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Abstract Predicting the future course of an epidemic depends on being able to estimate the current numbers

of infected individuals. However, while back-projection techniques allow reliable estimation of the numbers of

infected individuals in the more distant past, they are less reliable in the recent past. We propose two new

nonparametric methods to estimate the unobserved numbers of infected individuals in the recent past in an

epidemic. The proposed methods are noniterative, easily computed and asymptotically normal with simple

variance formulas. Simulations show that the proposed methods are much more robust and accurate than the

existing back projection method, especially for the recent past, which is our primary interest. We apply the

proposed methods to the 2003 Severe Acute Respiratory Syndorme (SARS) epidemic in Hong Kong.
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1 Introduction

An important public health issue that arises over the course of an epidemic determines how many indi-

viduals are infected at a given time. This quantity is of concern to policy-makers and managers of health

care systems as well as epidemiologists. For example, the 2003 SARS epidemic in Hong Kong, which

killed 298 persons and infected about 1800, presented one of the most serious global health threats since

the HIV/AIDS epidemic. One of the reasons leading to the epidemic was the considerable uncertainty

about the current epidemic state during the course of this epidemic.

A key feature of infectious disease data is that infected individuals are only observed when they are

diagnosed so the exact infection times are unknown and hence full information on the current epidemic

state is not available. Limited methods are available for analysing epidemic data. One is mathematically

convenient curves, for example, exponential or polynomial. Predictions based on these models might

not be reliable because these parametric curves are not data-based (see [13, 25]). On the other hand,

transmission models (see [2, 19, 20, 6]) try to explore the latent nature of the spread of the disease.

Unfortunately, data are usually inadequate to estimate key model parameters, and these transmission

models have not been extensively studied and used.

Back projection (see [8, 9]) has become one of the most popular methods of reconstructing the past

pattern of infections and it is also widely used to predict future numbers of cases with the disease
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(see [5, 7, 27]). It makes elementary assumptions about the way the data are generated and the only

additional information required is knowledge of the distribution of the time from infection to clinical

diagnosis (see [7]). However, the back-projection method is not without problems. One problem with

the back projection method is ill-posed inverse (see [26]). To avoid the problem, it is necessary to impose

some kind of structure on the infection curve. Some implementations of back projection used a smooth

parametric model (see [14]) or a parametric step function (see [8, 9, 27]) for the incidence curve. However,

as the epidemic is only partially observed, it is not easy to correctly specify the incidence curve. Other

investigators have allowed a nonparametric form for the incidence curve. Brookmeyer [10], Bacchetti et

al. [5] and Liao and Brookmeyer [22] used a smoothing spline method based on a penalized likelihood.

Becker, Watson, and Carlin [7] applied a smoothed EM algorithm developed by Silverman et al. [29].

The smoother used in [7] is easy to compute, but does not perform well at boundaries. For example,

Figures 1(b) and (c) show simulation results of the average of the estimated incidence curve over 500

replications of an epidemic, and the smoothed EM, denoted EMS, of Becker and Watson [7], is biased, and

is noticeably unsatisfactory for times close to the end of the observation period. Another common problem

with the parametric and nonparametric back-projection methods is that the theoretical properties of the

methods are largely unknown.

To overcome the disadvantages of the existing approaches, in this paper two alternate approaches are

proposed. Firstly, via the independent incubation process among the infected individuals, we propose

the one-step estimate of the infective number at each day j based on the number of observed cases. The

one-step estimator has closed-form expression and is obtained without any effort on the program and the

computation. Simulations in Section 4 indicate that the one-step estimator performs much better than the

unsmoothed and the smoothed back projection methods in terms of the mean square error. Considering

that the one-step estimator may have slightly large variance for the number of infections in the recent

past due to the very little accurate information available, and because that the recent past is our interest,

we make an effort to improve the one-step estimate in the recent past by “borrowing” or making use of

information of the neighbouring time points. That is, smoothing the one-step estimates over time using

one of the existing smoothing techniques. Since the one-step estimator has closed-form, any existing

smoothing techniques can be applied without any extra effort to the programming. Compared with the

existing methods, the one-step and the smoothing one-step methods are noniterative, easy to compute

and are shown to be asymptotically normal both with simple variance formulas.

The paper is organized as follows. In Section 2, we give the one-step estimator and the smoothed

one-step estimator of the incidence. The asymptotic normality of the proposed estimators are established

in Section 3. Section 4 conducts simulation studies to compare the behavior of the one-step estimator,

the smoothed one-step estimator and the back-projection methods. Finally, in Section 5, the approach is

applied to the Hong Kong SARS data. The simulations and the application indicate that our proposed

methods are robust and efficient. Some discussions are given in Section 6.

