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Abstract: As the only known organ that can completely regenerate in mammals, deer antler is of real
significance in the field of regenerative medicine. Recent studies have shown that the regenerative
capacity of the antlers comes from the pedicle periosteum and the cells resident in the periosteum
possess the attributes of stem cells. Currently, the molecular mechanism of antler regeneration
remains unclear. In the present study, we compared the potentiated and dormant antler stem cells
using isobaric tags for the relative and absolute quantification (iTRAQ) labeling of the peptides,
coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) to
compare the proteome profiles. Proteins were identified by searching against the NCBI nr database
and our own Cervine transcriptome database, and bioinformatics analysis was conducted to identify
the differentially expressed proteins. Based on this searching strategy, we identified 169 differentially
expressed proteins in total, consisting of 70 up- and 99 down-regulated in the potentiated vs. dormant
antler stem cells. Reliability of the iTRAQ was confirmed via quantitative real-time polymerase
chain reaction (qRT-PCR) to measure the expression of selected genes. We identified transduction
pathways through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, such as HIF-1
and PI3K-AKT signaling pathways that play important roles in regulating the regeneration of antlers.
In summary, the initiation stage of antler regeneration, a process from dormant to potentiated states
in antler stem cells, is regulated by multiple proteins and complicated signal networks.
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1. Introduction

Regenerative medicine is a field that aims to grow back damaged/lost tissues and organs via
stimulation of the body’s own reparative capability [1]. The most dramatic organ regeneration is
so-called epimorphic regeneration, which represents a phenomenon of de novo development of
external appendages distal to the level of amputation [2]. Deer antlers are the only mammalian
appendages that can achieve complete epimorphic regeneration, and this is initiated annually from
the distal ends of the permanent bony protuberances on their head know as pedicles [3]. Evidence
from both histology [4] and tissue deletion experiments [5] have convincingly demonstrated that it is
the distal part of pedicle periosteum (PP) that gives rise to a regenerating antler. In vitro the pedicle
periosteal cells (PPCs) possess some attributes of embryonic stem cells (ESCs) as they express key ESC
markers and can be induced to differentiate into multiple cell lineages; thus the PPCs are coined as the
“antler stem cells” [6].
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Maintenance and activation of stem cells require them to be located in a specialized
microenvironment (i.e., niche), and to interact with the cells resident in the niche. Antler stem
cells are no exception. Macroscopic [7] and microscopic [4] studies have revealed that the distal
third of the PP and the enveloping skin are intimately bound together; whereas, the proximal two
thirds of the PP and the skin are only loosely attached. Further functional analysis [8] found that
the distal third of the PP regenerated an antler; whereas, the proximal two thirds PP failed to do
so after separating from the enveloping skin by insertion of an impermeable membrane. All these
results indicate that the mesenchymal/epithelial interactions between the PP and the enveloping
skin are important for the initiation of antler regeneration. Therefore, pedicle skin may contribute
to the niche important for maintenance and growth of antler stem cells. The proximal PP has been
referred to as the “dormant PP” (DPP) while the distal PP has been referred to as the “potentiated PP”
(PPP) [6]. Identification of the differentially expressed proteins and the activated signaling pathways
in the potentiated over the dormant antler stem cells would help to unravel the underlying molecular
mechanism of antler regeneration.

Over the last few years, isotope-based quantitative proteomics has become increasingly popular
to overcome the disadvantages of gel-based two-dimensional electrophoresis [9]. The use of isobaric
tags for relative and absolute quantitation (iTRAQ) is a well-established and validated methodology
for identifying differentially regulated proteins [10]. The iTRAQ method can simultaneously analyze
up to eight samples in one single test. The chemistry for iTRAQ results in the labelling of N-terminal
and lysine residues, and hence tags most peptides within the samples of interest. By collision-induced
dissociation or higher-energy collisional dissociation, iTRAQ reporter ions are dissociated and released
in the tandem mass spectrometry (MS/MS). The intensities of the peaks are then used for the relative
quantification of peptides, and hence proteins. Owing to the nature of its ultra-sensitivity and
high-throughput, iTRAQ coupled with two-dimensional liquid chromatography and tandem mass
spectrometry (LC-MS/MS) analysis has been deemed to be one of the most reliable methods for
quantitative proteomic analysis [11,12].

