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Modern vaccine designs and studies of human leukocyte antigen (HLA)-mediated immune
responses rely heavily on the knowledge of HLA allele-specific binding motifs and
computational prediction of HLA-peptide binding affinity. Breakthroughs in HLA
peptidomics have considerably expanded the databases of natural HLA ligands and
enabled detailed characterizations of HLA-peptide binding specificity. However, cautions
must be made when analyzing HLA peptidomics data because identified peptides may be
contaminants in mass spectrometry or may weakly bind to the HLA molecules. Here, a
hybrid de novo peptide sequencing approach was applied to large-scale mono-allelic HLA
peptidomics datasets to uncover new ligands and refine current knowledge of HLA
binding motifs. Up to 12-40% of the peptidomics data were low-binding affinity peptides
with an arginine or a lysine at the C-terminus and likely to be tryptic peptide contaminants.
Thousands of these peptides have been reported in a community database as legitimate
ligands and might be erroneously used for training prediction models. Furthermore,
unsupervised clustering of identified ligands revealed additional binding motifs for
several HLA class I alleles and effectively isolated outliers that were experimentally
confirmed to be false positives. Overall, our findings expanded the knowledge of HLA
binding specificity and advocated for more rigorous interpretation of HLA peptidomics
data that will ensure the high validity of community HLA ligandome databases.

Keywords: HLA class I, De novo peptide sequencing, HLA binding motifs, HLA peptidomics, IEDB
INTRODUCTION

Human leukocyte antigen (HLA) is a family of proteins in the immune system that binds to and
presents peptide fragments of proteins expressed in the body for recognition by T cells. Peptides that
form stable complexes with HLA proteins are also called HLA ligands. When a foreign antigen,
whose amino acid sequence differs from the host’s proteome, was intracellularly processed and
presented on the cell surface by HLA proteins, the cell containing foreign antigen would be
org March 2022 | Volume 13 | Article 8477561
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recognized T cell and subsequently destroyed by the immune
system. Therefore, HLA-peptide binding activity has been
extensively studied for medical and biotechnology applications
in vaccine design and cancer immunotherapy (1–6).

HLA class I is a subclass of the HLA system that recognizes
peptides with 8-15 amino acids in length. The binding affinity of
a peptide to an HLA class I molecule mainly depends on an 8- to
10-residue motif on the peptide including a few HLA allele-
specific amino acid residues at anchor positions (7–10). Other
residues on the peptide are relatively unconstrained, but some
amino acid combinations can affect the binding affinity. To date,
although a few works have highlighted the multiple specificities
of HLA class I binding (8, 11, 12) and HLA class II binding (13),
the motif of each HLA class I allele is still represented with a
single amino acid frequency profile in major databases (14, 15).
In other words, HLA class I motifs were assumed to be unimodal.
While this simplification may not have a noticeable impact on
the development of HLA binding prediction models (11, 16), it
may limit the design landscape of vaccines if researchers use only
the consensus motif as a guideline.

Breakthroughs in HLA peptidomics, which enabled the
isolation of HLA proteins from the cell surface followed by
high-throughput sequencing of HLA ligands, have cataloged a
large amount of ligand sequences for a multitude of HLA class I
and class II alleles from both cell lines and patient samples (8, 10,
17, 18). These data accelerated the improvement in HLA binding
prediction accuracy as well as enabled detailed characterization
of HLA binding specificity. HLA peptidomics is also being
increasingly utilized to identify tumor-specific or tumor-
elevated antigens in cancer patients, which can then be
developed into a cancer vaccine to boost the immune system
to target cancer cells (5, 6). Nonetheless, results from HLA
peptidomics only indicate whether the peptides are bound to
the HLA proteins and presented on the cell surface but provides
no information on their actual binding affinities. Hence,
downstream analyses of HLA peptidomics often involve HLA
binding affinity predictions by artificial neural network models to
screen for peptides with strong bindings. Furthermore, like most
mass spectrometry analyses, results from HLA peptidomics can
include contaminants such as carry-over peptides and non-HLA-
specific proteolytic peptides or artifacts from in-source
fragmentations (19, 20). Immunoaffinity purification of HLA
proteins can also introduce non-specific co-isolates (21). A few
studies have proposed additional analysis steps that would help
reduce the number of contaminant identifications originating
from these sources (20, 21).

Increasing the understanding of HLA binding specificity and
the quality of known HLA ligand databases is crucial for
designing better vaccines against constantly emerging
pathogens and improving the accuracy of HLA binding and
immunogenicity predictions. In this study, a hybrid de novo
peptide sequencing strategy with SMSNet (22) was applied to
large-scale HLA class I peptidomics datasets (8, 17) to uncover
new candidate HLA ligands that would expand the existing
databases. Subsequent unsupervised clustering of known and
newly discovered ligands for each HLA class I allele strongly
suggested that several alleles recognize multiple, clearly distinct
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motifs. Many potential false positives whose sequences do not
match the corresponding HLA binding motifs were also
observed. A validation experiment confirmed that almost all
potential false positives exhibit no HLA binding activity. Most
importantly, many of these false positives were also found in the
Immune Epitope Database (15) and could be erroneously used
by the community. Additionally, our HLA peptidomics analysis
of a B-lymphoblastoid cell line expressing both HLA class I and
class II alleles highlighted the capability of SMSNet to identify
high-affinity antigens in a multi-allelic setting.

