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SUMMARY

In solid organ transplant recipients, cancer is associated with worse prog-
nosis than in the general population. Among the causes of increased
cancer-associated mortality, are the limitations in selecting the optimal
anticancer regimen in solid organ transplant recipients, because of the
associated risks of graft toxicity and rejection, drug-to-drug interactions,
reduced kidney or liver function, and patient frailty and comorbid condi-
tions. The advent of immunotherapy has generated further challenges,
mainly because checkpoint inhibitors increase the risk of rejection, which
may have life-threatening consequences in recipients of life-saving organs.
In general, there are no safe or unsafe anticancer drugs. Rather, the opti-
mal choice of the anticancer regimen results from a careful risk/benefit
assessment, from the awareness of potential pharmacokinetic and pharma-
codynamic drug-to-drug interactions, and of the risk of drug overexposure
in patients with kidney or liver dysfunction. In this review, we summarize
general principles that may help the oncologists and transplant physicians
in the multidisciplinary management of recipients of solid organ transplan-
tation with cancer who are candidates for chemotherapy, targeted therapy,
or immunotherapy.
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Introduction

Mortality from cancer in solid organ transplant (SOT)

recipients is increased compared with that expected in

the general population [1-3]. Among the various factors

affecting the poor prognosis in SOT recipients, are the

hurdles in selecting the most efficacious anticancer

treatment, namely the risk of graft toxicity and

rejection, drug-to-drug interactions (DDI) with concur-

rent anti-rejection treatment, reduced kidney or liver

function, patients’ frailty and comorbid conditions [2].

These concerns may lead to suboptimal use of the avail-

able therapies and to a generally less aggressive cancer

treatment, which at least in part, explain the observed

mortality excess in transplant recipients in some studies

[2].
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Therefore, it is critical for health-care providers to

understand which chemotherapy, targeted therapy, and

immunotherapy drugs can be safely used in SOT recipi-

ents, what are the best treatment strategies and those

that should be avoided. In this review, we provide a

concise summary of principles that may help the oncol-

ogist and the transplant physician in the decision-

making process on selecting the anticancer treatment

regimens in SOT recipients.

Chemotherapy and targeted therapy

Graft toxicity

SOT recipients are at increased risk of chemotherapy-

induced nephrotoxicity because of the vasoconstrictive

effects of calcineurin inhibitors (CNI). This makes SOT

recipients more susceptible to volume depletion caused

by diarrhea that occurs after chemotherapy, and to

other conditions that are precipitated by hypovolemia,

such as hyperuricemia, tumor lysis syndrome, precipita-

tions of crystals within tubular lumens, and increased

nephrotoxic drug concentration in renal medulla and

interstitium. In kidney transplant recipients, the pres-

ence of arteriolar lumen narrowing induced by chronic

rejection and/or CNI nephrotoxicty, and the presence of

renal artery stenosis may further aggravate the conse-

quences of hypovolemic conditions.

The anticancer drugs that most commonly cause

nephrotoxic effect by inducing AKI or necrosis

include platinum analogs (mainly cisplatin), ifos-

famide, zoledronic acid, and the antimetabolite peme-

trexed [4]. These drugs can induce cellular toxicity as

a result of their transport through tubular cells,

induction of mitochondrial injury, oxidative stress,

and activation of apoptotic signaling pathways within

cells [4]. Only few reports on the use of platinum

analogs in kidney transplant recipients have been

reported so far. These retrospective series of kidney

transplant recipients with urothelial carcinoma or

head-neck cancer showed that drug toxicities were

acceptable, and nephrotoxicity was mild [5-7], but

most cases had preserved graft function.

Hypomagnesemia is the most frequent electrolyte

alteration caused by cisplatin, the incidence ranging

between 60% and 90% [8]. Hypomagnesemia is also

strongly associated with the epidermal growth factor

receptor (EGFR) inhibitor cetuximab [9]. More than

one-half of cetuximab-treated patients develop hypo-

magnesemia, and nearly 100% of patients have some

decline in serum magnesium concentrations [9]. Kidney

transplant recipients may be particularly susceptible to

magnesium wasting induced by anticancer drugs

because of the high prevalence of hypomagnesemia,

which is common early after transplantation, and may

persists in at least 20% of recipients, being related to

gastrointestinal losses diarrhea and co-medications,

including proton-pump inhibitors, loop diuretics, and

CNI [9].

The angiogenesis inhibitor bevacizumab and the

nucleotides analogs gemcitabine can injure the renal

vasculature and cause thrombotic microangiopathy

(TMA) [9]. This risk is higher in kidney transplant

recipients than in nontransplanted individuals possibly

due to the concomitant risk factors for TMA, such as

the use of CNI or mTORi, the presence of chronic

antibody-mediated rejection, or genetic factors related

to the primary renal disease [10].

The anthracyclines (doxorubicin), EGFR inhibitors,

Vinca Alkaloids, and BRAF-MEK inhibitors (see

Table 1) have cardiotoxic effects that may be particu-

larly risky in heart transplant recipients and in many

kidney transplant recipients because of the high preva-

lence of coronary artery disease in patients with chronic

kidney disease.

