-specific CD8T cells in the CNS of these
animals.

MATERIALS AND METHODS

Acute Viral Infection and Vaccination
Six- to eight-week-old C57BL/6 mice were infected intracranially
(i.c.) with Theiler’s murine encephalomyelitis virus (TMEV)

as previously described (9–11). Animals were anesthetized
with 1–2% isoflurane, then received a single dose of 2 ×

105 plaque forming units (PFU) of TMEV in the right
hemisphere of the brain. VEGFR expression was measured in
the draining lymph nodes and brain 5 and 7 days following
infection.

GL261 Cell Culture and Implantation
The GL261-quad cassette cell line has been transgenically
modified to express four model antigens: OVA257−264,
OVA323−339, human GP10025−33, and I-Ea52−68, in addition

to a luciferase transgene to assess tumor burden. 6× 104 GL261-
quad cassette cells were implanted by stereotactic injection
as previously described (5, 10). Six- to eight-week-old female
C57BL/6 animals were anesthetized with 20 mg/kg ketamine and
5 mg/kg xylazine to minimize discomfort during the procedure.
Cells were injected at a concentration of 6 × 104 GL261 cells
per 1 µL phosphate buffered saline (PBS). Injection rate was 0.2
µL per minute. The site of injection was 1mm lateral, 2mm
anterior of the bregma with a depth of 3mm from the surface.
All animal experiments were approved by and performed in
accordance with the Mayo Clinic Institutional Animal Care and
Use Committee.

Bioluminescence Imaging
GL261-quad cassette-bearing animals were assessed for tumor
burden using bioluminescence imaging as previously described
(5, 10). Animals were intraperitoneally injected with 150 mg/kg
D-luciferin sodium salt in PBS (Gold Biotechnology, Olivette,
MO). Animals were anesthetized with 1–2% isoflurane before
and throughout imaging. Animals were scanned using an IVIS
Spectrum system (Xenogen Corp., Amameda, CA, USA) running
Living Image software. Bioluminescence intensity (photons/s)
was recorded in a circular region of interest surrounding the
head. Animals with average bioluminescence intensity above
105 photons/s were considered tumor bearing and treated
with VEGF-Trap or PBS. All animal work was completed in
accordance to theMayo Clinic Institutional Animal Care and Use
Committee guidelines.

Anti-angiogenic Therapy Treatment
VEGF-Trap/Aflibercept (Regeneron Pharmaceuticals,
Rensselaer, NY, USA) was administered at a dose of 12.5mg/kg in
PBS in a total volume of 100 µL intravenously (i.v.) by injection
into the tail vein 2 weeks post-tumor injection. Treatment
was continued weekly until animals were euthanized for flow
cytometry analysis. Control mice received 100 µL PBS i.v., at the
same time points.

Flow Cytometry
Lymph nodes and spleens were harvested in RPMI and pressed
through a 70µm filter to achieve a single cell suspension
for compensation control samples. Brains were harvested
and manually homogenized using a dounce homogenizer as
previously described (12). Brain samples were filtered through
a 70µm filter to achieve a single cell suspension into a 50%
percoll solution. Samples were centrifuged at 7,840 g. The myelin
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debris layer formed at the top of the gradient was aspirated. All
samples were washed twice and plated in a 96-well v bottom plate.
Peptide:MHC tetramers were constructed by our lab and samples
were stained at a 1:100 dilution of tetramer for 30min at room
temperature in the dark. Following a wash, antibodies against
CD45, CD11c, CD11b, I-Ab, CD80, CD86, VEGFR2, Nrp-1,
CD4, CD8α, PD-1, and Tim-3 were used for staining at a 1:100
dilution for 30min on ice in the dark (BD Biosciences, San Jose,
CA; Tonbo Biosciences, San Diego, CA) in addition to Ghost Red
780 Viability Dye used at a 1:1000 dilution (Tonbo Biosciences,
San Diego, CA). Samples were fixed with 2% paraformaldehyde.
Samples were subsequently run on a BD LSRII flow cytometer
equipped with FACSDiva software (BD Biosciences, San Jose,
CA). Samples were digitally compensated using single-stained
controls and analyzed by FlowJo v10 software (FlowJo LLC,
Ashland, OR).

Statistical Analysis
All data are presented as mean ± standard error of the mean
(SEM). Significance was determined using a Mann-Whitney
Rank Sum Test. GraphPad Prism 7.0 (La Jolla, CA) were used
for all statistical analysis.

Data Availability
All data generated during this study are available from the
corresponding author on reasonable request.