2 Notation and estimation

2.1 Notation

Typical data from epidemics are interval censored so that cases are reported in batches on a daily or

weekly basis. To reflect this, we divide the time axis [0, τ ] over which data have been collected into

intervals of equal length, that may be thought of as “months”, “weeks” or “days”. These are indexed by

the nonnegative integers j, j = 1, . . . , n, where n is the most recent interval beyond which no detected

cases are available. We call τ the current time. Let the observed data dj be the number of cases detected

on day j for j = 1, 2, . . . , n, zj be the unobserved number of individuals who were infected on day j, and

zju be the number of individuals infected on day j with incubation period u, u = 0, . . . , k, where k denotes

the longest incubation time. Then zj =
∑k

u=0 zju. Let pu be the probability that an infected individual

is detected on day u, u = 0, . . . , k after infection. We suppose that pu, u = 0, . . . , k are known and assume

that the incubation processes for different infected individuals are independent. This assumption is also
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made by the existing methods including back-projection. For infectious disease with a short incubation

time such as SARS, reliable information on the incubation times is available and accurate estimates of

the pu are readily obtained [15, 1]. For more detail on the estimate of the incubation distribution, see

[3–5].

2.2 The one-step estimation

Our objective is to estimate the expected number of infective individuals Ezj at each day j using the

observed number of cases dj , j = 1, . . . , n. A natural estimator of Ezj is the conditional mean of zj =
∑k

u=0 zju given the observed data. For that, we consider the conditional distribution of zj given the

observation data {dj , j = 1, 2, . . . , n}. A natural way to obtain the conditional distribution is computing

the probability distributions of the data (e.g., the likelihood) and the probability distributions of zj.

However, in our case, both the distributions are difficult to obtain due to the feature of partial observation

of the epidemic data.

Some observations form the estimator proposed in the paper.

(1) In all of the observed data, only dj+u which is related to zju and thus the conditional distribution

of zju given the observed data {dj , j = 1, 2, . . . , n} is equal to the conditional distribution of zju
given dj+u.

(2) The incubation process among infected individuals is independent.

(3) dr =
∑k

u=0 zr−u,u.

The observations (2) and (3) imply that given dr, the conditional distributions of {zr−u,u, u = 0, . . . , k}
are independent multinomial distributions based upon dr trials with probabilities {pu, u = 0, . . . , k}.
Hence,

E{zr−u,u|dr} = pudr. (2.1)

Let D = {dj, j = 1, 2, . . . , n}, the observation (1) implies that E{zju|D} = E{zju|dj+u}. This, coupling

with (2.1), for j � n− k, we get

E{zju|D} = E{zju|dj+u} = pudj+u. (2.2)

However, (2.2) cannot be used when j > n− k, because dj+u is unobservable. Since

Ezj =

∑n−j
u=0 Ezju
∑n−j

u=0 pu
,

a simple estimator, that we call one-step estimator (termed OS), of Ezj is,

ẑj =

∑n−j
u=0 pudj+u
∑n−j

u=0 pu
, (2.3)

where pu = 0 when u > k. It is easy to show that E{ẑj} = Ezj , hence ẑj is an unbiased estimator of

Ezj .

It is interesting to make a comparison of the one-step estimator and the back-projection estimator. To

motivate the back-projection estimator note that

E{dj|z1, . . . , zn} =

j∑

i=1

zipj−i, (2.4)

so that the back-projection estimator is based on the conditional distribution of dj given z1, . . . , zn.

Contrarily, the one-step estimator is based on the conditional distribution of zj given the observed data

d1, . . . , dn. Let λj = E[zj ], then the back-projection estimator of λj is obtained iteratively from

λ
(m)
j =

λ
(m−1)
j

∑n−j
u=0 pu

n−j∑

u=0

dj+upu
∑j+u

i=1 λ
(m−1)
i pj+u−i

, (2.5)
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which is the combination of the E step and the M step of the EM algorithm (see [7]). The EM algorithm

generally converges very slowly and can be time-consuming, for example, averaging around 10 minutes

for each repetition of simulation 1 in Section 4. Also, because the complication of the computation

of the back-projection estimator, the used nonparametric techniques to smooth the back-projection are

restrictive, for example, the smoother used in [7], which is easy to compute, but does not perform well

at boundaries. However, very little programming effort and time are needed to compute the one-step

estimator. Furthermore, it is difficult to establish the asymptotical properties of the back-projection

estimators and these are largely unknown. In contrast, as the one-step estimator has a closed form,

under the regular conditions given in Appendix A.1, it can be proved that the one-step estimator is

asymptotically normal (see Theorem 1 in Section 3).

2.3 The smoothed one-step estimation

Theorem 1 in Section 3 and the results in Tables 1, 2 and Figure 1 of Section 4 show that the variance

of the one-step estimator ẑj increases for j close to n. Since the infection number near the current time

is our primarily interest, it is worthy to make an effort to reduce the variance of the one-step estimator

and hence reduce the mean square error for the recent past. A natural method to reduce the variance is

applying nonparametric techniques to smooth the one-step estimator over time. As a smoothing method,

we choose the local linear model (see [16]). This method has many good statistical properties. For

example, it adapts automatically to the boundary of design points, which is especially important for

our problem because our interest is on the boundary. We also note that it may be possible to improve

the EMS estimator by using a more reasonable smoother than that which has been used in the EMS

algorithm. However, a more reasonable smoother generally means greater computational complexity.