Overall, our work revisited two key aspects of the HLA study:
the representation of the HLA binding motif and the
interpretation of HLA peptidomics data. The findings strongly
suggested that the implicit unimodal assumption of HLA class I
motifs should be replaced by a multimodal representation and
that the quality of HLA peptidome-derived HLA-I ligands
reported in the community database may be questioned.
RESULTS

Re-Analysis of Large-Scale Mono-Allelic
HLA Class I Peptidomes
De novo peptide sequencing with SMSNet (22) was shown to be
effective for discovering new candidate HLA class I antigens from
a peptidomics dataset. Here, SMSNet was applied to a larger
collection of high-quality HLA peptidomics data from mono-
allelic human B lymphoblastoid cell lines encompassing 88 HLA-
A, -B, -C, and -G alleles (8, 17). In total, 109,372 unique peptide
sequences with lengths ranging from 8 to 15 amino acids
were identified from 327,312 mass spectra (Figure 1A,
Supplementary Table 1). There are 36,043 newly discovered
peptide-HLA pairs involving 25,718 unique peptide sequences as
well as 5,347 additional pairs that have been previously observed
in multi-allelic patient samples. Over 88% (22,854 peptides) of
newly discovered peptides could be mapped to the human
reference proteome. About half of peptides with unknown
origins could be traced to open reading frames on non-coding
transcripts (1,630 peptides). The length distribution of 25,718
newly identified peptides matches well with past observations
(23), with the majority being 9-mers (Figure 1B). Most
importantly, the discovery of 36,043 new peptide-HLA pairs
has the potential to expand the database of known HLA class I
ligands by up to 35-40% for some major alleles such as HLA-
A*11:02 and HLA-A*34:02 (Figure 1C).

Extent of Tryptic Peptide Contaminations
in HLA Peptidomics Data
Past analyses of HLA peptidomics were careful not to report 9-
mer tryptic peptides as antigens for HLA alleles whose binding
motifs do not end with an arginine or a lysine (10). Among 88
HLA class I alleles investigated in this study, 12 have binding
motifs ending with an arginine or a lysine (Figure 2A, HLA-
A*03:01, HLA-A*11:01, HLA-A*11:02, HLA-A*30:01,
HLA-A*31:01, HLA-A*33:01, HLA-A*33:03, HLA-A*34:01,
HLA-A*34:02, HLA-A*66:01, HLA-A*68:01, and HLA-
A*74:01), and are expected to present tryptic peptides.
March 2022 | Volume 13 | Article 847756
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However, for the other 76 alleles, we also identified 2,838 tryptic
peptides from the monoallelic peptidomics data (Supplementary
Table 1) that were assigned as true ligands to the same alleles in
the Immune Epitope Database (IEDB) (15). Motif clustering
with GibbsCluster (24) and binding affinity prediction with
NetMHCpan (25) clearly illustrated that these tryptic peptides
form separate clusters with much lower binding affinities than
the known motifs (Figure 2B and Supplementary Figure 1).
Overall, clusters of tryptic peptides identified from the
monoallelic peptidomics data were observed for 11 out of 76
alleles whose binding motifs do not end with an arginine or a
lysine. In all 11 alleles, more than 13% of identified peptides are
tryptic. Considerable but lower extent of tryptic peptide
contamination were also previously reported for these alleles
(8), in which 9-28% of identified peptides are tryptic
(Supplementary Table 2).

To test whether tryptic peptides identified alleles whose
motifs do not end with an arginine or a lysine are specifically
recognized by the corresponding alleles, and thus may be true
ligands, predicted binding affinities for the observed tryptic
peptide-HLA allele pairs were compared with the predicted
binding affinities between random pairs. This revealed that
Frontiers in Immunology | www.frontiersin.org 3
almost all alleles do not exhibit stronger affinities toward the
identified tryptic peptides than toward random tryptic peptides
(Supplementary Figure 2). Hence, these tryptic peptides are
likely to be contaminants. It should be noted that predicted
binding affinities from NetMHCpan can separate HLA alleles
that are expected to present tryptic peptides from other alleles
(Supplementary Figure 3). Furthermore, even among 12 HLA
alleles that are expected to present tryptic peptide, the presence
of two modes in the distributions of predicted binding affinities
for their tryptic ligands (Supplementary Figure 3, HLA-A*11:01
and HLA-A*34:02 in particular) suggests that some identified
tryptic peptides for these alleles may yet be false positives. A
detailed motif analysis of tryptic peptides belonging to these two
modes showed that tryptic peptides with strong binding affinities
(predicted IC50 ≤500 nM) exhibit additional enrichments of
specific amino acids at the first and second motif positions while
tryptic peptides with weak binding affinities (predicted IC50
>500 nM) do not exhibit any pattern.