RESULTS

Dendritic Cells Express VEGFRs in the
Inflamed CNS
To address the impact of VEGF signaling on the immune
system, we first sought to identify the cells through which VEGF
would signal. To address this question, we used infection with
Theiler’s Murine Encephalomyelitis Virus (TMEV) as a model
of CNS inflammation. Intracranial infection with TMEV results
in extensive immune cell expansion in the deep cervical lymph
nodes and subsequent immune cell infiltration into the CNS
(13). We therefore assessed VEGFR expression on CD11c+

dendritic cells, compared to CD11c− immune cells, 5 and 7
days post infection. Expression of VEGFR2, considered the
primary signaling receptor for VEGF, and Neuropilin-1, known
as a co-receptor for VEGF signaling. We found that CD11c+

dendritic cells express low but detectable levels of VEGFR2
in the deep cervical lymph nodes 5 days post infection, and
express higher levels of VEGFR2 in the brain 5 days post
infection (Figures 1A,B). By 7 days post infection, CD11c+

cells in the brain express high levels of both VEGFR2 and
neuropilin-1, suggesting that dendritic cells in the CNS are
capable of signaling through VEGF receptors (Figures 1A,B).
This also suggests that neuropilin-1 expression is induced
following inflammation. Notably, we do not see upregulation
of VEGFR2 or neuropilin-1 expression on CD11c− immune
cells.

We next evaluated VEGFR expression on antigen presenting
cells (APCs) in the brain in unvaccinated C57BL/6 mice
harboring established GL261 gliomas. We primarily focused

on dendritic cells owing to its dominant role in mounting
anti-glioma response (9). We determined that dendritic cells
isolated from the brain of these animals expressed VEGFR2
at higher levels than CD45+, CD11c− blood derived cell
types (Figure 1C). Furthermore, the proportion and absolute
counts of isolated dendritic cells that express VEGFR2 is
significantly higher in glioma bearing mice (Figures 1D,E).
We further assessed the expression levels of VEGFRs on
other brain-infiltrating and resident immune cells as well. We
found the VEGFR2 levels on CD45int CD11b+ microglial cells
remained unchanged in comparison to non-tumor bearing
littermates (data not shown). Similarly, the expression level on
other CD45+, CD11c- immune cell types was unremarkable
(Figures 1C–E).

Dendritic Cells Are More Activated, and
CD8T Cells Are Less Exhausted, Following
Anti-angiogenic Therapy
After demonstrating that dendritic cells express VEGFRs, we next
sought to determine the impact of this expression on anti-glioma
immune responses. To accomplish this, we implanted GL261-
quad cassette gliomas in C57BL/6 mice. Two weeks following
tumor implantation, we imaged animals using bioluminescence
imaging to remove animals from the study that did not bear
tumors. We treated only tumor-bearing animals with VEGF-
Trap intravenously. A second cohort of animals was treated with
PBS as a control. Two weeks following treatment, or 4 weeks
post-tumor implantation, brains were harvested and processed
for flow cytometric analysis.

Dendritic cells isolated from the brains of tumor bearing
animals were assessed for expression of known activation
markers, including CD80 (B7-1), CD86 (B7-2), and I-Ab

major histocompatibility complex (MHC) class II. We found
that following VEGF-Trap treatment, a higher proportion of
dendritic cells expressed each of these markers, as compared
with PBS treatment (Figures 2A–D). These markers are required
for T cell activation, and increase in each of these markers
suggests that VEGF-Trap treatment results in dendritic cells
that are better capable of stimulating an anti-tumor immune
response.

We next assessed the impact VEGF-Trap treatment had
on brain infiltrating, tumor antigen-specific CD8T cells. To
accomplish this, we measured expression of the exhaustion
markers PD-1 and Tim-3 (14). We assessed proportion of
cells expressing these markers on both total CD8T cells and
on Kb: OVA-specific CD8T cells, as the GL261-quad cassette
cell line expresses OVA peptide (SIINFEKL) as a model
tumor antigen (10). We determined that fewer CD8T cells
infiltrating the brain following VEGF-Trap treatment had high
expression of PD-1 and Tim-3 (Figures 2E–H). Therefore, a
reduced proportion of CD8T cells are exhausted as a result
of VEGF-Trap treatment. Furthermore, tumor antigen-specific
CD8T cells, defined as being Kb:OVA Tetramer+, are also less
exhausted than tumor antigen-specific CD8 cells isolated from
PBS treated animals (Figures 2I,J). These findings suggest that
VEGF-Trap treatment results in a tumor-specific CD8T cell
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FIGURE 1 | Dendritic cells express VEGFR2 and neuropilin-1 in the brain during picornavirus infection and 21 day established GL261 glioma. Dendritic cells were