Specifically, for the EMS estimator, we need to apply the smooth technique to each iterative EM step

of the back projection method, which is a huge computational burden. However, since the one-step

estimator has a closed-form, any existing nonparametric smoothing techniques can be used without any

extra programming and computational efforts.

Write tj = jδn, where δn = τ/n, so that tj is the absolute time at the end of the jth interval. Now, zj
is the number of new infectives arising in the jth interval so that z1, . . . , zn arises from a discretization

of an underlying continuous time infection process. Let λ(t) be the intensity of this continuous time

process over the interval [0, τ ] and η be the size of the underlying population so that we can take

Λj = η
∫ tj
tj−1

λ(s)ds = η
∫ tj
tj−δn

λ(s)ds = Λ(tj), where Λ(t) = η
∫ t

t−δn
λ(s)ds is a differentiable function.

Since Λ(t) is differentiable, for any fixed t0 ∈ [0, τ ] and each t close to t0, a Taylor expansion gives,

Λ(t) ≈ Λ(t0) + Λ′(t0)(t− t0) ≡ β1 + β2(t− t0), (2.6)

where β1 and β2 depend on t0. This, coupling with Eẑj = Ezj = Λj , motivates a local linear model

fitted using a locally weighted linear regression. We estimate β = (β1, β2) by minimizing

�(β) =

n∑

j=1

{ẑj − β1 − β2(tj − t0)}2Kh(tj − t0), (2.7)

where Kh(·) = K(·/h)/h, in which K(·) denotes a kernel function and h is a bandwidth. The kernel is

introduced so that the local model (2.6) is only applied to the data close to t0. Denote the minimizer of

(2.7) by β̂ = (β̂1, β̂2)
′. From (2.7), for fixed t0 we obtain the closed form estimator,

β̂ =

( n∑

j=1

xtjx
′
tjKh(tj − t0)

)−1 n∑

j=1

xtjKh(tj − t0)ẑj , (2.8)

where xt = (1, t − t0)
′. Then for t0 ∈ [0, τ ], Λ(t0) is estimated by Λ̂(t0) = β̂1 and the Λj are estimated

by Λ̂j = Λ̂(tj), j = 1, . . . , n. We refer to these as the smoothed one-step estimates (SOS).
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3 Large sample properties

In this section, we investigate the asymptotic properties of the one-step and smoothed one-step esti-

mators. Firstly, we consider the one-step estimator. By [21, p. 98], and Conditions (iv) and (v), it is

straightforward to get

Theorem 1. For any fixed j,
√
νn−j (ẑj − Ezj) → N(0, σ2

j ), where νn−j =
∑n−j

u=0 pu and σ2
j =

limn→∞
∑n−j

u=0 p2
uVar(dj+u)
νn−j

.

Theorem 1 implies that the convergent rate of ẑj depends on j, the convergent rate decreases with j

increasing. As a result, the variance of the estimator for the number of infection will increase when j is

close to n. The conclusion is confirmed by the simulation studies in Section 4.

Denote u2 =
∫ +∞
−∞ x2K(x)dx and v0 =

∫ +∞
−∞ K2(x)dx, we have the following theorem for the smoothed

one-step estimator.

Theorem 2. As n → ∞, h → 0, under the regularity conditions given in the Appendix.

1. If τ − t0 = O(h) and nh → +∞, we have

(nh)1/2{Λ̂(t0)− Λ(t0)− h2Λ′′(t0)u2/2} → N(0, b(t0, t0)), (3.1)

where b(t, t) is a continuous function and defined by (A.2) in the Appendix. Hence if τ − tj = O(h), then

(nh)1/2(Λ̂j − Λj − h2Λ′′(tj)u2/2) → N(0, b(tj, tj)). (3.2)

2. If τ − t0 = O(1), we have

n1/2{Λ̂(t0)− Λ(t0)− h2Λ′′(t0)u2/2} → N(0, b̃(t0, t0)), (3.3)

where b̃(t, t) is a continuous function and also defined by (A.2) in the Appendix. Hence if τ − tj = O(1),

then

n1/2(Λ̂j − Λj − h2Λ′′(tj)u2/2) → N(0, b̃(tj , tj)). (3.4)

Therefore, the asymptotic bias of Λ̂j is bias(Λ̂j) = h2Λ′′(tj)u2/2, and the asymptotic variance of Λ̂j is

var(Λ̂j) =

{
b(tj , tj)/(nh), τ − tj = O(h),

b̃(tj , tj)/n, τ − tj = O(1).

If τ − tj = O(1), so that tj is not close to the current time τ , increasing h cannot decrease the variance,

but does increase the bias and the optimal bandwidth to estimate Λj is h = 0. By (2.7), Λ̂j = ẑj when

h = 0. These results suggest that when tj is far away from the current time τ , the smoothing step cannot

improve the one-step estimator. This is confirmed by the simulations in Section 4.

For τ − tj = O(h) and tj is close to the current time, we need to select the bandwidth h. Theoreti-

cally, an optimal local bandwidth is obtained by minimizing the integrated mean squared error given by
∑n

j=r[Bias
2{Λ̂j} + Var{Λ̂j}], where r is the time point from which we smooth the one-step estimator.