BRAF-MEK inhibitors, ALK inhibitors, and EGFR

inhibitors (see Table 1) are the anticancer drugs with

highest hepatotoxic potential, although occasional severe

drug-induced hepatotoxicity have been described with

other agents, such as sorafenib [42,43]. The BRAF-MEK

inhibitors trametinib, ALK inhibitors, EGFR inhibitors,

in addition to CDK 4/6 inhibitors may also cause inter-

stitial pneumonia (see Table 1).

In summary, platinum analogs, particularly cisplatin,

are the drugs with most toxic potential because they are

associated with high risk of acute tubular injury (AKI),

particularly in kidney transplant recipients. Because of

their high nephrotoxic potential, the choice of a plat-

inum analogs-based chemotherapy should take into

consideration the risk-benefit ratio, based on the

expected response to treatment, cancer prognosis, and

life expectancy, together with the baseline kidney func-

tion.

Pharmacokinetic (PK) drug-to-drug interaction (DDI)

There are five «must-know» key principles of DDI that

should be considered in managing DDI in SOT trans-

plantation.

The first principle is that most PK DDI are caused by

perturbation in the activity/expression of metabolic

enzymes and/or drug transporters (efflux or influx
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Table 1. Chemotherapy and targeted anticancer drugs: relevant characteristics for solid organ transplant recipients.

Drug

Adjustment
for renal
dysfunction

Adjustment
for hepatic
dysfunction

Interactions with
CYP 3A4 or
P-Glycoprotein

Interactions with
immunosuppressive
drugs

Warnings for toxicity in
transplant patients

Solid cancers
Platinum analogs U [11] X X Myelosuppression

Nephrotoxicity
Cisplatin (iv) = Neurotoxicity, ototoxicity
Carboplatin (iv) = Peripheral neuropathy
Oxaliplatin (iv) = Peripheral neuropathy

Taxanes X U [12] CYP 3A4 inducer Myelosuppression
Docetaxel (iv) ↓ Fluid retention, hand-

foot syndrome
Paclitaxel (iv) ↓ Peripheral neuropathy

Vinca Alkaloids X U [12] CYP 3A4 inhibitor,
P-Glycoprotein

↑ SIADH, cardiac
ischemia

Vinorelbine (iv) Neurotoxicity
Vincristine (iv)
Vinblastine (iv) Myelosuppression
Vinflunine (iv) ↑ CTM (Cyclosporine

[13])
Myelosuppression

Anthracyclines Cardiotoxicity
Epirubicin (iv) U U [12] CYP 3A4 inhibitor ↑
Doxorubicin (iv) X U [12] CYP 3A4 inhibitor

P-Glycoprotein
↑
A (Cyclosporine [14])

Hand-foot syndrome

Topoisomerase Inhibitors Myelosuppression
Irinotecan (iv) X U [12] CYP 3A4 inhibitor ↑ Increased toxicity in

patients with
UGT1A1*28
polymorphism

Topotecan (iv) U [15] X P-Glycoprotein ↑
A (Cyclosporine [16])

Antimetabolites Myelosuppression,
mucositis

Pemetrexed (iv) U [17] NA X = Nephrotoxicity, hand-
foot syndrome, skin
rash

Methotrexate (iv) U [11] U [18] X = Hepatotoxicity, AKI
Nucleotides Analogs Myelosuppression
Gemcitabine (iv) X U [12] X = Flu-like symptoms,

pulmonary toxicity
5-Fluorouracil (iv) X X X = Increased toxicity in

patients with DPYD
polymorphism
Coronary artery
vasospasms

Capecitabine (po) U [19] X X = Increased toxicity in
patients with DPYD
polymorphism
Nephrotoxicity, coronary
artery vasospasms,
hand-foot syndrome

Trabectedin (iv) X U [20] CYP 3A4 inhibitor ↑ Hepatotoxicity
Bleomycin (iv) U [21] X CYP 3A4 inhibitor ↑ Pulmonary fibrosis, fever
Eribulin (iv) U [22] U [23] X = Myelosuppression,

neurotoxicity
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Table 1. Continued.

Drug

Adjustment
for renal
dysfunction

Adjustment
for hepatic
dysfunction

Interactions with
CYP 3A4 or
P-Glycoprotein

Interactions with
immunosuppressive
drugs

Warnings for toxicity in
transplant patients

EGFR inhibitors Diarrhea, skin rash,
dyspnea

Osimertinib (po) X X CYP 3A4 inducer
P-Glycoprotein

↓
CTM (Sirolimus [24])

Interstitial pneumonia

Gefitinib (po) X X CYP 3A4 inhibitor
P-Glycoprotein

↑ Hepatotoxicity,
Interstitial pneumonia

Erlotinib (po) X U [25] CYP 3A4 inhibitor
P-Glycoprotein

↑ Interstitial pneumonia

Afatinib (po) X X P-Glycoprotein ↑
CTM (Cyclosporine)

Interstitial pneumonia

MET inhibitors
Cabozantinib (po) X U [26] CYP 3A4 inhibitor

P-Glycoprotein
↑ Myelosuppression,

electrolyte imbalance
BRAF-MEK inhibitors X X CYP 3A4 inducer

P-Glycoprotein
↓ Drmatological

toxicities,
hepatotoxicity,
thromboembolism,
LV dysfunction,
acute interstitial
nephritis,