HLA Alleles With Multiple Binding Motifs
In addition to revealing clusters of false-positive tryptic peptides,
unsupervised motif clustering of peptides identified from
A

C

B

FIGURE 1 | SMSNet identified a large number of new ligands from public HLA peptidomics datasets. (A) Statistics of MS/MS spectra, peptide-HLA pairs, and the
sources of peptides identified by SMSNet on mono-allelic HLA peptidomics datasets of 88 HLA class I alleles (see Methods). (B) Length distribution of all identified
peptides. (C) Potential increase in the size of the database of known ligands from this study, assuming that all newly identified sequences are true ligands. The
number of known ligands for each allele was extracted from the IEDB database by counting unmodified antigens and antigens with major modifications, namely
oxidized methionine and phosphorylated serine, threonine, and tyrosine.
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monoallelic peptidomics data also showed that several HLA class
I alleles possess multiple motif specificities that cannot be
explained by length alone (11). For example, HLA-B*14:02
peptides contain arginine exclusively at either the 2nd or the
5th position of the motif with only slight differences in predicted
binding affinities (Figure 2C, average predicted affinities are
2,067 nM and 1,733 nM, respectively). These low predicted
binding affinities, despite being associated with clear motif
patterns, may reflect the limitation of binding affinity
prediction as only 65 out of more than 1,800 HLA-B*14:02
ligands on IEDB contain quantitative binding affinity data that
can be used to train the prediction model. The motif for this allele
was previously reported as a combined pattern with arginine at
both positions (10, 14). Other alleles with multiple, clearly
distinct motifs include HLA-B*15:01, HLA-B*51:01, and HLA-
B*53:01 (Supplementary Figure 4). Additionally, several alleles
also contain multiple related motifs that differ only by the shift
of the anchor residue at the 2nd position to the 1st position
(Supplementary Figure 5), which can be explained as mixtures
of 9-mer and 10-mer motifs (Supplementary Figure 6). The fact
that most motifs consist of peptides with similar, intermediate
predicted binding affinities further illustrated the limitation of
binding affinity prediction and the power of unsupervised
analyses for discovering new biological insights into HLA
binding specificities.

False Positives in HLA Peptidomics Data
A by-product of unsupervised motif clustering is the designation
of outlier peptides that do not fit into any motif. Here, a peptide
is labeled as an outlier if the quality of the motif clustering, as
measured by Kullback-Liebler distance in GibbsCluster, is
Frontiers in Immunology | www.frontiersin.org 4
improved by removing the peptide from the analysis. This
result revealed that up to 5-6% of peptides identified from
monoallelic peptidomics data were classified as outliers for
some HLA alleles (e.g., HLA-B*14:02 and HLA-A*02:05,
Supplementary Table 2). As expected, the predicted binding
percentage ranks of these outliers were much higher than those
of peptides belonging to motif clusters (Figure 2D, higher
percentage rank indicates weaker binding affinity). More than
83.8% and 95.5% of outliers do not pass the 2% rank threshold
for weak binder and the 0.5% rank threshold for strong binder
(25), respectively. In contrast, only 10.2% and 20.4% of peptides
that belong to motif clusters failed the same thresholds. Among
peptides of unknown origins that were identified solely by de
novo sequencing, more than 47% of them pass the 0.5% rank
threshold for strong binder (Figure 2E).

To test whether outlier peptides identified by unsupervised
motif clustering are false positives or true ligands with very weak
binding affinity, we performed an HLA binding assay on 59
newly identified antigens for HLA-B*14:02 (Supplementary
Table 3, 13 outliers and 46 non-outlier peptides). This assay
showed that all outlier peptides except LRNGGHFVI and
LPFCRPGPEGQL exhibited almost no binding activity against
the HLA molecules (Figure 3A, relative binding activity <1% of
positive control). The high binding affinity of LRNGGHFVI and
LPFCRPGPEGQL may be attributed to the arginine residues.
LRNGGHFVI was likely called an outlier because its non-
arginine residues did not fit the motif profile of HLA-B*14:02
(Figure 2C, top cluster). For LPFCRPGPEGQL, this peptide was
likely called an outlier because the middle arginine residue was
not predicted to take part in the 9-mer binding motif by
NetMHCpan (the predicted core motif was LPFGPEGQL).
A C

D E

B

FIGURE 2 | Unsupervised clustering revealed potential false positives and multiple motif specificities. (A) Single 9-mer motif identified for HLA-A*11:01 together with
predicted binding affinities (IC50, nM unit). (B) Two motifs identified for HLA-A*36:01, one of which consists mainly of tryptic peptides and exhibits lower affinities
(higher IC50 value indicates lower affinity). The top motif is expected to be a false positive. (C) Two distinct motifs identified for HLA-B*14:02 with arginine at different
residue positions but similar predicted affinities. (D) Distributions of predicted percentage rank (% rank) of eluted ligand for clustered peptides and outlier peptides. A
higher % rank indicates lower binding affinity. Bin size is 2%. (E) Distributions of predicted percentage rank of eluted ligand for peptides from various sources. Bin
size is 1%.
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Overall, the experimental binding result is in good agreement
with computational affinity prediction (Figure 3, Spearman’s
rank correlation = –0.62 with p-value = 1.6e-7). These pieces of
evidence together strongly suggest that the majority of outlier
peptides are false positives.

