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Abstract

Many prostate cancers relapse due to the generation of chemoresistance rendering first-line treatment drugs like paclitaxel
(PTX) ineffective. The present study aims to determine the role of miRNAs and Hedgehog (Hh) pathway in chemoresistant
prostate cancer and to evaluate the combination therapy using Hh inhibitor cyclopamine (CYA). Studies were conducted on
PTX resistant DU145-TXR and PC3-TXR cell lines and clinical prostate tissues. Drug sensitivity and apoptosis assays showed
significantly improved cytotoxicity with combination of PTX and CYA. To distinguish the presence of cancer stem cell like
side populations (SP), Hoechst 33342 flow cytometry method was used. PTX resistant DU145 and PC3 cells, as well as human
prostate cancer tissue possess a distinct SP fraction. Nearly 75% of the SP cells are in the G0/G1 phase compared to 62% for
non-SP cells and have higher expression of stem cell markers as well. SP cell fraction was increased following PTX
monotherapy and treatment with CYA or CYA plus PTX effectively reduced their numbers suggesting the effectiveness of
combination therapy. SP fraction cells were allowed to differentiate and reanalyzed by Hoechst staining and gene
expression analysis. Post differentiation, SP cells constitute 15.8% of total viable cells which decreases to 0.6% on treatment
with CYA. The expression levels of P-gp efflux protein were also significantly decreased on treatment with PTX and CYA
combination. MicroRNA profiling of DU145-TXR and PC3-TXR cells and prostate cancer tissue from the patients showed
decreased expression of tumor suppressor miRNAs such as miR34a and miR200c. Treatment with PTX and CYA combination
restored the expression of miR200c and 34a, confirming their role in modulating chemoresistance. We have shown that
supplementing mitotic stabilizer drugs such as PTX with Hh-inhibitor CYA can reverse PTX chemoresistance and eliminate
SP fraction in androgen independent, metastatic prostate cancer cell lines.
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Introduction

Prostate cancer is the second leading cause of cancer related

death in men in the United States [1]. While anti-androgen

therapy is currently the first line of treatment for patients

diagnosed with prostate cancers, most patients will eventually

develop the androgen-independent form of prostate cancers which

is highly metastatic and has poor prognosis [2]. Microtubule

stabilizers such as PTX are effective in treating patients diagnosed

with androgen-independent prostate cancer [3]. While clinical

trials have proven the initial efficacy of taxanes in increasing

survival in prostate cancer patients [4], there are currently few

effective approaches for treating chemoresistant prostate cancers.

Most tumors are heterogeneous and are composed of bulk and

tumor initiating cells (TICs) with the latter forming a distinct

subpopulation in many cancers. TICs are often referred to as

cancer stem cells (CSCs) and are responsible for tumor initiation,

self-renewal, and chemoresistance [5,6]. Many prostate cancers

relapse due to the presence of highly chemoresistant tumor

initiating/cancer stem cells [7,8]. Chemoresistance to anticancer

drugs including PTX, by these cells may be contributed by drug-

efflux pumps which can efficiently remove lipophilic molecules,

including hydrophobic anticancer drugs. This inherent property of

chemoresistant cells is used for identification and isolation of a side

population (SP), which are a type of cancer stem cells. The SP

fraction, initially identified by Goodell, is a small subpopulation of

cells with enriched stem cell activity and are known to demonstrate

distinctively low levels of Hoechst 33342 dye staining [9]. SP

fraction cells have been shown to be insensitive to various

chemotherapeutic drugs [10] owing to their ability in effluxing

chemotherapy drugs (and lipophilic dyes such as Hoechst 33342)

due to the high expression of ATP-binding cassette family, such as

MDR1 (P-glycoprotein) and ABCG2 [11]. Chemoresistant SP

cells will survive and sustain their clonogenicity during initial

exposure to cytostatic drugs, thereby allowing disease recurrence

when therapy is withdrawn. These subsets of CSCs are thus

considered a viable target for improved therapeutic intervention

and preventing chemoresistance and cancer relapse.

The development of chemoresistance through an increase in the

number of cancer stem like cells, including SP fractions has been

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e40021



attributed to alterations at the level of microRNAs (miRNAs) in

various cancer types. These non-coding RNA molecules can act as

oncogenes as well as tumor suppressor [12,13,14]. Dysregulation

of miRNAs has been implicated in tumorigenesis and drug

resistance as well. Recent work by Cochrane et al. has identified

miRNAs involved in modulating chemoresistance in several

cancers [15].

In our present study, we hypothesized that chemoresistance to

PTX in metastatic prostate cancer cells could be due to the altered

miRNA expression in these cells and that the combination of

antimitotic drug with another small molecule that inhibits CSCs is

likely to be effective in not only reverting chemoresistance by

suppressing CSCs but also target miRNAs involved in chemore-

sistance. Thus, while failure of traditional chemotherapy is due to

a failure to destroy CSCs/SP fractions, a combinatorial approach

is likely to yield better results since the CSC-inhibitor will kill

pluripotent cancer cells and will allow the antimitotic drug (in this

case PTX) to attack bulk tumor cells. Towards this end, we have

combined PTX with cyclopamine (CYA), a natural steroidal

alkaloid which inhibits the Hedgehog (Hh) pathway resulting in

decreased proliferation and increased apoptosis [16]. In recent

years, the Hh signaling pathway has been implicated in the

development and spread of prostate cancer [17,18]. Evidence has

also indicated that Hh signaling supports androgen signaling and

androgen-independent growth in prostate cancer cells in a low

androgen environment [19]. Inhibition of Hh-pathway results in

downregulation of genes involved in stem cell self-renewal as well

as regression of prostate tumor without relapse [20]. Combination

of docetaxel with CYA and epidermal growth factor receptor

(EGFR) inhibitor gefitinib induced greater antiproliferative and

apoptotic effects on SP cell fractions isolated from metastatic

prostate cancer cells than individual drugs [21]. We have recently

demonstrated that adding EGFR-inhibitor lapatinib can enhance

the effectiveness of PTX in inducing apoptosis in a paclitaxel-

resistant, androgen-independent metastatic prostate cancer cells

line DU145-TXR, both in vitro as well as in xenograft tumors [22].

To understand the phenomenon of chemoresistance, in the

present study we have used androgen independent (AI) metastatic

prostate cancer cell lines DU145 and PC3 and their PTX-resistant

versions, DU145-TXR and PC3-TXR, respectively. We have

shown that PTX resistance of prostate cancer cells may be

modulated at the level of miRNAs. We further demonstrate that

combination therapy with CYA and PTX can effectively reduce

cell viability, decrease SP-cell fraction at doses far lower than that

used for CYA monotherapy and impact miRNAs putatively

involved in modulating chemoresistance. Our data indicates that

combination therapy involving supplementation of PTX with Hh-

inhibitors can target specific miRNAs and cancer stem-cell like SP

cell populations at doses that are effective in combination but not

in monotherapy. This approach may represent a better approach

in preventing metastasis and relapse in refractory prostate cancer

since it is less likely to be toxic and will present with far fewer side

effects for the patient, ensuring better compliance and reducing

the chances of a recurrence.

Materials and Methods

Materials
PTX and CYA were purchased from LC Labs (Woburn, MA).