Dabrafenib (po) Hyperglycemia, uveitis
Trametinib (po) Retinal detachment,

Interstitial pneumonia
ALK inhibitors CYP 3A4 inhibitor ↑ Hepatotoxicity,

bradycardia
Crizotinib (po) U [27] U [28] ↑

CTM (Sirolimus [29])
Neurotoxicity, pseudo-
acute kidney injury

Ceritinib (po) X U [22] ↑CTM (Cyclosporine,
Tacrolimus,
Sirolimus [14],
Everolimus)

Interstitial pneumonia

Alectinib (po) U [20] U [21] P-Glycoprotein ↑ Interstitial pneumonia
Angiogenesis inhibitors Hypertension,

proteinuria,
hemorrhage,
thrombosis

Bevacizumab (iv) X X X = Wound dehiscence
Sunitinib (po) X X CYP 3A4 inhibitor ↑ Dermatological

toxicities, cardiotoxicity
Axitinib (po) X U [31] CYP 3A4 inhibitor ↑ Cardiotoxicity, thyroid

dysfunction,
hepatotoxicity, PRES

Tivozanib (po) X U CYP 3A4 inhibitor ↑ Cardiotoxicity, hand-
foot syndrome,
hepatotoxicity, PRES

Sorafenib (po) X X CYP 3A4 inhibitor
P-Glycoprotein

↑ Dermatological
toxicities, cardiotoxicity,
hypoglycemia

Pazopanib (po) X U [32] CYP 3A4 inhibitor
P-Glycoprotein

↑
A (Cyclosporine [33])

Cardiotoxicity,
hepatotoxicity, PRES

EGFR inhibitors Cardiotoxicity,
hepatotoxicity
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Table 1. Continued.

Drug

Adjustment
for renal
dysfunction

Adjustment
for hepatic
dysfunction

Interactions with
CYP 3A4 or
P-Glycoprotein

Interactions with
immunosuppressive
drugs

Warnings for toxicity in
transplant patients

Trastuzumab (iv) X X X = Nephrotoxicity,
pneumotoxicity,
ototoxicity,
cardiotoxicity

Pertuzumab (iv) X NA X = Neurotoxicity, cough,
dyspnea

Lapatinib (po) X U CYP 3A4 inhibitor
P-Glycoprotein

↑ Hand-foot syndrome,
left ventricular
dysfunction, Interstitial
pneumonia, ototoxicity

Cetuximab (iv) NA NA X = Hand-foot syndrome,
sudden cardiac arrest,
hypomagnesemia

Panitumumab (iv) NA NA X = Hand-foot syndrome
CDK 4/6 inhibitors CYP 3A4 inhibitor ↑ Myelosuppression
Palbociclib (po) X X ↑
Abemaciclib (po) X U ↑ Interstitial pneumonia,

hepatotoxicity
Ribociclib (po) U U [34] ↑

CTM (Sirolimus [35])
Interstitial pneumonia

PARP inhibitors
Olaparib (po) U [35] X CYP 3A4 inhibitor ↑ Myelosuppression,

central nervous system
effects

mTOR-inhibitors
Everolimus (po) X U [36] CYP 3A4 inhibitor

P-Glycoprotein
↑
CTM (Cyclosporine [37])

Myelosuppression,
hypertension,
hemorrhage

Hematologic cancers
Alkylating agents Myelosuppression
Melphalan (iv;os) U X X = Myelosuppression

Mucositis
Cyclophosphamide (iv;os) U X X = Myelosuppression

Cystitis
Chlorambucil (os) X U X = Myelosuppression
Ifosfamide(iv) U U X = Myelosuppression

Nephrotoxicity
Cystitis
Neurotoxicity

Busulfan (iv;os) X X X = Myelosuppression
Dacarbazine (iv) U X X = Myelosuppression
Procarbazine (iv) X U X =

Antimetabolites Myelosuppression
Fludarabine (iv; os) U X X = Myelosuppression

neurotoxicity
Cytarabine (iv) U U X = Myelosuppression

Mucositis
Bendamustine (iv) X X X = Myelosuppression
Hydroxycarbamide (os) U X X = Myelosuppression

Anthracyclines Myelosuppression
Cardiotoxicity

Daunorubicin(iv) U U X = Myelosuppression
Cardiotoxicity
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transporters) [44-46]. Among efflux transporters, the

most important for DDI in SOT is P-glycoprotein 1 (P-

gp) which expels the drug from the body to prevent sat-

uration of the intracellular enzymes; they are mainly

located in the enterocytes, in the lymphocytes, in blood

barriers (i.e., placenta, brain) and all other excretory

systems such as the biliary system [44]. Among the

metabolic enzymes, the most important ones are the

cytochromes P450 (CYP) 3A isoenzymes (CYP3A4,

CYP3A5), the enzymes which metabolize CNI and

mTORi; these CYPs are located in the enterocytes and

in hepatocytes where they are most abundant [45,46].

The enterocyte CYP3A4 and CYP3A5, along with the

enterocyte efflux protein P-gp cause only a fraction of

the ingested drug to pass into the bloodstream (the

bioavailability of CNI is in fact well below 100%, being

approximately 20% for tacrolimus and 33% for cyclos-

porin) [45,46]. The third group are the influx trans-

porters, such as Organic Anion Transporter

Polypeptides (OATP); upon passing into the blood

stream, they mediate uptake of the drug into the hepa-

tocytes, the central machinery for drug metabolism

[44]. The enterocyte efflux transporter P-gp, and the

enzymes CYP3A4 and CYP3A5 in the enterocytes and

hepatocytes are responsible for most DDI that involve

CNI and mTORi.