Application of SMSNet on Multi-Allelic
Peptidomics Data
To showcase the capability of SMSNet in a multi-allelic setting,
we performed an HLA class I and an HLA class II peptidomics
experiments on a B-lymphoblastoid cell line (BLCL1408-1038)
expressing HLA-A*01:01, HLA-B*08:01, HLA-C*07:01, HLA-
DPA1*01:03, HLA-DPB1*04:01/02:01, HLA-DQA1*05:01/
05:01, HLA-DQB1*02:01/02:01, and HLA-DRB1*03:01/03:01.
Both SMSNet and PEAKS-DB (26, 27), which rely on the same
principle of first performing de novo peptide sequencing and
then allowing low-confidence amino acids to be refined via a
subsequent database search, were used to analyze the data. As
each tool was optimized differently, the confidence thresholds for
peptide identification were set separately (see Methods). Each
peptidomics sample was processed twice through the mass
spectrometer with slightly different settings on the accepted
precursor charge states: one accepting all precursors and
another accepting only precursors with 2+ or higher charge
state. NNAlign_MA (28) was used to predict the binding
probabilities for each identified antigen simultaneously against
all HLA class I or class II alleles present and assign each peptide
to the most likely allele. The maximum predicted binding score
was taken for each peptide. Overall, the lengths of identified
peptides closely followed the expected ranges, with the highest
frequency of 9-mer for HLA class I peptides and 15-mer for HLA
class II peptides (Supplementary Figure 7). Peptides assigned to
HLA-A*01:01 or HLA-B*08:01 matched known motifs for the
respective alleles, while only 36 unique peptides were identified
for HLA-C*07:01 (Supplementary Figure 7). Across technical
replicates, SMSNet identified the same set of peptides slightly
more consistently than PEAKS-DB (Supplementary Table 4,
45.9% versus 34.5% for HLA class I peptides, and 29.3% versus
15.1% for HLA class II peptides).
Frontiers in Immunology | www.frontiersin.org 5
For HLA class I peptidome, SMSNet and PEAKS-DB had a
40% overlap at peptide level (Figure 4A and Supplementary
Table 5) and agreed on the same peptides for 98% of the MS/MS
spectra identified by both tools (2,170 of 2,215 spectra). To assess
the quality of peptides identified by each tool, predicted HLA
binding scores and peptide identification confidence scores were
visualized together. Tools that identified peptides with high HLA
binding scores with high confidences should be preferable. This
analysis revealed that both SMSNet and PEAKS-DB identified
peptides with high predicted binding probabilities and high
confidences (heatmaps in Figure 4B). Furthermore, peptides
identified fully de novo by SMSNet also exhibit the same level of
quality as peptides that passed a follow-up database search step
(Figure 4B, rightmost panel). It should be noted that all methods
identified peptides whose lengths do not match the expected
lengths of HLA class I ligands (8-15 amino acids), which were
removed from consideration, and that peptides with post-
translational modifications were not considered here as their
binding probabilities could not be predicted.

For the HLA class II peptidome, both SMSNet and PEAKS-DB
made fewer identifications (913 and 2,851 versus 3,424 and 4,290
peptides) and had smaller overlap (19% versus 40% at peptide
level) than HLA class I peptidome’s counterpart (Figure 4C). This
finding is likely because the yields of HLA class II immunoaffinity
purification were lower and partly because HLA class II antigens
are longer and consequently slightly harder to confidently identify
from MS/MS spectra. Nonetheless, the two tools still agreed on
the same peptides for 94% of the MS/MS spectra identified by
both (355 of 377 spectra) and 9 of 22 disagreements occurred due
to difference in interpretation between deamidation of glutamine
and asparagine versus glutamic acid and aspartic acid. Here,
PEAKS-DB was able identify significantly more peptides than
SMSNet, likely because PEAKS-DB can identify long peptide
more confidently. Peptides that were identified solely by
PEAKS-DB were significantly longer than those identified in
common with SMSNet (Mann-Whitney U test p-value <1e-10),
with the longest identified peptide being 48 amino acids in length.
On the other hand, the longest peptide identified by SMSNet is
only 27 amino acids in length. In terms of the predicted binding
A B

FIGURE 3 | HLA binding assay for HLA-B*14:02. Peptide synthesis and binding assay were performed by ProImmune, Ltd. (see Methods). (A) Distributions of
binding scores, measured as the percentages of the binding activity compared to a positive control, for clustered peptides (n = 46) and outlier peptides (n = 13).
(B) Comparison of predicted percentage ranks of eluted ligand (% rank) and binding scores. The orange and red dashed lines indicate the 2% rank and 0.5% rank
thresholds for weak and strong binders, respectively. The left panel shows the full range of % rank while the right panel shows the zoomed-in at % rank below 10%.
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scores, peptides identified by SMSNet exhibited slightly higher
scores than PEAKS-DB’s (Figure 4D, Mann-Whitney U test p-
value = 0.0131). But as most of the predicted binding probabilities
were quite low, it is inconclusive whether one tool is better than
the others based on this aspect.