SYBR Green real-time PCR master mix and reverse transcription

reagents were purchased from Applied Biosystems (Foster city,

CA). Goat anti-rabbit P-gp antibody and corresponding secondary

antibody was purchased from Santa Cruz Biotechnology (Santa

Cruz, CA). All other chemicals were obtained from Sigma-Aldrich

(St. Louis, MO) and used as received, unless stated otherwise.

Cell lines
The human metastatic prostate cancer cell lines DU145 and

PC3 and their PTX resistant versions DU145-TXR and PC3-

TXR were a kind gift of Prof. Evan T. Keller (University of

Michigan). All cell lines were maintained in RPMI culture media

supplemented with 1% penicillin/ streptomycin and 10% fetal

bovine serum (FBS) (Gibco) in a humidified incubator containing

5% CO2 at 37uC as described earlier [22].

Human Prostate Tissue
Human prostate tissue (cancerous and benign) were obtained

from the Veterans Affairs (VA) Hospital, Memphis, TN following

established protocols and in accordance with the informed consent

waiver provided by the Institutional Review Board (IRB) at

UTHSC and at the VA Hospital. Prostate tissue was taken using

an 18-gauge core needle biopsy gun and a portion of this tissue

was rinsed and either flash frozen in liquid nitrogen and then

stored at 280uC or placed in cold serum-free RPMI media

containing antibiotics for preparing single cell suspensions. Tissues

were classified as malignant or benign based on the diagnosis

made by a pathologist.

Drug sensitivity and apoptosis assays in DU145-TXRCells
To determine the extent of cellular apoptosis following drug

treatments, DU145-TXR cells were plated into 6-well plates

(7.56105 cells/well). After 24 h, the media was removed and fresh

media containing varying concentrations of PTX, CYA or their

combinations were added. The cells were then stained with

Annexin-V and Propidium iodide (PI) using the Vybrant

Apoptosis Assay Kit as per the manufacturer’s protocol (Molecular

Probes). Briefly, cells were trypsinized, washed twice with cold PBS

and pelleted by centrifugation at 800 rpm for 5 min. The pellets

were resuspended in 100 ml of 1X Annexin binding buffer and

5 ml fluorescein isothiocyanate (FITC)-Annexin-V. Propidium

iodide (100 mg/ml) was added to each 100 ml of cell suspension.

The stained cells were immediately analyzed by flow cytometry.

DU145-TXR cells were also used to determine the cell growth

inhibition ability of PTX and CYA. Cells (56103/well) were

seeded in 96 well cell culture plates and incubated for 24 h to

allow cell attachment. Media was then replaced with fresh media

containing PTX (0.5/1 mM) or CYA (10/25 mM) or combination

(PTX 0.5 mM and CYA 10mM) and incubated further for 48 h at

37uC/5% CO2. Cell viability was then assessed by MTT assay.

For this, media was removed and cells were washed with PBS and

200 ml of fresh media containing 3-(4,5-dimethyl-thiazol-2-yl)-2, 5-

diphenyl tetrazolium bromide (MTT) (0.5 mg/ml) was added

followed by incubation at 37uC/5% CO2 for 4 h. After 4 h, media

was removed and formed formazan crystals were dissolved in

200 ml DMSO and absorbance was measured at 560 nm. Cell

viability was calculated using the following formula:

Cell Viability~
Absorbance of test sample

Absorbance of control
|100

DMSO was used to solubilize PTX and CYA and DMSO

controls were included in all experiments.

miRNAs and Hh-Pathway Regulate Chemoresistance
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Side Population analysis and cell sorting by FACS
Side population analysis in DU14-TXR and PC3-TXR cell

lines was performed using Hoechst 33342 flow cytometry method.

In brief, adherent cells were trypsinized and washed with

phosphate buffered saline (PBS). Cells (16106 cell/ml) were then

suspended in RPMI media supplemented with 2% FBS and 1 mM

HEPES buffer with or without drug solutions (Verapamil, PTX or

PTX+CYA). Hoechst 33342 (5 ml; 1 mg/ml) dye was then added

followed by incubation for 90 min at 37uC. Cells were recovered

by centrifugation and washed several times with PBS to remove

unbound dye and finally suspended in ice cold PBS containing 2%

FBS. SP fraction in clinical samples was analyzed as described

above with additional steps. Briefly, freshly resected prostate tissue

was rinsed, mechanically minced and digested for 4 h at 37uC with

100 U/ml collagenase IV (Worthington Biologicals) in serum free

RPMI. The tissue was frequently pipetted with a 5-ml serological

pipette and at the end of incubation the digest was passed through

an 18.5- gauge needle, centrifuged briefly and the supernatant

sieved through a 100 mm cell strainer to obtain single cell

suspension. Diluted single cell suspensions were then passed once

through 40 mm mesh filter, their viability assessed by trypan blue

staining and kept on ice until analyzed.

Cell Cycle analysis
Flow cytometry was used to determine the percentage of cells in

different growth cycles. Cells (56105) obtained after sorting were

washed with PBS and fixed with ethanol (70%) at 4uC overnight

followed by treatment with RNAse (1 mg/ml) and stained with PI

(10 mg/ml). Percentage of cells in different cell cycle phases was

then determined.

In vitro differentiation study
Ability of SP cells to differentiate was determined by culturing

the pure cell fractions in a 6 well plate for 14 days post sorting. SP-

fraction cells from DU145-TXR and PC-TXR (16105/well) were

seeded into 6 well plate and allowed to grow in RPMI culture

media supplemented with 10% FBS. After 14 days, Hoechst

staining and SP analysis was done on treated or untreated cell

populations as described above. Gene expression analysis was also

carried out on SP and non-SP cells both before and after-

differentiation.

Western blot analysis
Following treatment, DU145 TXR cells were lysed using RIPA

buffer and total protein concentration was determined using Bio-

Rad RC DC protein assay kit (Hercules, CA). SDS-PAGE was

then performed to resolve the proteins which were then

transferred to Immobilon polyvinylidene fluoride (PVDF) mem-

brane using iBlot dry blotting system (Invitrogen, Carlsbad, CA).

Blocking was done using 5% non-fat dry milk in 1X PBST (PBS

containing 0.05% Tween-20) for 1 h at room temperature.

Membranes were then incubated with primary antibody for

16 h at 4uC. Actin was used as the loading control and target

protein was detected by enhanced chemiluminescence (ECL)

detection kit (GE Healthcare Life Sciences, PA).

Real time RT-PCR
Total RNA was extracted from sorted and unsorted prostate

cancer cells using RNeasy RNA isolation kit (Qiagen, MD),

followed by determination of its quality by Nanodrop 2000

instrument. It was then reverse transcribed into cDNA template as

described before [23]. cDNA (100 ng) was then amplified by real-

time PCR using SYBR Green dye universal master mix on a Light

Cycler 480 instrument (Roche, Indianapolis, IN) using the primers

for genes of interest for forty cycles Relative amount of mRNA

compared to S19 (housekeeping gene) level was calculated using

Crossing point (Cp) values and scaled relative to control samples

set at a value of 1. Results for gene expression in experimental

samples were plotted compared with the control.