The second principle is that there are various poly-

morphic forms of CYP3A isoenzymes, the most impor-

tant being CYP3A5*3 [46,47] and CYP3A4*22 [48,49].

The wild-type allele of CYP3A5 (CYP3A5*1) is most

common in blacks (>50%) and least common in white/

Hispanics (approximately 10%), which most frequently

carry the CYP3A5*3 allelic variants. The presence of

these alleles may result in significant differences in the

tacrolimus dose requirement to reach therapeutic drug

concentrations: carriers of the CYP3A5*3 alleles require

50–100% lower doses of tacrolimus [46,47]. Conversely,

carriers of the CYP3A5*1 allele are at lower risk of

DDIs [50]. Therefore, the extent of DDI may vary

across subjects and different ethnicities.

The third principle concerns route of administration.

After oral administration, drugs that inhibit enterocytes

‘P-gp and CYP3A4 may increase other drugs’ bioavail-

ability. Accordingly, DDI is less pronounced in the case

of intravenous compared with oral administration [51].

Therefore, orally administered anticancer drugs that

engage intestinal P-gp, and CYP3A4, such as epidermal

growth factor (EGFR) inhibitors cetuximab [9], MET

Table 1. Continued.

Drug

Adjustment
for renal
dysfunction

Adjustment
for hepatic
dysfunction

Interactions with
CYP 3A4 or
P-Glycoprotein

Interactions with
immunosuppressive
drugs

Warnings for toxicity in
transplant patients

Mitoxantrone (iv) X X X = Myelosuppression
Idarubicin (iv) U U X = Myelosuppression

Cardiotoxicity
Topoisomerase Inhibitors II Myelosuppression
Etoposide (iv) U X CYP 3A4 inhibitor,

P-Glycoprotein
↑
CTM (Cyclosporine
[38,39])

Myelosuppression
Cutaneous

Nucleotides Analogs Myelosuppression
Azacitidine (sc) X X X = Myelosuppression
Decitabine (iv) X X X = Myelosuppression
Clofarabine (iv) U U X = Myelosuppression

AKI, acute kidney injury; ALK, anaplastic lymphoma kinase; BRAF, v-raf murine sarcoma viral oncogene homolog B1; CDK,
cyclin-dependent kinase; CYP, cytochrome P450; DPYD, Dihydropyrimidine dehydrogenase; EGFR, epidermal growth factor
receptor; MEK, mitogen-activated protein kinase enzyme; MET, mesenchymal-epithelial transition; mTOR, mammalian target of
rapamycin; PARP, poly adenosine diphosphate-ribose polymerase; SIADH, syndrome of inappropriate antidiuretic hormone
secretion; PRES, posterior reversible encephalopathy syndrome.

= no interactions, ↑ increases drug levels, ↓ decreases drug levels.

A: avoid combination; CTM: consider therapy modification.

Bold font represents major drug-to-drug interaction or major drug toxicity.

When all the drugs belonging to the same family have equal features, we reported them on the class line rather than on each
drug line. iv: intravenous; po: per os; X : no need for adjustment; U : need for adjustment; NA : not available.
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inhibitors, BRAF-MEK inhibitors (dabrafenib and tram-

etinib), ALK inhibitors (crizotinib, ceritinib, and alec-

tinib), CDK 4/6 inhibitors (palbociclib, abemaciclib)

(see Table 1) may cause significant DDI with CNI and

mTORi.

The fourth principle: Tac is more victim and less per-

petrator of DDI compared with cyclosporine A (CyA)

because of the lower molarity of therapeutic doses of

Tac compared with CyA. The left panel of Fig. 1

explains the case of Tac: the molar quantity of the drug

far exceeds that of Tac. It is expected that Tac is a vic-

tim of DDI by the other compound (with strong effect

on Tac blood levels). On the other hand, Tac is not a

CYP3A/P-pg inhibitor (therefore it is not a perpetrator

of DDI). The right panel explains the case of CyA: One

molecule of the drug may compete with one molecule

of CyA. It is expected that CyA is a victim of DDI by

the other compound (but with less strong effect on CyA

blood levels compared with Tac). However, CyA is also

a CYP3A/P-gp inhibitor (that is a perpetrator of DDI

on the other compound). In fact, CyA may increase the

exposure to anticancer drugs that are metabolized by

CYP3A4: cyclosporine has been shown to increase the

area under the curve (AUC) of doxorubicin by 50%

and of its major metabolite doxorubicinol by more than

four times [14]. Accordingly, the anticancer drugs

administered orally are more likely to be victims of DDI

in patients receiving CyA than in those receiving Tac

(see Table 1). In SOT recipients, the concomitant use of

CNI and mTORi, may reduce the tolerability to orally

administered anticancer drugs that engage the P-gp and

are metabolized by CYP3A4 [52]. For the reasons

outlined above, the problem is likely to occur more

often with CyA compared with Tac and mTORi, and

may be further aggravated by the additional use of

drugs that are CYP3A/P-gp inhibitors, such as imidazole

antifungal agents or macrolide antibiotics, such as clar-

ithromycin [52].