Applying Unsupervised Analyses on
Multi-Allelic Peptidomics Data
To illustrate how our proposed unsupervised analysis can be
applied to a newly generated peptidomics dataset, motif
clustering, binding affinity prediction, and tryptic peptide
identification were applied to the newly generated B-
lymphoblastoid (BLCL1408-1038) HLA class I peptidomes.
Frontiers in Immunology | www.frontiersin.org 6
Peptides identified by SMSNet and PEAKS-DB were
aggregated and analyzed together. Overall, NNAlign_MA
assigned 1,795 peptides to HLA-A*01:01, 2,598 peptides to
HLA-B*08 : 01 , and 36 pep t i d e s t o HLA-C*07 : 01
(Supplementary Figure 7). To handle the situation where only
a few peptides were identified for an allele, as is the case for HLA-
C*07:01 here, all reported ligands from the IEDB database were
also included during the unsupervised analyses to help establish
motif clusters. Motif clustering with GibbsCluster flagged 112
peptides as potential outliers, 108 of which were assigned to
HLA-A*01:01. Visualization of the motif profiles and predicted
binding affinities strongly suggests that these outliers are false
positives, with complete absence of anchor amino acids and very
A B

C D

FIGURE 4 | Comparison of SMSNet and PEAKS-DB on multi-allelic B-lymphoblastoid sample. (A) Overlap of identified peptides from HLA class I peptidomes
between SMSNet and PEAKS-DB. (B) Histograms show the distributions of predicted binding scores, calculated as the maximum score over HLA-A*01:01, HLA-
B*08:01, and HLA-C*07:01, which are expressed in the cells, for peptides identified by each tool. Heatmaps show the association between predicted binding scores
and peptide identification confidence scores reported by each software. Histogram and heatmap for peptides identified fully de novo by SMSNet (i.e., without relying
on database search step) are also shown separately. (C) Overlap of identified peptides from HLA class II peptidomes between SMSNet and PEAKS-DB. (D) Similar
histograms and heatmaps as in (B) for HLA-DPA1*01:03, HLA-DPB1*04:01/02:01, HLADQA1*05:01/05:01, HLA-DQB1*02:01/02:01, and HLADRB1*03:01/03:01,
which are expressed in the cells.
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low affinities (Supplementary Figure 8). It should be noted that
flagged outliers and tryptic peptides could account for most of
the peptides with low predicted binding affinities (IC50 > 30,000
nM). For HLA-B*08:01, although only 3 peptides were flagged as
outliers, one of the motif clusters suggested by GibbsCluster for
this allele could consist of false positives because its member
peptides exhibited much lower predicted binding affinities
compared to other clusters’ (IC50 >3,000 nM versus <1,000
nM) together with a lack of the anchor lysine or arginine residue
at the 5th position (Supplementary Figure 9, top panel). In terms
of tryptic peptide contaminant, only 9 peptides are fully tryptic,
and 56 peptides are partial tryptic.
DISCUSSION

Our work highlighted the need for a careful downstream analysis
of peptides identified from the HLA peptidomics experiment to
remove potential false positives. Although a prior work has
provided detailed analyses to account for non-ligand
contaminants (20), there are still true peptide identifications
that bind very weakly or non-specifically to the target HLA allele.
Inclusion of these peptides as true HLA ligands in community
database can potentially mislead researchers as HLA peptidome-
derived peptides are not accompanied with binding affinity
values. Unsupervised clustering of identified putative HLA
ligands not only elucidate allele-specific binding motif patterns
(11, 12) but also revealed clusters of tryptic peptides for HLA
alleles that should not recognize an arginine or a lysine at the C-
terminus of the binding motif (Supplementary Figure 1) as well
as outlier peptides that do not fit into any cluster. A small-scale
HLA binding experiment of putative ligands of HLA*B14:02
confirmed that almost all outliers (11 of 13) exhibited no binding
activity (Figure 3A, relative affinity < 1% of positive control)
while 72% (33 of 46) of non-outliers exhibited some binding
activities. Outlier peptides are also predicted to be weaker
binders than de novo-identified peptides whose origins cannot
be verified (Figures 2D, E, NetMHCpan % rank eluted ligand).
Similarly, most tryptic peptides are likely false positives because
their predicted binding affinities are not stronger than those
between random tryptic peptides and HLA al le les
(Supplementary Figure 2). It is interesting to note that both
motif patterns and predicted binding affinities have to be
analyzed together to clearly distinguish between multiple motif
specificities and outliers. When multiple motifs were identified
with similar binding affinity distributions (Supplementary
Figures 4 and 5), they can indicate multiple motif specificities
for the allele. Yet, when the distributions of predicted binding
affinities were also bimodal (Supplementary Figure 1), they
indicate potential outliers.