MicroRNA (miRNA) profiling and data validation
Total RNA that includes small non-coding miRNA was isolated

from untreated and drug-treated DU145-TXR and DU145 cells

or PC3 and PC3-TXR cells using miRNEasy RNA isolation kit

(Qiagen MD) following manufacturer’s instructions. The same

reagents were used to isolate total RNA from human prostate

tissue. Briefly, flash frozen tissue was suspended in extraction

buffer and subjected to careful disintegration using a hand-held

electric homogenizer for 30s at a low-to-middle speed setting. The

homogenate was centrifuged for 3 minutes at 4uC and the

supernatant was used to extract total RNA. Post-isolation, RNA

quality was determined using a Nanodrop 2000 instrument.

For miRNA profiling studies, SYBR green based pathway-

focused miScript miRNA PCR Array (Qiagen, MD) was used.

The cancer pathway array (catalog number 102ZF) allows the

simultaneous detection of 84miRNAs previously identified in

human cancers, as well as appropriate housekeeping assays and

RNA quality controls. The assay was performed according to the

manufacturer’s protocol. Three hundred nanograms (ng) of total

RNA were converted to cDNA using miScript II RT Kit. Diluted

cDNA was mixed with universal primer and SYBR Green dye and

added to the wells of 96-well plates containing lyophilized primer.

The plates were run on a Roche Light Cycler 480Hinstrument and

the expression of individual miRNAs was analyzed using the

obtained Ct values. The fold change for each miRNA was

calculated by plugging the Cp values into the manufacturer’s web-

based software. DU145 cells or PC3 cells, as well as benign

prostate samples were considered as ‘controls’ in order to calculate

the fold change in DU145-TXR and PC3-TXR cells and

cancerous prostate tissue, respectively. Endogenous controls, RT

negative and positive controls, and genomic DNA contamination

controls were also tested for each array.

Validation of miRNA profiling data was done by real-time PCR

estimation of selected miRNAs. For each of the selected miRNA, a

miScript PCR primer was purchased from Qiagen. This assay

targets only mature miRNAs, not their precursors. As a

normalizer, SNORD6 was used as a housekeeping miRNA.

Briefly, diluted cDNA used for miRNA profiling was used as a

template in the presence of SYBR Green dye, universal primer

and miScript primer. The plate was run as described above and

fold changes in miRNA expression were calculated using the Ct

value of the normalizer control. A similar approach was used to

measure expression of miR200c and miR 34a in DU 145-TXR

cells treated with 0.5 mM PTX+10 mM CYA. After treatment,

total RNA was isolated, reverse transcribed to cDNA and used to

measure miRNA expression as described above.

Statistical Analysis
All values in the figures and text were expressed as the mean 6

SD. The results were analyzed and individual group means were

compared with Student’s unpaired t-test. A p value of at least 0.05

was considered significant and is indicated by an asterisk (*).

miRNAs and Hh-Pathway Regulate Chemoresistance
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Figure 1. Effect of PTX and CYA combination on viability of PTX resistant DU145-TXR cells. Cells grown in 6-well plates were treated with
A) 0.3% DMSO, B) 0.5 mM PTX C) 10 mM CYA, D) 25 mM CYA, E) 0.5 mM PTX +10 mM CYA for 48h and F) in DU145-TXR cells after different drug
treatments. Subsequently, cells were trypsinized, washed with PBS and stained with Annexin V-FITC and PI before apoptotic analysis by flow
cytometry. A–E are representative plots from three individual experiments. Data in panel F is the quantitation of % cell death and represents mean 6
SD (n = 3). *p,0.05 vs. control. For MTT assay (Fig. 1G), cells grown in 96 well plate were treated with indicated concentration of drugs for 48 h.
Subsequently, MTT reagent in PBS was added and incubation was carried out for another 4 h. The resulting formazan product was solubilized in
DMSO and the color intensity was determined using a plate reader. A statistically significant difference (* p value ,0.05) was observed when
combination of 0.5 mM PTX and 10 mM CYA was used. Cell Viability = Atest/AcontrolX100. Data are the means6SD (n = 4). PTX, Paclitaxel; CYA,
Cyclopamine.
doi:10.1371/journal.pone.0040021.g001

miRNAs and Hh-Pathway Regulate Chemoresistance
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Results

Combination of CYA and PTX reduces cell viability and
enhances apoptosis in drug-resistant prostate cancer
cells

The ability of combination chemotherapy to inhibit the growth

of PTX resistant prostate cancer cell line was assessed by cell

viability and apoptosis assay. It was observed that combination of

PTX and CYA significantly (p value,0.05) decreases cell viability

to 40% as compared to either PTX or CYA alone (Fig. 1, panels

A–F). Similar results were obtained in Annexin V cell death assay

wherein combination therapy results in a significantly higher cell

death as compared to single agent chemotherapy (Fig. 1, G). While

a combination of PTX and CYA resulted in nearly 70% of cells

dying, the percent cell death observed with PTX or CYA

monotherapy was 15% and 25% respectively. However, treatment

with 25 mM CYA was significantly more effective than control and

resulted in nearly 40% cell death.

Side Population fractions exist in PTX -resistant prostate
cancer cells and have unique gene expression

Figures 2 and 3 show the SP analysis of prostate cancer cell lines

DU145-TXR and PC3-TXR, respectively as well as the effect of

treatment with PTX and CYA. Control DU145 cells have tiny

amounts of SP (0.2%, Fig. 2A) while PTX resistant cell line

DU145-TXR has ,3.2% of SP cells (Fig. 2B) as indicated by

Hoechst staining (p,0.05 compared to DU 145 cells). In case of

PC3-TXR cells, nearly 2% of viable cells were gated as SP

(Fig. 3A). Verapamil, a known suppressor of efflux pumps was used

in these studies as a control to set up the gates in the FACS dot

plots. As seen in Figures. 2C and 3B, verapamil treatment

significantly reduced SP fractions in DU145-TXR cells to 0.89%

and to 0.6% in PC3-TXR cells. This data is in agreement with the

use of verapamil as a control drug for identifying and gating

Hoechst-light cells in various cancer cells, including prostate

cancer. While treatment with 1 mM PTX for 12 h increased the

SP fraction to 7.8%, treatment with 20 mM CYA, a combination

of CYA and PTX 24 h after removal of PTX for a similar time

decreased SP fraction to , 2% (Fig. 2, panels D, E and F,

respectively) (p,0.05 in all samples). In PC3-TXR cells, the SP

fraction was markedly reduced following treatment with CYA

(Fig. 3C) or CYA and PTX combination (Fig. 3D). Real time RT

PCR analysis indicates higher expression of pluripotency markers

OCT4 and NANOG, and cancer stem cell markers CD133 and

ALDH1 in SP fractions compared to non-SP (NSP) fractions in

both DU145-TXR and PC3-TXR cells. Post-differentiation fate of

SP cells was studied by real time RT-PCR and Hoechst staining

after their isolation and re-culturing. These cells differentiated into

a mix population comprising SP and NSP fractions which differed

in their phenotype (Fig. 4, panels A and B, respectively).