The estimation of the bias can be obtained by the empirical bias approach proposed by Ruppert [28],

which has been proved to work well in related studies (see [23, 24]). The proof of the theorem shows

that the variance-covariance matrix of (β̂1(t), hβ̂2(t)) can be estimated by V = (nh)−1Â−1Σ̂Â−1, where

Â = n−1H−1
∑n

j=1 xtjx
′
tjKh(tj − t)H−1,

Σ̂ =
h

n
H−1

n∑

s=1

( s∑

j=1

xtjKh(tj − t)
ps−j

∑n−j
u=0 pu

)( s∑

j=1

xtjKh(tj − t)
ps−j

∑n−j
u=0 pu

)′
V̂ar(ds)H

−1,

and

H = diag(1, h).

The variance of Λ̂j is estimated by the (1, 1)-entry of the matrix V with t replaced by tj = τj/n.
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When h = 0, the variance of Λ̂j can be estimated by

n∑

s=j

(
ps−j

∑n−j
u=0 pu

)2

V̂ar(ds),

which is exactly the empirical version of the variance of the one-step estimator ẑj (see Theorem 1).

In the example concerning the SARS epidemic in Hong Kong, we will give a method to determine the

point from which we smooth the one-step estimators. In practice, we are interested in the number of the

infected individuals in the recent past, that is, the target time always is close to the current time. Hence,

generally, we need to smooth the one-step estimator.

4 Simulations studies

4.1 Comparison of the one-step estimator and the back projection estimators

Since the properties of the back-projection are unknown, we cannot compare the one-step estimator with

the back projection methods via theoretical results and instead, we conduct a numerical study. Two

models are considered. The first concerns an infection processe without intervention, and zj depends on

the size of the infective population just before j. Following traditional infection models, we simulate an

epidemic process with hazard function h(t) = 0.05y(t−), where y(t−) is the total number of infectives

in the population just before time t. We use a Weibull distribution with shape 1.5 and scale 8 to model

the distribution of the incubation time (see Figure 1(a)). The epidemic commences with 15 infective

individuals. We conducted 500 simulations and the average of the total number of infected individuals

was 959.08 (sd= 220.19). We obtained the estimates of the incidence curve using the one-step estimator

(termed OS), the back projection estimator (termed BP) and the back projection method with a smoothed

EM (termed EMS, see [7]). Figure 1(b) shows the average of the estimated incidence curve over the 500

replications for the OS estimator, the BP estimator and the EMS estimator. Table 1 gives bias, SD and

RMSE (root mean squared error) of the estimators of the number of infectives at j = 15, 30, 45, 60, 75, 90
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Figure 1 (a) The distribution of the incubation time; (b) and (c) The mean estimated infection curve based on 500

simulations using the proposed one-step method (dashed), the EMS (dotted) and the BP (dotted-linear), the empirical

pointwise 95% confidential limits of the proposed one-step method (dashed), as well as the true infection curve (solid). (b)

Simulation 1; (c) Simulation 2.
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Table 1 Comparisons of the performance of the OS, the BP and the EMS estimators for

the number of infected when applied to simulation 1

days (j)

15 30 45 60 75 90

OS Bias 0.123 0.130 0.387 0.862 1.065 −9.054

SD 0.580 1.054 2.124 4.370 8.630 11.876

RMSE 0.592 1.062 2.159 4.455 8.695 14.934

EMS Bias 0.217 0.481 1.136 2.694 8.979 −37.607

SD 0.612 1.149 2.326 4.988 10.219 5.420

RMSE 0.650 1.245 2.589 5.669 13.603 37.995

BP Bias 0.134 −0.379 −0.817 0.916 0.485 −5.294

SD 4.501 6.999 13.767 27.963 47.480 88.524

RMSE 4.503 7.009 13.791 27.978 47.483 88.682

for each method. The bias is defined by the difference of the estimator from the mean number of cases

E[zj ] as generated by the simulation model. From Figure 1(b) and Table 1, we see that the BP method

has the largest variance and is considerably inefficient. The EMS is biased, particularly for times close to

n = 95. In contrast, the proposed one-step estimator yielded a estimator that has much less bias than the

EMS and has much less variance than the BP, as a result, has consistently smaller RMSE than the EMS

and the BP estimators, and the improvement of the one-step estimate over the EMS and the BP increases

as j becomes closer to n. Hence, the one-step estimator is much better than the EMS estimator and the

BP estimator. The considerable inefficience of the BP estimator is caused by the well-known ill-posedness

of the inverse problem, which can be appreciated by observing the following equation obtained by (2.4):

dj =

j∑

i=1

E(zi)pj−i + εj .

Since pj−i smoothly change over i, as a result, relatively large perturbations of E(zi), i = 1, . . . , n can

give rise to very slight perturbations in the data dj , j = 1, . . . , n and conversely. It follows from this that

least squares, minimum χ2, or maximum likelihood solutions will be very sensitive to slight changes in

the data.