The fifth principle refers to the DDI causing CYP3A

induction (they cause a decrease of CNI and mTORi

blood levels rather than an increase). Inducers are those

drugs that, by penetrating in the nucleus and by bind-

ing to so-called Pregnane X (PXR) receptors, are able to

activate the transcription machinery of CYP3A isoen-

zymes. As a consequence, more CYPs are synthesized,

and more CNI or mTORi is metabolized [53]. Typical

CYP inducers are BRAF-MEK inhibitors (e.g., dabrafe-

nib) and steroids. Unlike CYP inhibition (which occurs

in the 24–48 hours following the drug administration),

CYP induction occurs slowly over several days to weeks

[53]. For instance, in a SOT recipient taking dabrafenib

for melanoma, the dose of Tac and of the mTORi ever-

olimus was increased by 3–4-folds over 2–3 weeks with

further upward adjustments in the following months to

attain the same blood levels [54].

In summary, there is no anticancer drug that is abso-

lutely contraindicated in SOT recipients because of

DDI. Anyhow, careful monitoring of CNI and mTORi

is recommended in patients starting oral anticancer

drugs that are substrate of by CYP3A/P-gp or inductors

of CYP3A. Especially with CyA, some anticancer drugs

that are substrate of CYP3A/P-gp may be victims of sig-

nificant DDI, therefore, alternative drugs should be con-

sidered whenever possible (see Table 1).

CYP3A
P-gp

Drug Cyclosporine

One molecule of the drug may compete with
one molecule of CyA. It is expected that CyA
is a victim of DDI by the other compound (but
with less strong effect on CyA blood levels
compared to Tac). However, CyA is also a
CYP3A/P-gp inhibitor (i.e. a perpetrator of
DDI on the other compound)

CYP3A
P-gp

Drug
Tacrolimus

The molar quantity of the drug far exceeds
that of Tac. It is expected that Tac is a
victim of DDI by the other compound (with
strong effect on Tac blood levels). On the
other hand, Tac is not a CYP3A/P-pg
inhibitor (i.e. it is not a perpetrator of DDI)

Figure 1 Schematic representation showing that Tac is more victim and less perpetrator of DDI compared with CyA because of the lower

molarity of therapeutic doses of Tac compared with CyA. On the other hand, CyA is more often a perpetrator of DDI on the other compound

compared with tacrolimus. CYP3A, cytochromes P450 3A; CyA, cyclosporine; DDI: Drug-to-Drug Interaction; P-gp: P-glycoprotein 1; Tac, tacro-

limus.
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Pharmacodynamic (PD) DDI

Some anticancer therapies may increase the risk of

infections or other side effects because they have an

adverse effect risk profile that overlap with that of anti-

rejection drugs.

Myelosuppression

Anti-proliferative anti-rejection drugs that are commonly

used in SOT transplant recipients may cause neutropenia,

thrombocytopenia, and anemia. By far, the most common

and severe hematologic side effect is mycophenolate-

induced neutropenia, which may be severe in the first

month post-transplantation, especially in patients treated

with lymphodepleting agents and on CMV prophylaxis

with valganciclovir [55]. Several anticancer drugs may

cause severe myelosuppression (see Table 1), therefore

drugs, such as azathioprine and mycophenolate may be

reduced or withdrawn before starting treatment with anti-

cancer drugs that may cause severe myelosuppression,

such as antimetabolites, platinum analogs, taxanes, topoi-

somerase Inhibitors, nucleotides analogs, and CDK 4/6

inhibitors (see Table 1). The risk of azathioprine-induced

myelosuppression is greatly increased in patients carrying

allelic variants in the tiopurine methyltransferase, the

polymorphic gene involved in the metabolism of tiopuri-

nes [56,57].

QT prolongation

Concerns reported on the Summary of Product Charac-

teristics (SmPC) of the anticancer drugs are related to

anticancer drugs as DDI victims (because of CYP3A4

inhibition). The overexposure to some of anticancer

drugs may cause prolonged QT interval. Drugs that

may be avoided in combination with CNI are the ALK

inhibitors crizotinib [58] and the Angiogenesis inhibitor

pazopanib [59].

In summary, there is no absolute contraindication

related to pharmacodynamic interaction in SOT recipi-

ents, but complete azathioprine or mycophenolate with-

drawal or dose reduction should be considered in

patients undergoing chemotherapy with drugs at high

risk of myelosuppression.

Adjustment for renal and/or liver function

SOT recipients, especially kidney transplant recipients

have, in general, reduced kidney function [60,61], which

exposes them at increased risk of AKI compared with

the general population [62,63]. Liver function may also

be impaired, especially in liver and heart transplant

recipients with graft dysfunction. Dose adjustment indi-

cations within the summary of product characteristics

(SmPC) document [64] and published tables [65] are

available for patients with reduced kidney or liver func-

tion based on estimated Creatinine Clearance or GFR,

and on serum total bilirubin and aspartate aminotrans-

ferase (AST). Examples of anticancer drugs that require

major dose adjustment for kidney dysfunction and that

are contraindicated with stage IV and V chronic kidney

disease (i.e. eGFR < 30mL/min/1.73m2) are platinum

analogs, the antimetabolites pemetrexed and methotrex-

ate, and the nucleotide analog capecitabine. The EGFR

inhibitor erlotinib, topoisomerase inhibitor topotecan

should be avoided with stage V chronic kidney disease

(i.e. eGFR < 15 mL/min/1.73 m2) [65]. Several anti-

cancer drugs with hepatic metabolism are contraindi-

cated in patients with severe liver failure [65].