Expression analysis of post-differentiation mixed-populations

indicates reduced transcripts of the ABC-transporter and cancer

stemness marker ABCG2 and higher expression of cell prolifer-

ation marker minichromosome maintenance 7 (MCM7) compared

to undifferentiated SP-fractions (Fig. 4D). Further treatment of

post-differentiation SP populations with 25 mM CYA for 48 h

resulted in the SP fraction significantly decreasing from 15.8%

Figure 2. Analysis of side population (SP) fraction in PTX resistant DU145 TXR cells after treatment with PTX and CYA. A) DU145 cells,
B) DU145-TXR cells, C) DU145-TXR cells treated with verapamil (10 mM, 90 min), D) DU145-TXR cells treated with PTX (1 mM, 12 h), E) DU145-TXR cells
treated with CYA (20 mM, 12 h), F) DU145-TXR cells treated with CYA and PTX (20 mM and 0.5mM, respectively, 12 h). Verapamil was used to gate the
SP fraction in all panels and shown as the percentage of the whole viable cell population. Numerical values indicated are the mean6SD of three
individual experiments. * p,0.05 vs control DU145 cells in (A). PTX, Paclitaxel; CYA, Cyclopamine.
doi:10.1371/journal.pone.0040021.g002
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(panel E) to 0.6% (panel F, p,0.05). Table 1 shows the cell cycle

analysis of the flow sorted SP and NSP cells. It was observed that,

62% NSP cells were in the G0-G1 and 30% in S phase in contrast

to 71.5% and 21% for SP cells, respectively (p,0.05).

Gene and Protein Expression in DU 145-TXR Cells
Expression of P-glycoprotein (P-gp) was assessed by Western

blotting. Proteins were separated by SDS-PAGE and probed with

anti-P-gp antibody to determine changes in protein expression

following treatments. Figure 5A indicates that treatment with

25 mM CYA or a combination of CYA (10 mM) and PTX

(0.5 mM) were equally effective, while treatment with PTX

(0.5 mM) alone was ineffective. Expression of GLI-1 (Hh-pathway

marker), OCT-4 (pluripotency/stem cell marker) and CD133

(cancer stem cell marker) was assessed using real time RT-PCR

method and calculating the fold changes with respect to the Cp

values obtained in DU145-TXR cells. Figure 5B show an

increased expression of GLI-1, OCT-4 and CD133 (p,0.05 for

all genes compared to DU 145 cells).

Profiling of Prostate Cancer Cells Identifies miRNAs
Altered in Chemoresistance

Recent studies have implicated various miRNAs such as let 7,

miR 34a and miR 200c in regulating tumorigenesis and

chemoresistance in humans [12,15]. To establish whether

chemoresistance to PTX in prostate cancer was regulated at the

level of miRNAs, we studied the differential expression of several

miRNAs known to be involved in various human cancers. The

expression of eighty of the most common cancer-related miRNAs

was simultaneously determined by a real time PCR method by

adding template cDNA prepared from DU145, DU145-TXR as

well as PC3 and PC3-TXR cells to 96-well plates containing

miRNA specific primers. A DDCt method was used to calculate

fold changes using PTX-sensitive parental cells as controls.

Figure 6A and B identifies the miRNAs whose expression is

different between PTX-resistant and sensitive prostate cancer cells.

As can be seen, several miRNAs such as 1, 18a, 138, 29b, 200c,

34a and 126 were downregulated while 193b, 30c, 155, 146a, 10b,

10a, 17, 125b, 373, 144 and 23b were upregulated in PTX-

resistant cells with respect to parental cells. To confirm that our

findings using this array methodology were accurate and that we

were not reporting false positives, we validated our data by

carrying out miScript primer assays on a select few of the

differentially expressed miRNAs identified using the PCR array.

Figure 6C lists the miRNAs used for data validation. As can be

seen, a very high degree of concordance exists between the fold

changes obtained through the array data and the validating primer

assays. This suggests that our methodology for sample handling

Figure 3. Analysis of side population (SP) fraction in PTX resistant PC3-TXR cells after treatment with PTX and CYA. A) PC3-TXR cells,
B) Cells treated with verapamil (10 mM, 90 min), C) PC3-TXR cells treated with CYA (20 mM, 12 h) or, D) CYA and PTX (20 mM and 0.5mM, respectively,
12 h). The SP fraction, which was eliminated by treatment with verapamil, was gated (P8) in all panels and shown as the percentage of the whole
viable cell population. Numerical values indicated are the mean6SD of three individual experiments. * p,0.05 vs control DU 145 cells (A). PTX,
Paclitaxel; CYA, Cyclopamine.
doi:10.1371/journal.pone.0040021.g003

miRNAs and Hh-Pathway Regulate Chemoresistance
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and data processing is correct and this increases our confidence in

the validity of our approach.

To confirm that combination therapy is effective in targeting

miRNAs involved in modulating chemoresistance, DU145-TXR

cells were treated with a combination of PTX (0.5 mM) and CYA

(10 mM) for 48 h and expression of miRs 200c and 34a was

determined. Figure 6D demonstrates that combination therapy at

concentrations effective in reducing cell viability and inducing

apoptosis in PTX-resistant prostate cancer cells also upregulated

two anticancer miRNAs involved in decreasing the spread of

prostate cancer (34a) and increasing sensitivity to drugs like PTX

(200c). While expression of miRNA 200c increased approximately

4 fold after treatment, there was nearly a 3-fold increase in

miRNA 34a expression (p,0.05 compared to untreated control

cells).

Expression Analysis of Gene Targets of miRNAs 200c and
34a

Since miRNAs act by either repressing or cleaving their target

mRNAs, we carried out gene expression analysis of several known

downstream targets of several miRNAs, including miR200c and

34a identified in our cell and tissue miRNA arrays. Figure 7

delineates these target genes and their expression patterns in

DU145-TXR cells compared to DU145 cells. As can be seen,

there is upregulation of miR 200c target genes like VIMENTIN

(2.5 fold), TUBB-3 (5 fold), ZEB 1 (5 fold), and miR 34a targets

like CD44 (6 fold) and SIRT1 (2.5 fold) while the expression of

another miR200c target E-CADHERIN was downregulated in

DU145-TXR cells. In addition, gene targets of several miRNAs

differentially expressed in this study were altered in DU145-TXR

cells as well. These include DNMT1 (1.5 fold), BAK1 (2.4 fold)

and PUMA (2.5 fold) downregulation.

Figure 4. Post differentiation fate of side population fractions from DU145-TXR cells. After flow sorting, pure SP cells were plated and
allowed to differentiate for 2-weeks. Representative photomicrographs of SP (A) and NSP cells (B) are shown with more SP cells possessing a
fibroblastic, elongated phenotype compared to NSP. Real time RT-PCR was used to confirm higher expression of stem cell markers OCT 4 and NANOG
and cancer stem cell markers CD133 and ALDH1 (C). Similar method was used to show higher expression of pluripotency and efflux marker ABCG2
and lower expression of MCM7 transcripts in initial SP cells (SP), compared to mixed populations post-differentiation (DIFF) where decreased ABCG2
and increased MCM7 levels were observed (D). One set of cells was also treated with 25 mM CYA for 48h. Subsequently, cells were trypsinized and re-
stained with Hoechst dye and analyzed by flow cytometry. Post-differentiation, cells derived from flow sorted SP cells had higher percentage of SP
cell fractions than obtained previously from non-sorted DU145-TXR cells. CYA treatment significantly reduced (p,0.001 vs. control) the percentage of
SP fraction cells from 15.8 (62.1) % (Panel E) to 0.66(0.09) % (Panel F). Representative dot plots from three individual experiments are provided. Data
represents mean 6 SD (n = 3).
doi:10.1371/journal.pone.0040021.g004

Table 1. Cell Cycle distribution of SP and non-SP Cells
following cell sorting.