The aim of the present study was to identify the differentially expressed proteins and activated
transduction pathways in the potentiated antler stem cells over the dormant antler stem cells, in order to
gain insights into the molecular mechanisms underlying full antler regeneration, the only mammalian
example of full epimorphic regeneration. To achieve this aim, we analyzed differential expression of
proteins by use of iTRAQ; we also used both the NCBI nr (non-redundant) database and our own
Cervine transcriptome database to improve the identification of proteins involved in the activation of
antler regeneration. Our results provided the first evidence, at the molecular level, that the potentiated
antler stem cells express more proteins consistent with antler regeneration than the dormant antler
stem cells, and lay the foundation for the eventual identification of the molecules that are involved in
the initiation of antler regeneration.

2. Results

2.1. Identified Differentially Expressed Proteins

Using the ProteinPilot software, at the global false discovery rate of 1%, we identified
46,696 MS/MS spectra and 15,553 peptides, and detected 2500 proteins in the NCBI nr database;
the corresponding numbers in the transcriptome database were 46,036, 15,361, and 2488, respectively.
Finally, we obtained 169 regulated proteins in total from both the PPP cells (PPPCs) and the DPP
cells (DPPCs) based on the databases of both NCBI nr (Table S1) and our own (translated from our
previously published transcriptome) (Table S2). Of these 169 proteins, 43 (19 + 24) proteins were unique
to the NCBI nr database; 52 (26 + 26) proteins were unique to our own database; 74 (25 + 49) proteins
were found in both databases (Figure 1). Among them, 70 (19 + 25 + 26) proteins were found to be
up-regulated, and 99 (24 + 49 + 26) down-regulated in the PPPCs. The advantage of our searching
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strategy is that it effectively increased the quantity of identified proteins compared to searching against
the NCBI nr database only (Figure 1).Int. J. Mol. Sci. 2016, 17, 1778 3 of 13 

 
Figure 1. Venn diagram showing the number of total differentially expressed proteins identified by 
tandem mass spectrometry (MS/MS) between the NCBI nr database and transcriptome database. 
The overlapping regions indicate the number of shared proteins. The number above or below the 
horizontal line in each portion indicates the number of up- or down-regulated proteins respectively. 
In total, 117 and 126 proteins were identified from the NCBI nr database (Table S1) and 
transcriptome database (Table S2), respectively. Seventy-four proteins were identified from both 
databases. Among the 74 common proteins, 25 were up-regulated and 49 down-regulated. Among 
the 43 NCBI-specific proteins, 19 were up-regulated and 24 down-regulated. Among the 52 
transcriptome-specific proteins, 26 were up-regulated and 26 down-regulated. 

2.2. Functional Classification of the Differentially Expressed Proteins 

Thirty-six gene ontology (GO) terms that had p-values ≤0.05 were shown in the identified 
protein interactome (Figure 2). The most significantly enriched terms in each GO category were 
included for “biological process” (ellipse), “cell component” (hexagon), and “molecular function” 
(diamond). The identified regulated “biological process” proteins were predominantly involved in 
peptide metabolic process (p-value = 2.7 × 10−13) (Table S3), translation (p-value = 2.4 × 10−12), and 
ribosomal large subunit biogenesis (p-value = 4.3 × 10−10). Proteins involved in the “cell component” 
showed significant enrichment in cytosolic part (p-value = 5.2 × 10−27), ribosomal subunit (p-value = 
1.2 × 10−24), and cytosolic large ribosomal subunit (p-value = 2.4 × 10−24). In addition, nearly all 
differentially expressed membrane-related proteins, such as the proteins locating in the (plasma) 
membrane raft were found to be up-regulated in the PPPCs. Proteins involved in “molecular 
function” were related to aminopeptidase activity (p-value = 3.4 × 10−3), oxidoreductase activity 
(p-value = 9.0 × 10−3), and metalloexopeptidase activity (p-value = 1.3 × 10−2); the majority of the 
proteins enriched in these GO terms were up-regulated in the PPPCs. 

2.3. Enriched Pathways Participated by the Differentially Expressed Proteins 

One hundred and seventy one Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
in total were enriched from the dataset using STRING software (Table S4). Among them, the 
p-values of 18 pathways were less than 0.01 (Figure 3). The most significant KEGG pathways for the 
identified proteins were Ribosome (28 proteins), Carbon metabolism (9 proteins), Protein export  
(4 proteins), Glutathione metabolism (5 proteins), Focal adhesion (8 proteins), and Protein 
processing in endoplasmic reticulum (7 proteins). Additionally, the HIF-1 signaling pathway  
(5 proteins), extra cellular matrix (ECM)-receptor interaction (4 proteins), and PI3K-Akt signaling 
pathway (8 proteins) may also be involved in potentiation process of antler stem cells. 