Overall, there are 3,846 potential false positives identified here
that have been reported as positive antigens in the IEDB
database. Although this number may seem small compared to
the current size of the IEDB database (>300,000 allele-specific
antigens), the presence of potential false positives is considerable
for HLA alleles with fewer known ligands. For example, 23%
(679 of 2,957), 16% (342 of 2,165), and 11% (209 of 1,843) of
Frontiers in Immunology | www.frontiersin.org 7
IEDB reported ligands for HLA-C*03:03, HLA-A*36:01, and
HLA-B*57:01, respectively, are flagged as potential false
positives here. Furthermore, the bimodal distribution of
predicted affinities suggested that there are more false positives
among peptides that belong to motif clusters (Figure 2A).
Hence, careful analysis of both future HLA peptidomics data
and the data already deposited into the IEDB database is needed
in order to maintain the integrity of community antigen
databases and prevent errors from propagating into HLA
binding prediction and immunogenicity prediction models. A
first step for cleaning IEDB entries that were derived from
peptidomics data would be to flag all tryptic peptides for HLA
alleles whose binding motifs do not end with a lysine or an
arginine. Each sequence that can be mapped to a known protein
should also be checked for a flanking arginine or lysine in the
protein sequence to determine whether it is fully tryptic, and
more likely to be a contaminant. If these tryptic peptides
originated from common contaminants or highly expressed
proteins, they could be potentially removed. Otherwise, their
predicted binding affinities should be examined. Next,
unsupervised analyses of motifs clusters and predicted binding
affinities performed here should be repeated on the entirety of
IEDB database to flag potential outliers. Adding potential tryptic
contaminant and outlier labels to IEDB entries could caution
future users and developers of prediction models.

Our unsupervised framework, which focuses on motif
specificity and binding affinity distributions, perfectly
complements the existing best practices (20) for screening true
HLA ligands from peptidomics data that focus more on the
proteolytic cleavages, chromatographic carryover, in-source
fragmentation, and other factors that affect the quality of
identification. Intriguingly, when we applied some of the best
practices on our analysis of mono-allelic HLA peptidome data,
the protein and peptide coverage ratios, which would support the
possibility of proteolytic cleavage, were much lower than those
previously reported (20) (Supplementary Figure 10, top panels).
For example, the coverage of beta actin (ACTB) protein, which
was found to be as high as 39.27% in another dataset (20), is only
2.83% here. Other proteins with high coverages (up to 4.32%)
include three 40S ribosomal proteins (RPS3, RPS19, and RPS23)
and two histones (H4C1 and H3-3B) which are known to be
highly expressed as expected. This indicates that the thresholds
for identifying proteolytic peptides need to be re-tuned for each
study. On the other hand, while no potential proteolytic peptide
was identified, 796 peptide-HLA allele pairs could be flagged as
putative products of in-source fragmentation (Supplementary
Figure 10, bottom panels). The low average (geometric mean)
predicted binding affinities for these peptides at 7,706 nM
suggested that they might be false positives. Only 16 of these
were already designated as outliers by our analysis and 510 were
reported as true ligands in IEDB. These findings highlight the
orthogonality between this work and existing best practices and
strongly suggest that they should be performed in conjunction on
future HLA peptidomics studies.

It is interesting to note that this work and prior unsupervised
clustering analyses of the same HLA class I alleles (11, 12) do not
always identify the same multiple motif specificities. For
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example, three motifs were identified for HLA-B*15:01 here
(Supplementary Figure 4) but not in prior analysis (11). On
the other hand, three motifs for HLA-B*07:02 were previously
reported (12), but only a single motif was identified here. This
latter case is especially unexpected because the motif identified
here was not the one with the highest number of associated
peptides among the three reported motifs. As a quality control,
both motifs of HLA-B*51:01 (Supplementary Figure 4) were
consistently identified (11). In addition to multiple specificities,
related motifs that differ by a shift of the 2nd residue position to
the 1st residue position, with only minor changes in predicted
binding affinit ies , were observed in several a l le les
(Supplementary Figure 5). These indicate the presence of 10-
mer or longer motif patterns that were truncated to 9-mer during
the core binding motif predict ion by NetMHCpan
(Supplementary Figure 6). Additionally, unsupervised
clustering was also able to capture minor inter-residue
cooperation between non-anchor positions and represent them
in separate motif clusters (HLA-B*53:01 in Supplementary
Figure 4, HLA-B*15:03 and HLA-B*40:01 in Supplementary
Figure 4). However, it should still be noted that some peptides,
including LRNGGHFVI and LPFCRPGPEGQL, that were
flagged as outliers by our procedure turned out to be viable
ligands. These incidences were partly due to our reliance on the
core 9-mer motifs predicted by NetMHCpan, which missed
the arginine residue in LPFCRPGPEGQL, but they also
reflected that solely relying on computational analyses can lose
promising ligands.