DU 145 TXR cells Cell Cycle Distribution (%)

G0-G1 S G2-M

SP 71.561.5* 2162.4* 7.562.7

Non-SP 62.0862.3 3061.6 7.9263.2

SP and non-SP fractions were fixed overnight in ice cold 70% ethanol as
indicated in ‘Methods’. Subsequently, they were washed with PBS and stained
with a solution of propidium iodide (PI) and RNAase A before flow cytometry. A
statistically significant difference was observed in the cell cycle distribution.
*p,0.05 vs. Non-SP cells.
doi:10.1371/journal.pone.0040021.t001
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Confirmation of Cell Culture Studies in Clinical Samples
We also carried out SP fraction analysis and cancer miRNA

profiling in clinical prostate tissues. SP fraction was analyzed by

Hoechst staining as described earlier. Nearly 1% of total viable

cells in prostate cancer tissue were SP cells (Fig. 8A), closely

mirroring our findings in PTX-resistant prostate cancer cell lines.

miRNA profiling of cancer tissue from a second patient was also

carried out. For data analysis and subsequent validation, we used

benign prostate tissue from a third patient biopsy as a normal-

ization control. Similar to our results described earlier, we were

able to identify several miRNAs such as miRs 17, let71, 31a, 193b,

29b, 155, let 7d, 9, 125b and 30 as being upregulated while miRs

145, 205, 34a, 126, 200c, 27b, 99a and 152 were downregulated in

prostate cancer tissue (Fig. 8B). Further, there are a number of

miRNAs that are common to our tissue and cell arrays in the

present study. For example, not only are miRs 155, 29b, 34a,

200c, 193b and 17 differentially expressed in cell line miRNA

analysis, their expression patterns too match those seen in the

tissue arrays, thereby further validating our data obtained from

chemoresistant cancer cells.

Discussion

Advanced prostate cancer is usually treated with drugs like

paclitaxel and docetaxel which eradicate the bulk of cells within

the tumor. This therapeutic regimen often leads to chemoresis-

tance for which few treatment strategies currently exist. Most

tumors are heterogeneous and are composed of bulk cancer cells

and a small population of pluripotent stem cells that are capable of

self-renewal, are chemoresistant and capable of maintaining the

tumor [5,7]. These cancer stem cells (CSCs) are the reason why

most chemotherapy drugs eventually lose their efficacy. We have

recently shown that combining the antimitotic drug PTX with an

Her-2 inhibitor, such as lapatinib can reverse chemoresistance

[22]. There is some evidence that lapatinib exerts its anticancer

effects in part by targeting the niche population of CSCs [24].

In recent years, inhibitors of Hh pathway such as CYA have

been investigated for treating various malignancies as dysregula-

tion of this pathway is a key step in generation and sustainment of

cancers [17,19,20]. In prostate cancer too, there is evidence that

Hh-pathway is upregulated [25]. Androgen independent prostate

cancer cells such as DU145 and PC-3 have higher expression of

Hh pathway members than androgen-dependent cells such as

LnCaP [26]. Higher Gli-1 gene expression in PTX resistant

DU145-TXR cells (Fig. 6) was observed compared to non-resistant

parental cells. This prompted us to study the effect of combining

CYA with PTX to treat the PTX chemoresistant. Treatment of

DU145-TXR cells with 0.5 mM PTX and 10 mM CYA reduced

cellular proliferation and cell viability while apoptosis, as measured

by AnnexinV-FITC staining, increased significantly after 48 h of

treatment (Fig. 1). In accordance with our previous observations

[22], 0.5 mM PTX alone was not effective in reducing viability of

DU145-TXR cells or inducing significant levels of apoptosis. Even

though CYA at 25 mM decreased cell viability significantly, this

reduction was still less than that achieved with lower concentration

of drugs used in combination therapy. This ability to decrease

proliferation of cancer cells while utilizing significantly reduced

amounts of highly toxic drugs is a potential advantage for

improved chemotherapy.

Many prostate cancers relapse due to multi-drug resistance

(MDR) caused by the over-expression of ATP-binding cassette

transporter proteins. These transporters actively efflux chemo-

therapeutic drugs from tumor cells and decrease the intracellular

drug concentration [8,27]. Therefore, modulation of MDR

transporters is a promising approach to overcome MDR

[28,29,30]. We have determined the effect of monotherapy with

PTX or CYA, and their combination on the P-gp protein

expression which is one of the major efflux pump systems involved

in chemoresistance [31,32]. Figure 5 indicates that treatment with

a combination of PTX and CYA (0.5 mM and 10 mM, respec-

tively) was able to downregulate P-gp protein expression. Thus,

supplementing PTX with CYA can eliminate the chemoresistance

of androgen independent prostate cancer cells by possibly

suppressing MDR and decreasing P-gp expression.

In addition to the P-gp system, chemoresistance is regulated by

various other mechanisms, including cancer stem cells which are

Figure 5. Effect of PTX and CYA on P-gp expression in DU145-TXR cells. Following treatment, with various drugs as described, total protein
was extracted and separated by SDS-PAGE before probing with P-gp antibody. Actin was used as a loading control. A combination of 0.5 mM PTX and
10 mM CYA was more effective in downregulating P-gp expression in drug-resistant prostate cancer cells than monotherapy with either CYA or PTX at
10 and 0.5 mM concentration. P-gp downregulation with 25 mM CYA was nearly similar to that obtained by combination therapy. (B) Expression of Hh
pathway and stem cell marker genes in DU145-TXR cells. Total RNA was extracted from cells and reverse transcribed to cDNA. Real time RT-PCR was
carried out using SYBR Green chemistry and Ct values thus obtained were used to calculate the fold change. Drug resistant DU145-TXR cells have
higher expression of all three genes tested. PTX sensitive DU145 cells were used as control and gene expression values for DU145-TXR cells were
normalized with respect to the control values. *p,0.05 vs. control.
doi:10.1371/journal.pone.0040021.g005
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highly chemoresistant due to their ability to efflux chemotherapy