Figure 1. Venn diagram showing the number of total differentially expressed proteins identified by
tandem mass spectrometry (MS/MS) between the NCBI nr database and transcriptome database.
The overlapping regions indicate the number of shared proteins. The number above or below the
horizontal line in each portion indicates the number of up- or down-regulated proteins respectively.
In total, 117 and 126 proteins were identified from the NCBI nr database (Table S1) and transcriptome
database (Table S2), respectively. Seventy-four proteins were identified from both databases. Among the
74 common proteins, 25 were up-regulated and 49 down-regulated. Among the 43 NCBI-specific
proteins, 19 were up-regulated and 24 down-regulated. Among the 52 transcriptome-specific proteins,
26 were up-regulated and 26 down-regulated.

2.2. Functional Classification of the Differentially Expressed Proteins

Thirty-six gene ontology (GO) terms that had p-values ≤0.05 were shown in the identified
protein interactome (Figure 2). The most significantly enriched terms in each GO category were
included for “biological process” (ellipse), “cell component” (hexagon), and “molecular function”
(diamond). The identified regulated “biological process” proteins were predominantly involved in
peptide metabolic process (p-value = 2.7 × 10−13) (Table S3), translation (p-value = 2.4 × 10−12),
and ribosomal large subunit biogenesis (p-value = 4.3 × 10−10). Proteins involved in the “cell
component” showed significant enrichment in cytosolic part (p-value = 5.2 × 10−27), ribosomal subunit
(p-value = 1.2 × 10−24), and cytosolic large ribosomal subunit (p-value = 2.4 × 10−24). In addition,
nearly all differentially expressed membrane-related proteins, such as the proteins locating in the
(plasma) membrane raft were found to be up-regulated in the PPPCs. Proteins involved in “molecular
function” were related to aminopeptidase activity (p-value = 3.4 × 10−3), oxidoreductase activity
(p-value = 9.0 × 10−3), and metalloexopeptidase activity (p-value = 1.3 × 10−2); the majority of the
proteins enriched in these GO terms were up-regulated in the PPPCs.

2.3. Enriched Pathways Participated by the Differentially Expressed Proteins

One hundred and seventy one Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in
total were enriched from the dataset using STRING software (Table S4). Among them, the p-values
of 18 pathways were less than 0.01 (Figure 3). The most significant KEGG pathways for the
identified proteins were Ribosome (28 proteins), Carbon metabolism (9 proteins), Protein export
(4 proteins), Glutathione metabolism (5 proteins), Focal adhesion (8 proteins), and Protein processing
in endoplasmic reticulum (7 proteins). Additionally, the HIF-1 signaling pathway (5 proteins), extra
cellular matrix (ECM)-receptor interaction (4 proteins), and PI3K-Akt signaling pathway (8 proteins)
may also be involved in potentiation process of antler stem cells.
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Figure 2. Enriched Gene Ontology (GO) network groups using ClueGO. GO categories of the 
identified up- and down-regulated proteins in the potentiated pedicle periosteum cells (PPPCs) are 
visualized as a functionally grouped network; only the terms that have p-value ≤0.05 are shown. 
Nodes in different shapes (ellipse: biological processes; hexagon: cell component; diamond: 
molecular function) represent specific GO terms and are grouped based on their similarity. The 
most significant parent or child term in each group is shown in bold, and the group is named after 
it. The thickness of the lines linking groups represents the value of calculated kappa score. The 
proportions of up- or down-regulated proteins in each GO term are indicated by red or green, 
respectively. 

 
Figure 3. Distribution of KEGG Pathways participated by the differentially expressed proteins. 
KEGG pathways are arranged in ascending order according to the values of p-value. 