Immunotherapy

Cancer immunotherapy engages the patient’s own

immune system, mainly T cells, against the tumor

rather than targeting the cancer directly [66]. T cells

can be activated against cancer in three major ways:

rejuvenation of tumor-reactive T cells by checkpoint

inhibitors (CPI), which are antibodies directed against

immune-regulatory checkpoint molecules, adoptive

transfer of anticancer T cells (e.g., CAR-T cells or EBV

specific T cells), or in vivo induction of tumor-reactive

T cells [66,67].

Checkpoint inhibitors (CPI)

CPI are increasingly recognized as a very effective treat-

ment in a widening range of cancer types that are resis-

tant to traditional treatments (Table 2) [68]. There are

basically two classes of CPI, cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) inhibitors, and pro-

grammed cell death protein 1 (PD1)/ programmed cell

death protein 1 –ligand (PD-L1) inhibitors that uncou-

ple two key mechanisms of T-cell peripheral tolerance

[69,70]. CTLA-4 inhibitors promote priming of T cells

in lymph nodes, while PD1/PD-L1 prevents exhaustion

of T effector-memory cell in peripheral tissues.

CPI are highly efficacious in SOT recipients with can-

cer as they unleash T-cell immune responses against

cancer cells that are inhibited by the anti-rejection treat-

ment [71]. However, PD1 and PDL-1 receptors are not

only expressed by the tumor, but also by the graft and
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graft-reactive T cells [72]. Therefore, CPI may activate

allo-reactive T cells leading to acute rejection and graft

loss. The fact that PD-L1 are expressed also in the graft

endothelial cell [72], may explain, at least partially, why

PD-1/PDL-1 blockade therapy can induce severe vascu-

lar rejection [72]. Rejection usually occurs within 6–
8 weeks after the beginning of treatment [73,74], but it

may occur even earlier. In some patients, rejection

occurs immediately after the start of treatment, espe-

cially in those who switched from the CTLA-4 inhibitor

ipilimumab to a PD1 inhibitor [73,74].

It is unclear whether the onset of graft rejection

implies an effective antitumor immune response; in

other words, it is unclear whether the break of tolerance

against the graft is associated with a break of tolerance

against the tumor cells. In all published series, CPI-

induced graft rejection has been traditionally managed

with CPI discontinuation and administration of pulse

steroids or even T-cell depleting therapy. In fact, most

rejections were represented by vascular rejection (Banff

grade II), often in the absence serological features of

antibody-mediated rejection.

Therefore, it is not possible to predict what would

have occurred to tumor response and to patient survival

had the patients continued CPI despite rejection, and

had treatment for acute rejection not done [74]. In fact,

virtually all types of antirejection treatment may blunt

the antitumor immune response of CPI. Besides pulse

steroids and T-cell depleting used as therapies for the

treatment of T-cell-mediated rejection, also plasma-

pheresis, which is used for the treatment of antibody-

mediated rejection, by removing CPI from the body,

might neutralize the antitumor immune response of

CPI.

A recent meta-analysis on check-point inhibitors in

SOT recipients showed that acute rejection was the rea-

son for CPI discontinuation in over 40% of the cases

[75]. The effect of CPI-induced rejection on patient sur-

vival depends on the SOT type [75]. In kidney trans-

plant recipients treated with CPI, the occurrence of

graft rejection does not seem to affect patient survival

[75]. This is likely the results of two opposite effects

that cancel each other out. On one hand, rejection may

reflect CPI-induced T-cell recovery and break of toler-

ance against nonself-antigens promoting tumor

response; on the other hand, rejection, by leading to

CPI withdrawal, and to immunosuppression increase,

may nullify the effect of CPI and eventually cause pro-

gressive cancer disease. However, that holds true for

SOT recipients of nonlife-saving organs, such as kidney

transplant recipients, since patients losing their graftT
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because of rejection can resort to dialysis. In contrast,

rejection can cause death in recipients of life-saving

organs [75].

Table 3 summarizes the data from published litera-

ture concerning the risk of rejection, risk of death, and

probability of tumor response across different SOT,

namely, kidney, liver, and heart [75]. So far, approxi-

mately, 230 SOT recipients treated with CPI has been

reported in the literature. Compared with liver and

heart transplant recipients, kidney transplant recipients,

despite the highest rate of rejection, have the lower

mortality rate [75-90].

How should maintenance anti-rejection treatment be

reduced to let CPI fully unleash T cells against cancer

while minimizing the risk of graft loss due to rejection?

[71] In this regard, emphasis has been placed to the use

of mTOR-inhibitors. mTORi may prevent rejection and

favor tumor response because of the anticancer proper-

ties of mTORi. Protocols have been proposed that are

based on high-dose steroids and high-dose mTORi, start-

ing shortly before or at the time of starting CPI treat-

ment [91]. mTORi may be also used as savage therapy.