drugs. Many current techniques used for characterization of these

stem cells rely on the presence of cell surface markers such as

CD133 and CD44 which were used to isolate these cells using a

flow cytometry approach [5,33]. However, this approach suffers

from the fact that during processing, including trypsinization,

many of these surface markers are cleaved and therefore not

available for antibody binding. Further, CD 133 is not a reliable

marker for isolating CSCs as its expression may not be restricted to

cancer stem cells and that even CD 1332 cells can initiate

tumorigenesis [34]. For this reason, the vital dye Hoechst 33242

was used in the present study for separating SP from main

population of cancer cells. The SP fractions are a subpopulation of

CSCs which were first identified in a hematopoietic stem cell

isolation procedure [9]. These cells have a unique fluorescence-

activated cell sorting (FACS) signature and can be separated by a

flow cytometer with a UV laser as they are distinct from cells that

take up the Hoechst 33342 dye. The SP fraction is capable of

sustained expansion ex vivo and can generate both SP and non-SP

progeny. To understand the mechanism of chemoresistance in

chemoresistant prostate cancer cells, we hypothesized that these

cells are likely to contain a higher percentage of cells that are

chemoresistant and therefore have increased ability to efflux

chemotherapy drugs like PTX. Staining with Hoechst dye resulted

Figure 6. miRNA profiling of prostate cancer cells and effect of combination therapy on miRNA expression. Total RNA including
miRNAs was isolated from DU145-TXR and DU145 cells (A) or PC3 and PC3-TXR cells (B) using miRNEasy RNA isolation kit. SYBR Green based pathway-
focused miScript miRNA PCR Array (Qiagen, MD) was used for miRNA profiling studies. The plates were run on a Roche Light Cycler 480H instrument
and the expression of individual miRNAs was analyzed using the obtained Cp values and the DDCt method. Table in the insert (C) confirms validation
of miRNA profiling data by miScript primer assay. Validation of miRNA profiling data was done by a SYBR Green based real time RT-PCR assay of
selected miRNAs. As a normalizer, SNORD6 was used as a housekeeping miRNA. (D) Efficacy of combination therapy on restoration of miR 200 c and
34a was determined by treating DU145-TXR cells with PTX (0.5 mM) and CYA (10 mM)combination for 48 h after which total RNA was extracted,
converted to cDNA and used as template for miScript primer assay for determining expression of miRNAs 200c and 34a. Untreated DU145-TXR cells
were used as control for calculating fold change after a SYBR Green real time RT-PCR assay. Data represents mean 6 SD (n = 3). * p,0.05 vs. untreated
control.
doi:10.1371/journal.pone.0040021.g006
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in a creation of a typical flow cytometric dot plot profile where P4

gated region in Fig. 3 and P8 gated region in Fig. 4 is lightly

stained compared to other cells. These lightly stained cells are the

SP fraction which constitutes approximately 2–4% of total viable

cells. In contrast, the parental PTX-sensitive DU145 cells had only

0.2% cells in the P4 region, thereby confirming our hypothesis of a

distinct cell population with the ability to efflux hydrophobic drugs

effectively, thereby inducing chemoresistance. Treatment with

verapamil, an inhibitor of calcium gated channels, and known

suppressor of cancer stem cells [35] significantly reduced SP

fraction thereby confirming that the population being gated is

indeed related to CSCs. It is a known fact that in relapsed tumors

and metastatic cancers, there are an increased percentage of

cancer stem cells and SP fractions. In the present case also,

treatment of DU145-TXR cells with 1 mM PTX actually

increased SP fraction to nearly twice that observed in untreated

samples (7.7% vs 3.4%). These observations are supported by

several lines of evidence that indicate the role played by Hh-

pathway in maintaining stem cells, including cancer stem cells in

various tumors [36,37]. Further, treatment with Hh-inhibitors can

reduce or eliminate tumorigenic stem cells [37,38,39]. The present

data indicates that there is more expression of OCT 4, a marker

for self-renewal and pluripotency and CD133, a general marker

for cancer stem cells [5] in DU145-TXR cells. This emphasizes

the potential reservoir of CSC like cells mixed with bulk cancer

cells in the chemoresistant cell line. From the theory of biogenesis

of CSCs, it is clear that SP fraction have the potential for

asymmetric differentiation and can give rise to non-SP fractions

which will go on to form the bulk tumor cells [5,40]. To verify this

theory in prostate cancer cells, pure SP and NSP fractions were

isolated by flow sorting recultured and photographed. Fig. 4A and

B are representative micrographs of isolated SP cells and NSP

fractions. As can be seen, SP fraction has more elongated cells with

typical fibroblastic phenotype while NSP cells were more rounded.

Further, compared to the non-SP, the SP cells from PTX-resistant

versions of both DU 145 and PC3 cells had higher gene expression

of pluripotency markers OCT4 and NANOG [41] and increased

expressions of cancer stem cell markers ALDH1 and CD133

(Fig. 4C). This is not surprising since CSCs, including SP fractions

are capable of self-renewal and can therefore persist in cultures

such as those established after flow-sorting. Comparison of

expression of ABCG2 and MCM7 transcripts also differed

significantly between SP fraction and their progeny mixed

populations. While expression of efflux pump ABCG2 was higher

in SP cells, proliferation marker MCM7 [42] was highly expressed

in post-differentiated cells compared to initial SP cells suggesting

the propensity of these cells for reduced proliferation. Even after

differentiation, the number of SP-fraction cells was very high

(almost 16%) which vanished after treatment with a high

concentration of CYA (25 mM) for 48 h suggesting that suppres-

sion of Hh-pathway may be playing a role in their persistence and

maintenance (Fig. 4E and F, respectively). Isolated SP and NSP

fractions were also used to confirm the cell cycle stages. We have

shown that more SP cells were in G0/G1 phase than non-SP cells

(Table 1). This is in accordance with our gene expression data and

studies from other workers who have demonstrated that the

inherent stem cell like properties of SP population include a

propensity for quiescent phase [21,40]. This may be the reason

CSCs can bypass the G1/S checkpoint and thus maintain their

ability for self-renewal and remain pluripotent.

Recent studies have demonstrated that dysregulation of various

miRNAs is associated with the etiology, metastasis and prognosis

of various cancers including prostate cancer [13,14]. So far, nearly

50 miRNAs have been reported to be significantly expressed in

human prostate cancer but only a few have been linked directly to

the pathology and progression of prostate cancer [43,44]. To

confirm the hypothesis that chemoresistance to PTX involves

differential expression of miRNAs, a focused profiling of miRNAs

known to be involved in various malignancies was carried out in

DU145-TXR and PC3-TXR cells (Fig. 6A and B, respectively).

Several miRNAs involved in prostate cancer and other malignan-

cies were differentially expressed in chemoresistant prostate cancer

cells. Significant among these include miR200c, miR34a and

miR29b, all of which are downregulated in DU145-TXR cells.

Figure 7. Real time RT-PCR identification of gene targets of miRNA in DU145-TXR Cells. Several genes involved in cancer related
biological processes and known targets of differentially expressed miRNAs in our study are altered in PTX resistant DU145 TXR cells. Following RNA
extraction and SYBR Green based real time RT-PCR using specific gene primers, Cp values were calculated and resistant DU145 cells were used to
normalize the expression of individual genes. Data represents the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0040021.g007
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These data trends are in accordance with studies in literature

which shows that miR34 is downregulated in prostate cancer and

its experimental replenishment in cultured cells prevents metastasis

and invasion [45]. miRNA200c, which is downregulated in

DU145-TXR cells, is a tumor-suppressor miRNA known which

maintains ‘epithelialness’ of cancer cells by preventing EMT and

the assumption of an aggressive chemoresistant mesenchymal

phenotype. A recent study by Cochrane et al. confirmed reduced

expression of miR200c as being responsible for chemoresistance to

microtubule stabilizers (such as taxanes) in endometrial, breast and

ovarian cancer cells. In multi-drug resistant cancer cells, restora-

tion of miR200c levels by transfection of its mimic restored

chemosensitivity to PTX [15]. This observation is further

supported by evidence that the loss of miR200c expression results

in a highly aggressive, mesenchymal and chemoresistant pheno-

type in lung cancer cells [46]. In view of the findings described

above, we decided to confirm the effect of our combination

therapy on the expression of miR200c and miR34a (Fig. 6D).