Our second simulation considers an infection process with a control factor. The infection process was

time dependent with hazard function: h(t) = β(t)y(t), where β(t) = 0.06 for t � 40 and β(t) = 0.03

for t > 40, so the hazard drops at t = 40. The epidemic commenced with 20 infective individuals. The

results displayed in Figure 1(c) and Table 2 yield similar conclusions to our first set of simulations.

Table 2 Comparisons of the performance of the OS, the BP and the EMS estimators for the

number of infected when applied to simulated data 2

days (j)

15 30 45 60 75 90

OS Bias 0.380 0.088 1.475 0.255 0.428 −2.750

SD 0.890 1.782 2.219 2.943 4.547 6.512

RMSE 0.967 1.784 2.664 2.954 4.567 7.069

EMS Bias 0.778 0.870 1.505 1.170 3.674 −16.932

SD 0.977 1.950 2.221 3.127 5.302 3.130

RMSE 1.249 2.135 2.683 3.338 6.451 17.219

BP Bias 0.222 −0.585 −0.331 1.258 −1.023 3.787

SD 7.429 13.076 15.411 23.209 31.344 50.292

RMSE 7.432 13.089 15.415 23.243 31.361 50.435



1822 Lin H Z et al. Sci China Math September 2011 Vol. 54 No. 9

4.2 Comparison of the one-step, smoothed one-step and smoothed back-projection esti-

mators

We conducted simulations to compare the performance of the smoothed one-step estimator (SOS) with

the one-step estimator (OS) and the smoothed back-projection estimators (EMS). Table 3 gives the bias,

SD and RMSE of the resulting estimators for the number of infectives at j = 66, 70, 74, 78, 82, 86, 90, 94

using the SOS estimator with h = 10, the OS and the EMS estimators using the first simulation. From

Table 3 we see that the SOS estimator has slightly less variance and less MSE than the OS estimator at

time j � 74, while the SOS estimator has larger bias and larger MSE than the OS estimator when time

j � 74. Hence, the SOS estimator is better than the OS estimator when time is close to the present, and

the OS estimator is better than the SOS estimator when time is far away from the present. There results

are consistent with Theorem 2 in Section 3. Simulations according to the second simulation scenario lead

to the same but more confirmative conclusions and are reported in Table 4.

4.3 Testing the accuracy of standard error formula

We now test the accuracy of our standard error formula given in Section 3. We provide the results of

simulations with n = 100 and data zj =
∑m

u=0{zju}, where zju are independent and generated according

to Poisson distribution with mean Λjpu for each j = 1, . . . , n and u = 0, 1, . . . ,m. Let X ∼ N(μ, σ2),

μ = 10, σ = 4 and define pu = Pr(min(max([X ], 0), n) = u), where [X ] denotes the integer part of X .

We assume Λj = 80 + 10(j − 50)2 + 2j. We generated 500 simulations.

For each simulated dataset, we obtained estimates of the incidence curve using the proposed approach

with bandwidths h = 0, 0.5, 1 and 2 to test the accuracy of our standard error formulas, where h = 0

Table 3 Simulation 1 to compare the performance of the smoothing one-step, one-step and the smoothing back

projection estimators for the number of infections

days

66 70 74 78 82 86 90 94

SOS Bias 2.997 2.895 2.710 1.018 −2.204 −6.264 −9.747 −1.932

SD 6.002 6.927 7.842 8.711 9.535 10.374 11.356 12.668

RMSE 6.709 7.508 8.297 8.770 9.787 12.119 14.965 12.814

OS Bias 1.049 1.225 1.643 0.763 −1.532 −5.071 −9.054 −3.416

SD 5.758 6.947 8.299 9.581 10.574 11.223 11.876 12.869

RMSE 5.853 7.054 8.460 9.611 10.684 12.316 14.934 13.315

EMS Bias 4.868 7.093 9.337 7.988 −0.234 −16.557 −37.607 −47.441

SD 7.067 8.690 10.007 10.481 9.853 8.105 5.420 2.584

RMSE 8.581 11.217 13.686 13.178 9.856 18.435 37.995 47.511

Table 4 Simulation 2 to compare the performance of the smoothing one-step, one-step and the smoothing back

projection estimators for the number of infections

days

70 72 74 76 88 90 92 94

SOS Bias 1.422 1.309 1.627 1.013 −0.289 −0.600 −0.942 −1.721

SD 4.092 4.309 4.537 4.775 6.420 6.732 7.058 7.399

RMSE 4.332 4.503 4.819 4.881 6.426 6.759 7.121 7.596

OS Bias 0.131 0.071 0.457 −0.089 0.002 −0.003 −0.282 −0.968

SD 4.133 4.320 4.581 4.910 6.868 7.085 7.323 8.215

RMSE 4.135 4.321 4.604 4.911 6.868 7.085 7.329 8.272

EMS Bias 1.536 1.614 2.161 1.810 −6.180 −11.532 −17.866 −24.585

SD 4.215 4.484 4.784 5.092 5.057 4.182 3.112 2.033

RMSE 4.486 4.765 5.250 5.404 7.985 12.267 18.135 24.669
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Table 5 True and estimated standard errors for Simulation 3