One case report described a transplant patient who devel-

oped rejection after starting CPI. The patient had rejec-

tion controlled and antitumoral response maintained

only after switching to mTORi. The Authors analyzed T-

cell responses and concluded that such an optimal and

paradoxical effect may have resulted from mTORi elicit-

ing IFN-c+ CD4+ T cells that uncouple immunological

response against the graft (by dampening it) and against

the tumor [92]. Anyhow, from published meta-analyses,

it seems that rejection is best prevented by maintaining

any anti-rejection drugs other than steroids (usually

CNI). There is no signal from a multivariable-adjusted

regression model in a published meta-analysis that

mTORi are superior in preventing rejection compared

with other anti-rejection drugs [75]. Rather, the major

determinants of rejection were history of rejection and

time elapsed from transplantation, CPI-induced rejection

being tenfold more frequent in patients with previous

history of rejection, and in those treated with CPI within

8 years from transplantation [75]. Nonetheless, upon

withdrawal of CNI-based anti-rejection therapy, the abso-

lute risk of rejection remained high even if long time has

elapsed after transplantation and the patient has no rejec-

tion history. Progression-free survival was highest in

patients in whom anti-rejection drugs were withdrawn

altogether (with the possible exception for steroids, irre-

spective of the use of mTOR-inhibitors [75].

Based on what we mentioned above, we contend that

one possible strategy to maximize CPI response in kid-

ney transplant recipients may be based on withdrawing

immunosuppression altogether, and on performing graft

nephrectomy upon development of rejection. That

would allow continuing CPI therapy rather than with-

drawing it in patients who are developing strong tumor

response. This strategy seems feasible since it has been

recently shown that CPI can be safely administered in

dialysis patients [93]. Evidence is still lacking concern-

ing transplant recipients who start dialysis and who

might develop severe reactions, especially if the graft is

left in place. Anyhow, this might represent a possible

option to include in the process of shared decision-

making with the kidney transplant recipients with can-

cer who are potential candidates to CPI. Unfortunately,

the conclusions drawn about the use of CPI in SOT are

based on small case series, with obvious publication

biases. Prospective and controlled trials are urgently

needed.

CAR-T cells

Chimeric antigen receptor (CAR) T cells are genetically

engineered autologous T cells that recognize a defined

Table 3. Comparison in outcome after CPI treatment in different organ transplantations.

KIDNEY LIVER HEART

Rejection 45% (74/165) 35% (17/48) 26% (5/19)
Response 40% (64/161) 42% (13/31) 7% (1/13)
Death 43% (63/147) 60% (29/48) 58% (11/19)

CPI, check-point inhibitors.

Rate of rejection, tumor response, and death reported in kidney, liver and heart transplant recipients undergoing treatment
with CPI.

Response refers to tumor shrinking. Numbers in the table are extracted from the systematic review by d’Izarny-Gargas [12]
updated with published literature beyond 1 November 2019 [75-90].
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target antigen (e.g., CD19 in lymphoma). CARs are

composed of antibody-binding domains fused to T-cell

signaling domains [94,95]. T cells are obtained from the

patient by leukapheresis, then the fusion protein CAR is

introduced ex vivo via a viral vector. After transfection,

the CAR-T cells are selected and expanded ex vivo, with

turnaround times of less than 40 days [94,95]. The

CAR-T cells are infused after lymphocyte depletion pre-

conditioning with chemotherapeutic agents to “create

room” and permit their expansion in vivo. Thus far,

CAR-T cells have most often been CD8 cytotoxic T

cells, with the capacity to bind to and kill tumor cells

[94,95]. Common and concerning side effects of CAR-

T-cell treatment include neurological toxicity, including

encephalopathy, and cytokine release syndrome, which

may induce AKI [94,95]. The cytokine release syndrome

can be ameliorated by the anti-interleukin-6 monoclonal

antibody, tociluzimab [96]. Other relevant adverse

effects that may occur with CAR-T therapy in malig-

nancy include tumor lysis syndrome and electrolyte

abnormalities, such as hypokalemia and hypophos-

phatemia [94-96].

CAR-T cells have provided promising results with recur-

rent and refractory diffuse large B-cell lymphomas

(DLBCL). However, the efficacy of this treatment in SOT

recipients with post-transplant lymphoproliferative disor-

ders (PTLD) is unknown, as concurrent use of immuno-

suppressive agents was prohibited in most CAR-T trials. A

recent report [97] showed poor outcomes in three SOT

recipients (heart, kidney, pancreas-after-kidney, respec-

tively) with PTLD refractory to immunochemotherapy at

10–20 years after SOT who received CAR-T therapy. All

the three patients developed complications of CAR-T ther-

apy, such as cytokine release syndrome, immune effector

cell-associated neurotoxicity syndrome, and AKI requiring

kidney replacement therapy in the two out of three

patients. All patients died after withdrawal of care due to

lack of response to CAR-T therapy. A pancreas-after-

kidney recipient developed acute pancreatitis after CAR-T

therapy.

Also with CAR-T-cell therapy, the issue about the opti-

mal management of immunosuppression persists. On one

hand, evidence exists that SOT recipients (two kidney-

and one liver- transplant recipient) can be safely kept on

calcineurin inhibitors during the course of CAR-T-cell

collection and administration [98]. However, authors

have also attempted to temporarily withdraw it. In

another report [99], three kidney transplant recipients

received CAR-T-cell- therapy because of relapsed/refrac-

tory diffuse large B-cell lymphoma (r/r DLBCL) and only

one of them developed acute rejection despite temporary

interruption of immunosuppression.