Our work also illustrated the capability of hybrid de novo
sequencing with SMSNet to uncover new HLA antigens in both
mono-allelic and multi-allelic peptidomics samples. More than
36,000 new peptide-HLA pairs were identified from public
mono-allelic HLA class I peptidomics datasets (8, 17) that have
already been extensively analyzed. The new putative antigens
could potentially expand the antigen pools for some HLA alleles
by up to 40% (Figures 1A, C). SMSNet also exhibited good
agreement with the de novo-assisted database search results from
PEAKS-DB (94-98% of MS/MS spectra identified by both tools)
on newly generated HLA class I and class II peptidomes of B-
lymphoblastoid cell line (BLCL1408-1038), both producing
peptide identifications with high predicted binding affinities to
HLA class I alleles (Figure 4B). Furthermore, even in the absence
of a reference proteome database, SMSNet was able to produce
peptides with high predicted binding affinities. The fewer
numbers of putative HLA class II antigens identified by
SMSNet and PEAKS could be attributed to the lower yield of
HLA class II immunoaffinity purification and partially to the
increased peptide length. PEAKS-DB was able to produce many
more identifications than SMSNet (Figure 4C) likely because it
can identify longer peptides more reliably. Although predicted
binding probabilities to HLA class II alleles were slightly higher
for peptides identified by SMSNet, the low confidence of the
predictions makes this result inconclusive and illustrates a
current limitation in computational analysis of HLA class II
binding. Nonetheless, combining results from multiple software
tools is a well-established approach that has been shown to
Frontiers in Immunology | www.frontiersin.org 8
improve the quality of proteomics analyses (29, 30). From our
results, it is clear that SMSNet and PEAKS could be used together
to maximize the sensitivity of putative HLA antigen detection.
METHODS

Cell Line and Antibody Preparation
B-lymphoblastoid cell line (BLCL1408-1038) expressing HLA-
A*01:01, HLA-B*08:01, HLA-C*07:01, HLA-DPA1*01:03,
HLA-DPB1*04:01/02:01, HLA-DQA1*05:01/05:01, HLA-
DQB1*02:01/02:01, and HLA-DRB1*03:01/03:01 was
purchased from Fred Hutchinson Cancer Research Center,
Washington, USA. Cells were cultured in RPMI 1640 media
supplemented with 10% fetal bovine serum, 50 U/ml penicillin in
a humidified incubator at 37C with 5% CO2. Purified pan HLA-
A, -B, -C and pan HLA-DR, -DP, -DQ antibodies were generated
from W6/32 (ATCC, USA) and IVA12 (provided by the lab of
Professor Anthony Purcell, Monash University, Australia)
hybridoma cells cultured in RPMI 1640 media supplemented
with 10% fetal bovine serum, 50 U/ml penicillin and expanded in
roller bottles at 37C with 5% CO2. Secreted monoclonal
antibodies were harvested from spent media and purified using
Protein A resin with ÄKTA purification system (Cytiva, USA).

Immunoprecipitation of HLA Class I and
Class II Complexes
BLCL1408-1038 cell pellets (1 x 108) were pulverised using an
MM400 Retsch Mixer Mill (Retsch, Germany) and lysed with
0.1% IGEPAL CA-630, 100 mM Tris, 300 mM NaCl, pH 8.0
Complete Protease Inhibitor Cocktail (Roche, Switzerland). The
supernatant was passed through a Protein G resin pre-column
(500 mL) to remove non-specific binding materials. HLA class I
and II immunoaffinity purification was performed as previously
described (31). Briefly, the pre-cleared supernatant was
incubated with 10 mg of pan HLA-A, -B, and -C antibodies or
10 mg of pan HLA-DR, -DP, and -DQ antibodies coupled to
Protein G resin with rotation overnight at 4C. After conjugation,
the resins were washed with 10 ml of ice-cold wash buffer 1
(0.005% IGEPAL, 50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM
EDTA), 10 ml of ice-cold wash buffer 2 (50 mM Tris, pH 8.0, 150
mM NaCl), and 10 ml of ice-cold wash buffer 3 (50 mM Tris, pH
8.0, 450 mM NaCl). Bound complexes were eluted from the
column using 5 column volumes of 10% acetic acid. Eluted
peptides were fractionated by reverse-phase high-performance
liquid chromatography (Shimadzu, Japan) on a 4.6 mm diameter
Chromolith SpeedROD RP-18 (Merck, USA). The optimized
conditions were as follows: mobile phase A (0.05% v/v TFA, 2.5%
v/v ACN in water), mobile phase B (0.045% v/v TFA, 90% v/v
ACN in water), flow rate of 1 mL/minute, temperature of 30C,
and injection volume of 200 mL. The elution program was set
as follows: 0-5% of mobile phase B over 1 minute, 5-15% of
mobile phase B over 4 minutes, 15-45% of mobile phase B over
30 minutes, 45-100% of mobile phase B over 15 minutes,
and 100% of mobile phase B over 4 minutes. Fractions were
collected in 1 mL each. Consecutive fractions were pooled into
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11 fractions. Pooled fractions were concentrated by vacuum
centrifugation and reconstituted in 0.1% FA.