After treatment with 0.5 mM PTX and 10 mM CYA for 48 h, the

expression of both miRs 200c and 34a were increased significantly,

compared to non-treated TXR cells. It is therefore feasible that

this increase in the levels of these miRNAs due to the combination

therapy is responsible for the increased apoptosis and decreased

cell proliferation (Fig. 1).

Expression analysis of select genes which are known targets of

differentially expressed miRNAs, including miR200c and 34a was

carried out to further support our miRNA data. [47]. Figure 7

details some miRNA target genes which are altered in DU145-

TXR cells compared to the parental DU145 cells. SIRT-1 is

suppressed by miR34a and is upregulated in prostate cancers

following loss or downregulation of miR34a [48]. In wild type

cells, downregulation of SIRT-1 by miR34a results in increased

Figure 8. SP fraction analysis and miRNA profiling of clinical prostate tissues. (A) Human prostate cancer tissue was converted to single cell
suspensions as described in ‘Methods’. Cells were stained with Hoechst dye and analyzed as described previously. Nearly 1% of total viable cell
population was gated as the SP fraction. (B) Total RNA was isolated from another set of human prostate tissues (cancer and benign) using miRNEasy
RNA isolation kit. SYBR Green based pathway-focused miScript miRNA PCR Array (Qiagen, MD) was used for miRNA profiling studies. The plates were
run on a Roche Light Cycler 480H instrument and the expression of individual miRNAs was analyzed using the obtained Ct values and the DDCt
method. The fold changes in the tumor tissues were normalized with respect to the benign prostate tissue. (C) Table in the insert confirms validation
of miRNA profiling data by miScript primer assay. Validation of miRNA profiling data was done by RT-PCR estimation of selected miRNAs200c, 34a and
29b. SNORD6 was used as a housekeeping miRNA for data normalization.
doi:10.1371/journal.pone.0040021.g008
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apoptosis [49]. This suggests that the greater resilience of TXR

cells may be due this loss of miR34a. CD 44 is also a surface

marker for CSCs [5] and it stands to reason that it will be

upregulated in a cell line where miR34a is downregulated and

where SP fraction cells are found in higher numbers. Downreg-

ulation of miRNA200c leads to an EMT transformation which is

characterized by a loss of E-CADHERIN (E-CAD) and upregula-

tion of VIMENTIN (VIM) [15]. In aggressively metastatic cell

lines from breast, ovarian and endometrial cancers, E-CAD levels

are suppressed by ZEB-1 which is upregulated as a result of

suppression of miR200c. Downregulation of miR200c also

increases the protein and gene levels of TUBB-3. It has been

suggested that decreased protein levels of TUBB-3 protein

correlate to increased cell death in response to microtubule-

targeting agents such as PTX. DNMTa1 which is also upregulated

is a target of miR29b and is regulated by global hypomethylation.

Loss of miR29b results in upregulation of DNMTa1 at protein and

gene levels in aggressive cancer cells [50] such as seen in the

present study. Bak-1 which is downregulated in DU145-TXR cells

is a target of miR125b, a known oncomir which confers

chemoresistance to PTX in breast cancer cells through suppression

of Bak-1 gene [51]. Another target of miR125b is PUMA which is

a proapoptotic gene and is suppressed when miR125b is

overexpressed in cancer cells [52].

Finally, to correlate and extrapolate the above findings to

clinical studies, SP fraction analysis (Fig. 8A) and miRNA profiling

of prostate cancer tissues (Fig. 8B) was performed. Presence of

distinct SP fractions in clinical prostate cancer tissue is supportive

of our cell culture data. Further, as several miRNAs which are

verifiably altered in PTX-resistant cell lines, such as miR200c and

miR34a, are similarly modified in a clinical prostate cancer

sample, our hypothesis and the overall approach taken to confirm

it are strengthened substantially

Conclusion
We have established that chemoresistance to PTX in DU145-

TXR and PC3-TXR cells is possibly regulated by miRNAs which

are differentially expressed when the PTX sensitive cell line is

transformed to a resistant phenotype. miRNAs are known to

regulate cancer stem cells, chemoresistance and EMT since CSCs

possess a mesenchymal phenotype that allows them to be invasive.

This crosstalk between miRNAs, cancer stem cells and the

resulting physiologic processes such as metastasis and chemoresis-

tance is explained in the schematic in Figure 9.

The present study thus suggests a strategy to restore chemo-

sensitivity to drug-resistant cancer cells, thereby ensuring that

cancers do not relapse due to generation of CSCs in tumors.

Acknowledgments

The authors would like to thank Mr. Michael Danquah for useful

discussions.

Author Contributions

Conceived and designed the experiments: SS RIM SWB RWW.

Performed the experiments: SS DC RM. Analyzed the data: SS DC

SWB RIM. Contributed reagents/materials/analysis tools: RIM. Wrote

the paper: SS DC SWB RIM.

References

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. (2009) Cancer statistics, 2009.

CA Cancer J Clin 59: 225–249.

2. van Brussel JP, Mickisch GH (2003) Multidrug resistance in prostate cancer.

Onkologie 26: 175–181.

3. Pazdur R, Kudelka AP, Kavanagh JJ, Cohen PR, Raber MN (1993) The

taxoids: paclitaxel (Taxol) and docetaxel (Taxotere). Cancer Treat Rev 19: 351–

386.

4. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, et al. (2004) Docetaxel

plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer.

N Engl J Med 351: 1502–1512.

5. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective

identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–

10951.

6. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, et al. (2007)

Identification and expansion of human colon-cancer-initiating cells. Nature 445:

111–115.

7. Liu T, Xu F, Du X, Lai D, Zhao Y, et al. (2010) Establishment and

characterization of multi-drug resistant, prostate carcinoma-initiating stem-like

cells from human prostate cancer cell lines 22RV1. Mol Cell Biochem 340: 265–

273.

Figure 9. Interrelationship between EMT, cancer stem cells, miRNA and chemoresistance. Significant interrelationship exists between
chemoresistance, epithelial to mesenchymal transition and metastasis, which adversely impacts treatment outcomes. Chemoresistance, a key feature
of CSCs and cells undergoing EMT, is regulated by the dysregulation of miRNAs. Our proposed combination therapy with PTX and CYA
simultaneously targets CSCs and bulk cancer cells, reverses EMT and restores expression of miRNAs altered during generation of chemoresistance and
is a viable strategy for treating drug-resistant prostate cancer.
doi:10.1371/journal.pone.0040021.g009

miRNAs and Hh-Pathway Regulate Chemoresistance

PLoS ONE | www.plosone.org 12 June 2012 | Volume 7 | Issue 6 | e40021



8. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006)

Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5: 219–234.
9. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and

functional properties of murine hematopoietic stem cells that are replicating in

vivo. J Exp Med 183: 1797–1806.
10. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, et al. (2004) A

distinct ‘‘side population’’ of cells with high drug efflux capacity in human tumor
cells. Proc Natl Acad Sci U S A 101: 14228–14233.