time j

10 20 40 60 80 90

h = 0 SD 34.094 25.805 9.813 10.107 26.574 43.645

SEave 30.956 25.992 11.025 11.112 26.005 42.106

h = 0.5 SD 33.178 25.442 10.328 10.056 25.879 40.714

SEave 30.764 25.858 10.984 11.098 25.921 41.902

h = 1 SD 32.638 26.093 10.119 9.794 25.787 41.689

SEave 30.392 25.588 10.889 11.000 25.653 41.819

h = 2 SD 31.165 25.050 9.756 9.456 24.715 41.130

SEave 28.925 24.574 10.592 10.696 24.719 41.279

corresponds to the OS estimator and h = 0.5, 1 and 2 correspond to the SOS estimator. The standard

deviations, denoted by SD in Table 5, of 500 estimated Λ̂j , based on 500 simulations, can be regarded as

the true standard errors. The average and standard deviations of 500 estimated standard errors, denoted

by SEave and SEsd, summarize the overall performance of the standard error formula. Table 5 presents

the results at the points at j = 10, 20, 40, 60, 80, 90, which correspond to the 10th, 20th, 40th, 60th, 80th

and 90th percentiles of the distribution of time. The performance of the standard error formula is quite

satisfactory.

5 Reconstructing the infection curve for the 2003 SARS epidemic in Hong

Kong

The SARS epidemic poses one of the most serious global health threats since the AIDS epidemic. Here

we use the proposed method to estimate the number of infected cases based on the reported cases over

the duration of the epidemic. The daily number of reported cases of severe acute respiratory syndrome

is obtained from the Department of Health of the Hong Kong Administrative Region. The first observed

case occurred on 11th March 2003, which is set to be j = 0. There were 1150 cases up to 13th April 2003.

On 10th April 2003 and 11th April 2003, the trend of the severe acute respiratory syndrome showed

an abnormal pattern with 28 and 61 reported cases, respectively. It is suggested that a reporting delay

occurred in the previous day, and some of the cases released on 11th April 2003 should be counted as

the cases on the 10th April (see [12]). Averages for the two days, that is 44 and 45 cases, are used in the

analysis.

There were no infection times reported. But some information exists on the incubation. Tsang et

al. [30] suggest that the incubation period varies from 2 days to 11 days; whereas the Department of

Health in Hong Kong reports that the incubation period varies from 2 days to 7 days. In view of these

statements, Chau and Yip [12] suggested that the parameters of the distribution are chosen to satisfy the

followings:

i. the minimum incubation time is 2 days;

ii. more than 90% of the infections are reported within 7 days of their infections;

iii. more than 99% of the infections are reported within 11 days of their infections.

Furthermore, Chau and Yip [12] suggested using the Weibull family to model the incubation time. Let

U be a continuous random variable representing the incubation time. The Weibull densities have the form:

f(u, ζ, η, θ) = ζηη(u−θ)η−1 exp(−ζη(u−θ)η), u > θ, where ζ > 0 and η > 0. The parameter θ represents

the minimum incubation time, and ζ and η are the parameters that together determine the shape of the

curves. Following Tsang et al. [30], the Department of Health and the latest two conditions of Chau and

Yip [12], we choose θ = 2, ζ = 0.4057 and η = 1.1793, so, u0 = u1 = 0, u2 = 0.2936, u3 = 0.2516, u4 =

0.1763, u5 = 0.1126, u6 = 0.0721, u7 = 0.0382, u8 = 0.0248, u9 = 0.0132, u10 = 0.0075, u11 = 0.01, where

uj = Pr{j < U � j + 1}, j = 2, . . . , 10, u11 = Pr{U � 11}.
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Figure 2 gives the OS estimator for the incidence and the associated 95% pointwise confidence interval.

Since the day 19/5 is the end of the SARS epidemic, the information of the infection even on the day 19/5

has already been provided by the data, the OS and EMS estimators are similar, and it is not necessary to

smooth the OS estimator based on the whole data. The pattern of the infection curve is in line with the

outbreak occuring (see [12]). The first infection wave, which started around 16th March 2003 in Amoy

Garden, a large residential estate made up of many individual blocks. This was initiated by a patient

who was treated for chronic renal failure but had been infected by SARS at Prince of Wales Hospital. He

visited Amoy Garden on 14 and 19 March 2003 and used the toilet of his brother’s flat. After the first

wave, the epidemic had spread throughout Hong Kong. In the second wave, there were cluster infections

in various hospitals. Two regional hospitals, the United Christian Hospital and the Princess Margaret

Hospital, which started admitting SARS patients resulting from the first outbreak around 26th March

2003, both reported local outbreaks in the hospitals. 386 of 1755 infections were medical and healthcare

workers. On 10th April 2003, home quarantine was implemented for all households with contacts of

confirmed SARS patients. This preventive measure was implemented at the third wave. It seems that

this preventive measure was very effective in preventing the spread in the community.