isolated from the cervical lymph node and brain five and seven DPI. Dendritic cells were gated as CD45hi and CD11c+. (A) Dendritic cells in the lymph node and brain

express VEGFR2, with a majority of dendritic cells expressing VEGFR2 seven DPI in the brain. (B) Brain-infiltrating dendritic cells express neuropilin-1, a co-receptor

for VEGF, in the brain seven DPI with TMEV. (C) Representative flow plot showing expression of VEGFR2 in both CD11c+ and CD11c− cells isolated from the brain of

unvaccinated animal bearing GL261 glioma. (D,E) In untreated mice with 21 day established GL261 gliomas, we observed CD11c+ dendritic cells in the brain

express higher levels of VEGFR2 (N = 7). Data presented as mean with error bars representing standard error of the mean (SEM). *p ≤ 0.05 and ***p ≤ 0.001 by

Mann–Whitney U-Test.

response that is more capable of carrying out their cytotoxic
effector function.

DISCUSSION

Here we demonstrate that VEGF-Trap treatment, as one example
of anti-angiogenic therapy, results in a treatment response
beyond vasculature normalization. In addition to the previously
demonstrated effects observed by this treatment in the GL261
glioma model, we observe a significant change in dendritic cell
maturation status and in CD8T cell exhaustion. These findings
are of great importance as immunotherapies are developed for
CNS cancers.

Dendritic cell maturation is key for effective antigen
presentation of tumor antigens. This is true for both generation
of an endogenous immune response as well as in the context of
vaccination. We demonstrate that dendritic cells isolated from
the lymph nodes of VEGF-Trap treated animals exhibit enhanced
expression of costimulatory molecules such as CD80, CD86,
and MHC class II. Therefore, dendritic cells from VEGF-Trap

treated animals have the capacity to be better antigen presenting
cells. Likewise, CD8T cells isolated from VEGF-Trap treated
animals have a demonstrable decrease in exhaustion markers.
CD8T cell exhaustion has been shown to be mediated by the
immune suppressive tumor microenvironment, and VEGF is
likely one way this is accomplished (14). Much like through the
use of checkpoint blockade therapy, if the signals that result in
CD8T cell exhaustion can be prevented through VEGF blockade,
the CD8T cells that infiltrate the tumor will be better able to
kill tumor cells. Furthermore, these findings are not limited to
just cancers of the CNS. Anti-angiogenic therapy is used in
colorectal cancer and breast cancer treatment (15, 16). Likewise,
immunotherapies are being tested in both of these types of
cancer (17, 18). Therefore, our findings may be extrapolated to
other combination strategies involving an immune therapy and
anti-angiogenic therapy.

Here we show that anti-angiogenic therapy is not only a
useful strategy to improve quality of life for patients diagnosed
with GBM, but it may be a tractable approach to enhance
immunotherapies. This study also builds upon our previous
publication in which it was determined that combination
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FIGURE 2 | CD8T cells and dendritic cells isolated from the brain of VEGF-Trap treated GL261-quad cassette bearing mice express a more functional phenotype.

GL261-quad cassette bearing animals were treated with PBS (N = 4) or VEGF-Trap (N = 5) 2 weeks post-tumor implantation. Animals were sacrificed 30 days after

tumor implantation and brain infiltrating leukocytes (BILs) were assessed by flow cytometry. (A) Representative images of CD11c+ cells isolated from the brain

assessing expression of costimulatory markers. VEGF-Trap treatment results in increased expression of CD80 (B), CD86 (C), and I-Ab MHC Class II (D).

Representative flow plots (E) and quantification (F) show reduction in the proportion of Tim-3+ CD8T cells in the CNS of GL261-quad cassette bearing animals.

Representative flow plots (G) and quantification (H) show a reduction in the proportion of CD8T cells expressing PD-1 in the brain. A reduction in PD-1+Tim-3+

double positive CD8T cells was also observed (I,J). Error bars represent mean ± SEM. *p < 0.05. Side Scatter (SSC) was included as a measure of granularity.

therapy of picornavirus vaccination plus antiangiogenic
treatment extended that lifespan of mice harboring GL261
gliomas (5). Therefore, we contend that we have identified
another candidate for the family of checkpoint blockade

treatments. VEGF blockade should be considered in pre-
clinical models of immunotherapies to dually normalize the
vasculature and enhance tumor antigen-specific CD8T cell
responses.
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