As to the “Ribosome” KEGG pathway, all the enriched 28 proteins, such as 60S ribosomal 
proteins (RPL4 and RPL7, etc.) and 40S ribosomal proteins (RPS2 and RPS3A, etc.), were found to 
be down-regulated in the PPPCs (Table 1). Regarding “Protein export”, the majority of the enriched 
proteins (SPCS2, SRPRB and SEC61B) were down-regulated, but HSPA5 was up-regulated in the 
PPPCs. Additionally, in “Protein processing in endoplasmic reticulum”, six proteins (SAR1A, 
SEC61B, SEC23B, RRBP1, CRYAB, and HSP90AB1) were found to be down-regulated in the PPPCs, 
and only RPN2 and HSPA5 were up-regulated. In these KEGG pathways, more down-regulated 
proteins occurred in the PPPCs compared to the DPPCs. 

Figure 2. Enriched Gene Ontology (GO) network groups using ClueGO. GO categories of the identified
up- and down-regulated proteins in the potentiated pedicle periosteum cells (PPPCs) are visualized as
a functionally grouped network; only the terms that have p-value ≤0.05 are shown. Nodes in different
shapes (ellipse: biological processes; hexagon: cell component; diamond: molecular function) represent
specific GO terms and are grouped based on their similarity. The most significant parent or child term
in each group is shown in bold, and the group is named after it. The thickness of the lines linking
groups represents the value of calculated kappa score. The proportions of up- or down-regulated
proteins in each GO term are indicated by red or green, respectively.
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Figure 3. Distribution of KEGG Pathways participated by the differentially expressed proteins.
KEGG pathways are arranged in ascending order according to the values of p-value.

As to the “Ribosome” KEGG pathway, all the enriched 28 proteins, such as 60S ribosomal
proteins (RPL4 and RPL7, etc.) and 40S ribosomal proteins (RPS2 and RPS3A, etc.), were found to
be down-regulated in the PPPCs (Table 1). Regarding “Protein export”, the majority of the enriched
proteins (SPCS2, SRPRB and SEC61B) were down-regulated, but HSPA5 was up-regulated in the PPPCs.
Additionally, in “Protein processing in endoplasmic reticulum”, six proteins (SAR1A, SEC61B, SEC23B,
RRBP1, CRYAB, and HSP90AB1) were found to be down-regulated in the PPPCs, and only RPN2 and
HSPA5 were up-regulated. In these KEGG pathways, more down-regulated proteins occurred in the
PPPCs compared to the DPPCs.
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Table 1. Some KEGG Pathways Participated by Differentially Expressed Proteins in the PPPCs vs.
DPPCs. DPPCs, dormant pedicle periosteum cells; ECM, extra cellular matrix.

KEGG Pathway Up-Regulated Proteins Down-Regulated Proteins

Ribosome –

RPL35, RPL7A, RPL29, RPL7, RPL3L, RPL19, RPL10, RPL13A,
RPL8, RPL13, RPL4, RPS18, RPL34, RPS2, RPL21, RPL28,

RPL35A, RPL24, RPL26L1, RPS8, RPL18A, RPL6, RPL23A,
RPS13, RPL14, RPS5, RPS16, RPS27L

Protein export HSPA5 SPCS2, SRPRB, SEC61B

Protein processing in
endoplasmic reticulum RPN2, HSPA5 SAR1A, SEC61B, SEC23B, RRBP1, CRYAB, HSP90AB1

Focal adhesion THBS2, FLNB, COL6A1,
ITGA8, MAPK3 ACTN1, TNC, ZYX

HIF-1 signaling pathway SLC2A1, MAPK3, HMOX1 ENO3, PGK1

ECM-receptor interaction THBS2, ITGA8, COL6A1 TNC

PI3K-Akt signaling pathway THBS2, GNG2, COL6A1,
ITGA8, MAPK3 TNC, HSP90AB1, GNG12

On the contrary, in “Focal adhesion”, five proteins (THBS2, FLNB, COL6A1, ITGA8, and MAPK3)
were found to be up-regulated in the PPPCs and three proteins (ACTN1, TNC, and ZYX)
down-regulated (Table 1). As to the “HIF-1 signaling pathway”, there were three up-regulated
proteins (SLC2A1, MAPK3, and HMOX1) and two down-regulated proteins (ENO3 and PGK1) in
the PPPCs. In addition, IDH1 and PCK2, which participated in the “tricarboxylic acid (TCA) cycle”
(Figure 4), were both found to be up-regulated in the PPPCs. Regarding “ECM-receptor interaction”,
the majority of the enriched proteins (THBS2, ITGA8, and COL6A1) were up-regulated, and only
TNC was down-regulated in the PPPCs. In “PI3K-Akt signaling pathway”, the up-regulated proteins
were THBS2, GNG2, COL6A1, ITGA8, and MAPK3; the down-regulated ones were TNC, HSP90AB1,
and GNG12 (Figure 5). In these KEGG pathways, more up-regulated proteins occurred in the PPPCs
compared to the DPPCs.
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2.4. Validation of the Five Selected Differentially Expressed Proteins