LC-MS/MS Analysis of HLA Peptidome
Pooled peptide fractions eluted from an HLA class I sample and
an HLA class II sample were analyzed on a Q Exactive mass
spectrometer (Thermo Fisher Scientific, USA) coupled to an
EASY-nLC 1000 (Thermo Fisher Scientific, USA). Peptide
samples were separated at a flow rate of 300 mL/minute of
buffer B (80% ACN, 0.1% FA). The gradient was set at 4-20%
of buffer B over 30 minutes, 20-28% of buffer B over 40 minutes,
28-40% of buffer B over 5 minutes, 40-95% of buffer B over 3
minutes, washing with 95% of buffer B over 8 minutes, re-
equilibration with buffer A (2% ACN/0.1% FA) over 5 minutes.
Mass spectra resolutions were set at 70,000 for full MS scans and
17,500 for MS/MS scans. The normalized collision energy for
HCD fragmentation was set at 30%. The m/z scan range was set
at 350-1,400. Dynamic exclusion was set at 15 seconds. For HLA
class I samples, the maximum injection times were set at 120 ms
for full MS scan and 120 ms for MS/MS scans. For HLA class II
samples, the maximum injection times were set at 200 ms for full
MS scan and 120 ms for MS/MS scans. Each sample was
analyzed twice on the mass spectrometer, once where
precursor charge states of +2 or higher were accepted (raw file
names beginning with 2zup) and another where all charge states
were accepted (raw file names beginning with 1zup).

Collection of Published HLA Class I
Peptidomics and Antigen Data
A combined dataset of mass spectrometry raw data of mono-
allelic HLA class I peptidomes (399 raw files, 88 HLA alleles)
were obtained from two prior studies (8, 17) (MSV000080527
and MSV000084172). List of reported antigen-HLA pairs were
obtained from the Immune Epitope Database (15) (IEDB,
downloaded December 2020).

Peptide Sequencing of MS/MS Data
For de novo peptide sequencing with SMSNet (22), MS/MS
spectra and precursor masses were extracted from raw MS files
using ProteoWizard (32) with the following parameters: Peak
Picking = Vendor for MS1 and MS2, Zero Samples = Remove for
MS2, MS Level = 2-2, and the default Title Maker. Charge state
deconvolution was not performed. The SMSNet-M model which
treats carbamidomethylation of cysteine as fixed modification
and oxidation of methionine as variable modification was used.
Target amino acid-level false discovery rate was set at 5%.
Precursor mass tolerance of 30 ppm was applied to discard
identified peptides with high mass deviations. Partially identified
peptides were searched against a UniProt (33) reference human
proteome (downloaded August 2020) and a GRCh38 RefSeq (34)
non-coding transcriptome (downloaded August 2020) to fill in
the missing amino acids. From the transcriptome data, possible
open reading frames that translate to at least 5 amino acids in
length were considered.

For de novo sequencing-assisted database search with PEAKS
version 8.5 (26), raw MS files were searched against a UniProt
reference human proteome and reversed decoys. Cleavage
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enzyme specificity was set to none. Carbamidomethylation of
cysteine, oxidation of methionine, and phosphorylation of serine,
threonine, and tyrosine were set as variable modifications. A
maximum of three modifications per peptide were allowed. Mass
tolerances were set at 10 ppm for precursor mass and at 0.02 Da
for fragment mass. Target peptide-level false discovery rate was
set at 1%.

HLA Binding Affinity and Binding
Motif Analyses
For peptides identified from mono-allelic HLA peptidome
experiments (8, 17), the binding affinities and the 9-mer
binding motifs for the corresponding HLA alleles were
predicted using NetMHCpan-4.1 (25) with default setting. For
peptides identified from multi-allelic B-lymphoblastoid cell line,
the binding affinities were predicted against all HLA class I or
class II alleles present using NNAlign_MA (28). Predicted 9-mer
binding motifs for each HLA class I allele were then clustered
using GibbClusters (24). For each allele, the clustering was
performed with number of clusters ranging from 1 to 5, with
or without outlier detection, and with inter-cluster penalty
parameter L ranging from 0.1 to 0.8. The optimal number of
clusters was determined from the parameter setting with the
highest Kullback-Liebler distance (KLD) as recommended by
the authors (24). Information contents and the amino acid
profiles of 9-mer binding motif clusters were visualized using
Logomaker (35).

HLA Binding Assay
The binding activities of selected 59 newly identified candidate
antigens for HLA-B*14:02 (Supplementary Table 3) were
assessed using the REVEAL MHC-peptide binding assay
provided by ProImmune, Ltd. (Oxford, UK). Peptides were
synthesized and quality checked using MALDI-TOF mass
spectrometry by ProImmune, Ltd. (Oxford, UK). Binding
activities were reported as percentage relative to the affinity of
a positive control (a known high-affinity T cell epitope for HLA-
B*14:02). According to the experiment report provided by the
company, the standard error of the reported affinities is 3
percentage points.
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