Note that the EMS estimator performs quite well retrospectively. However, in general, the current

time τ will not be the end of the epidemic but may be some intermediate time when the epidemic is still

running its course. To appreciate the performance of the OS estimator, the SOS estimator and EMS

estimator under the case when the information is not complete, we use the observed data on and before

the day 17th April. The result estimators are displayed in Figure 3. The result estimators show that the
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Figure 2 The estimated incidence of SARS and their corresponding pointwise 95% confidence intervals in Hong Kong

using the whole data.
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Figure 3 The estimated incidence of SARS and their corresponding pointwise 95% confidence intervals in Hong Kong

using the observed data on and before the day 17th April.
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performance of the EMS method changes rapidly on 5th April from close to the one-step estimator to far

away from the OS estimator. That suggests that it may be necessary to smooth the OS estimator after 5th

April. Considering that the data before the day 19th May have already provided all the information on the

epidemic, we can regard the OS estimator based on the whole data as the true incidence. Therefore, we

can approximate the mean squared error (MSE) of Λ̂j by
∑n

j=1(Λ̂j − Λ̃j)
2, where Λ̃j is the OS estimator

based on the whole data. With the definition, the MSEs of the OS, SOS and EMS estimators based on

the data before 17th April are 68.79, 66.59 and 5643.51, respectively, suggesting that the SOS is a little

bit better than the OS estimator, the EMS estimator performs poorly when the information of epidemic

is not complete, where SOS is obtained by smoothing the OS estimator after the 5th of April with the

bandwidth h = 1.5. We choose h using the method described in Section 4.

6 Discussion

We propose a new nonparametric method to estimate the unobserved infection numbers. The key idea

is that we try to estimate the infective number based on the incubation process, which is independent

among the infected individuals, rather than directly modelling the infectious process, which is difficult

and may be impossible. We develop a simple closed-form expression to estimate the number of infections

with the assumption of independent incubation process, which is easy to be satisfied in a real epidemic.

Our method is noniterative. The simulations of Section 4 indicate that our method is more powerful,

robust, accurate as well as much easier to compute than the back-projection method.

As the case counts provide very little information about recent infections, the variance of the non-

parametric one-step estimator is large for the recent past. We reduce this by borrowing strength from

the estimate of earlier time and although may introduce some limited bias, the resultant estimator has

smaller mean square error for the recent past by choosing an adaptive bandwidth. The simulations, the

SARS data and the theoretical results show that the smoothing step can improve the estimator for the

recent past considerably.

The new method performs best if the estimates are only smoothed for times near the current time.

If tj is far away from the current time, most of the infected on tj have been diagnosed as cases and

hence, “borrowing” the information near tj gives only a marginal increase in the amount of information

but can introduce bias, and as a result, increase the mean squared error. On the other hand, if tj is

close to the present, the information on the numbers of infected at tj is limited, hence, the “borrowing”

the information near tj can increase significantly the amount of information, even in the same time can

introduce the bias, but by choosing the suitable bandwidth, the reduction in the variance may be larger

than the increase in the bias, resulting in a reduction of the mean squared error.

The SOS estimator requires the numbers of infected smoothly change over time. This may not be true

when some intervention is implemented. If the numbers of infected do not smoothly change over time,

the estimators of the numbers of infected around the time, at which a intervention is implemented, may

have a little biased (see Figure 1(c) for the second simulation in Section 4.1). A varying bandwidth with

small value at implementing time point may be helpful to handle with the problem. In addition, the

incubation process is estimated from exogenous data, which may add some uncertainty in the proposed

estimators. The uncertainty depends on the model and the data from which the incubation process is

estimated. These problems, including the model and estimation of the incubation process and their effect

on the estimator of infection curve, will be considered in our future work.
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Appendix

Let U denote the incubation time and f(·) be the density function of U . To determine the properties of

the estimator, we impose the following regularity conditions on Λ(·), f(·) and the kernel function:

i. f(·) is a continuous function with bounded support [0, τ0];

ii. Λ(·) is bounded and continuous function on [0, τ ] and Λ′′(·) is continuous at the point t0;

iii. The kernel K is a symmetric density function with bounded support;

iv. sups ds < ∞. For any fixed j,

σ2
j = lim

n→∞

∑n−j
u=0 p

2
uVar(dj+u)

∑n−j
u=0 pu

;

v. d1, . . . , dn are independent random variables.

Condition (iv) require that the variance of the number of observed cases in unity interval is bounded.

Let aju = pu/
∑n−j

u=0 pu for u = 0, 1, . . . , k, j = 1, . . . , n and rewrite ẑj as ẑj =
∑n−j

u=0 ajudj+u. Here,

pu = 0 for u > k. Since

aju =
Pr{uδn � U < (u+ 1)δn}
Pr{U < (n− j + 1)δn} =

∫ tu+δn
tu

f(t)dt
∫ τ−tj+δn
0

f(t)dt
,

and

aj,s−j =

∫ ts−tj+δn
ts−tj

f(t)dt
∫ τ−tj+δn
0

f(t)dt
, (A.1)

where tj = jδn, aj,s−j is a continuous function of tj and it follows that

bn(tj , tm) =

n∑

s=max(j,m)

aj,s−jam,s−mVar(ds)

is a continuous function of tj and tm. From (A.1), we see that aj,s−j = O(δn/(min(τ − tj + δn, τ0))). Then

using condition (iv) and noting
∑n

s=j aj,s−j = 1, we have bn(tj , tj) = O(δn) = O(1/n) if τ − tj = O(1)

and bn(tj , tj) = O(1/(nh)) if τ − tj = O(h), where h → 0 and nh → ∞. Denote

b(t, t) = lim
n→∞nhbn(t, t), if τ − t = O(h),

and

b̃(t, t) = lim
n→∞nbn(t, t), if τ − t = O(1). (A.2)