Most experience with CAR-T-cell therapy so far has

been mostly gained in kidney transplant recipients

(seven published cases at the time of writing), but addi-

tional supportive data also exist for liver [100] and

heart [101] transplant recipients. Despite encouraging

results, the overall experience with CAR-T cells in SOT

recipients is very limited. More studies are needed to

assess the optimal indications and timing for discontin-

uing and restarting immunosuppressive therapy after

CAR-T-cell therapy.

EBV-specific cytotoxic T-lymphocytes

The use of adoptive T-cell therapy for Epstein-Barr

virus (EBV)-associated PTLD is an old therapeutic

approach that has been started over 25 years in the field

of hematopoietic stem cell transplantation (HSCT).

Unfortunately, widespread application of this approach

has been limited by time constraints in patients with

rapidly progressive disease, complex manufacturing pro-

tocols, and infrastructural requirements. Therefore, so

far adoptive T-cell therapy for EBV-associated PTLD

has not been a realistic option for most patients [102].

In an attempt to expand the access to this treatment

option, the field has turned to immediately accessible

banked and partially matched allogeneic EBV. Recently,

a third-party, allogeneic, off-the-shelf bank of EBV-

specific cytotoxic T-lymphocyte (EBV-CTL) lines from

specifically consented healthy HSCT donors was used to

treat 46 recipients of HSCT (n = 33) or SOT (n = 13)

with rituximab-resistant EBV-PTLD. Treatment cycles

consisted of three weekly infusions of EBV-CTLs and

3 weeks of observation [103]. EBV-CTLs did not induce

significant toxicities in the 13 SOT recipients, while

achieving complete remission or sustained partial remis-

sion in 7 of them. CNI therapy can be continued

because of the limited effects that this treatment exerts

on CTL, limiting the risk of graft rejection. These

results suggest a promising potential therapy for

patients with post-transplant rituximab-refractory EBV-

associated lymphoma.

Looking into the future

The main goal of personalized precision medicine is the

delivery of the correct drug to the right patient at the

right time and dose: pharmacogenomics, intratumoral

immunotherapy, and gene editing are among the many
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strategies closest to implement these principles also in

SOT recipients with cancer.

Public resources are already available to implement

pharmacogenomics in the clinic. For instance, PharmGKB

is a platform which collects, curates, and disseminates

information on genetic variation and drug response and

provides dosing instructions (https://www.pharmgkb.org/

about) [104]; CPIC� (Clinical Pharmacogenetics Imple-

mentation Consortium) (https://cpicpgx.org) is another

platform that provides publicly available, peer-reviewed,

evidence-based, updatable, and detailed gene and drug

clinical practice guidelines. In addition, the U.S. FDA’s

Center for Drug Evaluation & Research and Center for

Biologics Evaluation and Research Office have launched an

ambitious program to generate informative knowledge

from real world data (https://www.fda.gov/about-fda/

oncology-center-excellence/oncology-real-world-evidence-

program). In this project, aims include exploring counter-

factual efficacy and safety of drug-to-drug interactions of

the newer drugs for which there is no evidence from clini-

cal trials and in selected patient categories.

Intratumor delivery of neoadjuvant immunotherapy

represents a promising strategy to harness the efficacy

of immunotherapy while minimizing off-target toxicities

[105]. The direct injection of immune stimulating

agents into the tumor primes the local tumor-specific

immunity to generate a selective, durable clinical

response. Currently, more than 20 neoadjuvant clinical

trials testing distinct intratumor immune stimulatory

agents and their combinations are ongoing. Dang et al.

[106] showed that intratumor, but not systemic,

immunotherapy with anti-PD-1/toll like receptor 9 ago-

nist promoted potent antitumor responses but did not

accelerate allograft rejection in mice recipients of heart

allografts with cancer, provided that the tumor and car-

diac allograft shared major histocompatibility complex

(MHC). However, the antitumor effect was compro-

mised by maintenance immunosuppression with CyA,

highlighting the importance of finding an optimal bal-

ance between antitumor and antigraft immunity.

Gene editing is another major strategy. Currently, the

use of CAR-T cells is being extended beyond hemato-

logic malignancies, including skin tumors which are by

far the most common type of cancers in SOT recipients.

Nagarsheth et al. have conducted a first-in-human,

phase 1 clinical trial of engineered T cells for the

treatment of metastatic human papilloma virus-

associated epithelial cancers [107]. The authors showed

that engineered T cells can mediate regression of com-

mon carcinomas, but defects in critical components of

the antigen presentation and interferon response path-

ways may prevent effective response. Importantly, in

SOT recipients, the efficacy of CAR-T cells can be

inhibited by the immunosuppressive drugs. To address

this relevant issue, strategies are being developed,

including removal of glucocorticoid receptor to make

these cells unresponsive to steroid therapy as shown by

Menger et al [108].

Conclusions

In conclusion, there are no anticancer drugs that are

intrinsically safe or unsafe. Rather, the optimal choice of

the anticancer regimen results from a careful individual

risk/benefit assessment, from the awareness of potential

PK and pharmacodynamic DDI, and of the risk of drug

overexposure in patients with kidney or liver dysfunction.

Progresses in basic and translational research are having a

major impact in the clinical practice. The potential of

recent findings to overcome toxic effects of anticancer

drugs in SOT is hard to overstate and the transition to a

personalized precision medicine-centric health science and

healthcare of SOT tomorrow is inevitable.
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