11. Takubo K, Ohmura M, Azuma M, Nagamatsu G, Yamada W, et al. (2008)

Stem cell defects in ATM-deficient undifferentiated spermatogonia through
DNA damage-induced cell-cycle arrest. Cell Stem Cell 2: 170–182.

12. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as
tumor suppressors and oncogenes. Oncogene 25: 6188–6196.

13. Yu F, Yao H, Zhu P, Zhang X, Pan Q, et al. (2007) let-7 regulates self renewal
and tumorigenicity of breast cancer cells. Cell 131: 1109–1123.

14. Zhang W, Dahlberg JE, Tam W (2007) MicroRNAs in tumorigenesis: a primer.

Am J Pathol 171: 728–738.
15. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK (2009)

MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-
targeting chemotherapeutic agents. Mol Cancer Ther 8: 1055–1066.

16. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, et al. (2007) Cyclopamine-

mediated hedgehog pathway inhibition depletes stem-like cancer cells in
glioblastoma. Stem Cells 25: 2524–2533.

17. Chung MK, Kim HJ, Lee YS, Han ME, Yoon S, et al. (2010) Hedgehog
signaling regulates proliferation of prostate cancer cells via stathmin1. Clin Exp

Med 10: 51–57.
18. Shaw G, Prowse DM (2008) Inhibition of androgen-independent prostate cancer

cell growth is enhanced by combination therapy targeting Hedgehog and ErbB

signalling. Cancer Cell Int 8: 3.
19. Chen M, Feuerstein MA, Levina E, Baghel PS, Carkner RD, et al. (2010)

Hedgehog/Gli supports androgen signaling in androgen deprived and androgen
independent prostate cancer cells. Mol Cancer 9: 89.

20. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, et al. (2004)

Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature
431: 707–712.

21. Mimeault M, Johansson SL, Henichart JP, Depreux P, Batra SK (2010)
Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side

population and nonside population cell fractions from human invasive prostate
cancer cells. Mol Cancer Ther 9: 617–630.

22. Li F, Danquah M, Singh S, Wu H, Mahato RI (2011) Paclitaxel- and lapatinib-

loaded lipopolymer micelles overcome multidrug resistance in prostate cancer.
Drug Deliv and Transl Res 1: 420–428.

23. Danquah M, Li F, III CBD, Miller DD, Mahato RI (2009) Micellar Delivery of
Bicalutamide and Embelin for Treating Prostate Cancer. PharmRes 26: 2081–

2092.

24. Nguyen NP, Almeida FS, Chi A, Nguyen LM, Cohen D, et al. (2010) Molecular
biology of breast cancer stem cells: potential clinical applications. Cancer Treat

Rev 36: 485–491.
25. Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, et al. (2004)

Inhibition of prostate cancer proliferation by interference with SONIC
HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A 101: 12561–12566.

26. Nadendla SK, Hazan A, Ward M, Harper LJ, Moutasim K, et al. (2011) GLI1

confers profound phenotypic changes upon LNCaP prostate cancer cells that
include the acquisition of a hormone independent state. PLoS One 6: e20271.

27. Colabufo NA, Contino M, Berardi F, Perrone R, Panaro MA, et al. (2011) A
new generation of MDR modulating agents with dual activity: P-gp inhibitor

and iNOS inducer agents. Toxicol In Vitro 25: 222–230.

28. Baumert C, Hilgeroth A (2009) Recent advances in the development of P-gp
inhibitors. Anticancer Agents Med Chem 9: 415–436.

29. Coley HM (2010) Overcoming multidrug resistance in cancer: clinical studies of
p-glycoprotein inhibitors. Methods Mol Biol 596: 341–358.

30. Shukla S, Ohnuma S, Ambudkar SV (2010) Improving Cancer Chemotherapy

with Modulators of ABC Drug Transporters. Curr Drug Targets.
31. Chearwae W, Anuchapreeda S, Nandigama K, Ambudkar SV, Limtrakul P

(2004) Biochemical mechanism of modulation of human P-glycoprotein

(ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem

Pharmacol 68: 2043–2052.
32. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV (2007)

Modulation of function of three ABC drug transporters, P-glycoprotein

(ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance
protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin.

Mol Cell Biochem 296: 85–95.
33. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, et al. (2004)

CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:

3539–3545.
34. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, et al. (2008)

CD133 expression is not restricted to stem cells, and both CD133+ and CD133-
metastatic colon cancer cells initiate tumors. J Clin Invest 118: 2111–2120.

35. Komuro H, Saihara R, Shinya M, Takita J, Kaneko S, et al. (2007)
Identification of side population cells (stem-like cell population) in pediatric

solid tumor cell lines. J Pediatr Surg 42: 2040–2045.

36. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, et al. (2007)
Hedgehog signaling maintains a tumor stem cell compartment in multiple

myeloma. Proc Natl Acad Sci U S A 104: 4048–4053.
37. Singh BN, Fu J, Srivastava RK, Shankar S (2011) Hedgehog signaling

antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell

characteristics: molecular mechanisms. PLoS One 6: e27306.
38. Zhou Y, Yang J, Kopecek J (2012) Selective inhibitory effect of HPMA

copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials
33: 1863–1872.

39. Ruiz IAA (2011) Hedgehog signaling and the gli code in stem cells, cancer, and
metastases. Sci Signal 4: pt9.

40. Yao J, Cai HH, Wei JS, An Y, Ji ZL, et al. (2010) Side population in the

pancreatic cancer cell lines SW1990 and CFPAC-1 is enriched with cancer stem-
like cells. Oncol Rep 23: 1375–1382.

41. Han J, Zhang F, Yu M, Zhao P, Ji W, et al. (2012) RNA interference-mediated
silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle

arrest in breast cancer cells. Cancer Lett.

42. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer
cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:

4827–4833.
43. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and

metastasis. Int J Cancer 126: 1283–1290.
44. Gandellini P, Folini M, Zaffaroni N (2010) Emerging role of microRNAs in

prostate cancer: implications for personalized medicine. Discov Med 9: 212–218.

45. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, et al. (2011) The
microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly

repressing CD44. Nat Med 17: 211–215.
46. Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, et al. (2010)

Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant

phenotype in non-small cell lung cancer. Mol Cancer Res 8: 1207–1216.
47. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, et al. (2005) Systematic

discovery of regulatory motifs in human promoters and 39 UTRs by comparison
of several mammals. Nature 434: 338–345.

48. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, et al. (2008) Effects of
miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells.

Biochem Biophys Res Commun 377: 114–119.

49. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1
regulates apoptosis. Proc Natl Acad Sci U S A 105: 13421–13426.

50. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, et al. (2009) MicroRNA-29b
induces global DNA hypomethylation and tumor suppressor gene reexpression

in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly

DNMT1. Blood 113: 6411–6418.
51. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, et al. (2010) MicroRNA-125b confers

the resistance of breast cancer cells to paclitaxel through suppression of pro-
apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285: 21496–

21507.

52. Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ, et al. (2011) miR-125b
promotes growth of prostate cancer xenograft tumor through targeting pro-

apoptotic genes. Prostate 71: 538–549.

miRNAs and Hh-Pathway Regulate Chemoresistance

PLoS ONE | www.plosone.org 13 June 2012 | Volume 7 | Issue 6 | e40021