Proof of Theorem 2. Let cn = (nh)−1/2, H = diag(1, h), β = (β1, β2)
′ = (Λ(t0),Λ

′(t0))′ and Λ(t) =

Λ(t0) + Λ′(t0)(t− t0),

c−1
n H(β̂ − β) = c−1

n H

( n∑

j=1

xtjx
′
tjKh(tj − t0)

)−1 n∑

j=1

xtjKh(tj − t0)ẑj

−c−1
n H

( n∑

j=1

xtjx
′
tjKh(tj − t0)

)−1 n∑

j=1

xtjx
′
tjKh(tj − t0)β

= c−1
n H

( n∑

j=1

xtjx
′
tjKh(tj − t0)

)−1 n∑

j=1

xtjKh(tj − t0){ẑj − Ezj}

+c−1
n H

( n∑

j=1

xtjx
′
tjKh(tj − t0)

)−1 n∑

j=1

xtjKh(tj − t0){Λ(tj)− Λ(tj)}

≡ A−1
n Bn +A−1

n Cn, (A.3)
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where xt = (1, t − t0)
′, An = 1

nH
−1

∑n
j=1 xtjx

′
tjKh(tj − t0)H

−1, Bn = 1
cnn

H−1
∑n

j=1 xtjKh(tj − t0){ẑj
−Ezj}, Cn = 1

cnn
H−1

∑n
j=1 xtjKh(tj− t0){Λ(tj)−Λ(tj)}. Following Fan and Gijbels [16], the conditions

on K(·) and t0 ∈ [0, τ ], we have

An =
1

τ

(
1 0

0 u2

)

(1 + op(1)) = A+ op(1), (A.4)

Cn =
h2Λ′′(t0)
2τcn

(
u2

u3

)

(1 + op(1)), (A.5)

where ur =
∫ +∞
−∞ xrK(x)dx. Now we consider Bn.

Bn =
1

cnn
H−1

n∑

j=1

xtjKh(tj − t0)

n−j∑

u=0

aju{dj+u − Edj+u}

=
1

cnn
H−1

n∑

j=1

n∑

s=j

xtjKh(tj − t0)aj,s−j{ds − Eds},

exchanging the summation, we have

Bn =
1

cnn
H−1

n∑

s=1

s∑

j=1

xtjKh(tj − t0)aj,s−j{ds − Eds}.

Hence by condition (v), we get

Var(Bn) =
1

c2nn
2
H−1

n∑

s=1

( s∑

j=1

xtjKh(tj − t0)aj,s−j

)( s∑

j=1

xtjKh(tj − t0)aj,s−j

)

Var(ds)H
−1

=
1

c2nn
2
H−1

n∑

s=1

s∑

j=1

xtjx
′
tjK

2
h(tj − t0)a

2
j,s−jVar(ds)H

−1

+
1

c2nn
2
H−1

n∑

s=1

s∑

j �=m,j,m=1

xtjx
′
tmKh(tj − t0)Kh(tm − t0)aj,s−jam,s−mVar(ds)H

−1

=
1

c2nn
2
H−1

n∑

j=1

xtjx
′
tjK

2
h(tj − t0)bn(tj , tj)H

−1

+
1

c2nn
2
H−1

n∑

j �=m,j,m=1

xtjx
′
tmKh(tj − t0)Kh(tm − t0)bn(tj , tm)H−1

= hE

(
1 (tj − t0)/h

(tj − t0)/h (tj − t0)
2/h2

)

K2
h(tj − t0)bn(tj , tj)(1 + op(1))

+(n− 1)hE

(
1 (tj − t0)/h

(tm − t0)/h (tj − t0)(tm − t0)/h
2

)

×Kh(tj − t0)Kh(tm − t0)bn(tj , tm)(1 + op(1)).

Following Fan and Gijbels [16], the conditions on K(·) and t0 ∈ (0, τ), if τ − t0 = O(h), we have

Var(Bn) =

(
A1 hA2

hA2 h2A3

)

(1 + op(1)), (A.6)

where A1 = b(t0, t0)/τ
2, A2 = b(10)(t0, t0)u2/τ

2, A3 = b(11)(t0, t0)u
2
2/τ

2, and

b(k1,k2)(x1, x2) =
∂(k1+k2)b(x1, x2)

∂xk1
1 ∂xk2

2

, k1, k2 = 0, 1.

The first part of Theorem 2 follows from (A.3)–(A.6). The second part of Theorem 2 can be proved in

the same way described above.
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