Expression levels of FLNB, HSPA5, IDH1, PCK2, and STAT1 were confirmed using qRT-PCR.
Their mRNA expression levels were normalized using glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (Figure 6). Expression of STAT1 was found to be down-regulated, while FLNB, HSPA5,
and PCK2 were up-regulated in the PPPCs vs. DPPCs. These qRT-PCR results are consistent with those
of the iTRAQ LC-MS/MS analysis. Additionally, the expression of IDH1 was not found statistically
significant in the qRT-PCR result, but the trend of its expression level in the PPPCs vs. DPPCs is
consistent with that of the iTRAQ result.
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3. Discussion

This study is the first iTRAQ-based proteomic analysis for antler stem cells (PPCs). In the
study, we detected in total 169 differentially expressed proteins in the PPPCs vs. DPPCs: 70 up- and
99 down-regulated. These identified proteins were predicted to locate both in intra- and extra-cellular
spaces; found to participate in multiple biological processes and signaling pathways, such as HIF-1
and PI3K-AKT. Their potential roles in antler regeneration were discussed in the following relevant
parts in the discussion.

Quantitative proteomics for those species that currently lack genome sequences and intact protein
databases, such as sika deer, do not normally obtain comprehensive database searching results. In order
to overcome this problem and improve the search coverage, we utilized the NCBI nr database and the
database created by us (defined as six-frame translation of the transcriptome of the PPPCs and DPPCs).
In so doing (Figure 1), we significantly increased number of identified proteins from 117 (43 + 74)
to 169 (117 + 52). Therefore, properly designing a searching strategy for genome-less species can
efficiently enhance searching results.

STAT1 plays pleiotropic roles in biological processes. Loss or disruption of STAT1 results
in promotion of angiogenesis [13], liver regeneration [14], myogenic differentiation [15], skeletal
muscle regeneration [16], chondrocyte differentiation [17], and osteogenesis [18]. For osteogenesis,
Runx2 (also known as Cbfa1) plays a central role in determining osteoblast differentiation and bone
formation [19,20]. In the antler stem cells, Sun et al. [21] found that the knockdown of Cbfa1 gene
inhibited endochondral ossification of the PPCs. By binding to Cbfa1, STAT1 inhibits the process
of osteoblast differentiation [18]. In the present study, STAT1 was down-regulated in the PPPCs.
Therefore, less STAT1 in the PPPC would mean less Cbfa1 being neutralized. Then, it would follow
that more free-Cbfa1 could be available during the process from dormant to potentiated states in
the PPPCs for initiating subsequent chondrogenesis and osteogenesis during antler regeneration.
The detailed mechanism needs further research.

Hypoxia is an important factor in stem cell biology. Hypoxic stress influences the physiological
characteristics of embryonic stem cells [22] and neuron stem cells [23], etc. Under low oxygen
tension, mesenchymal stem cells proliferate faster [24], and acquire differentiation ability toward
chondrocytes [25] as well as enhanced migration ability [26]. These responses are primarily related
to the HIF-1 signal pathway. HIF-1α, as a master regulator in the HIF-1 signal pathway, is directly
phosphorylated and activated by one of the extracellular regulated protein kinases (ERK) MAPK3 in
response to hypoxia [27]. HMOX1 is a downstream transcription factor in the HIF-1 signal pathway.
Except for its vasodilatory property (Figure 4), HMOC1 also has antioxidant, anti-inflammatory,
and anti-apoptotic properties [28]. In our results, ERK and HMOX1 were both found to be up-regulated
in the PPPCs. Therefore, the HIF-1 signal pathway in the PPPCs may be activated by up-regulated ERK
and may play a role in initiating antler regeneration by expressing downstream transcription factors,
such as HMOX1. This pathway may increase proliferation and differentiation potential of the PPPCs.

Cellular respiration is a set of metabolic reactions and processes that take place in the cells to
convert biochemical energy from nutrients into adenosine triphosphate (ATP); and consists of two
types: aerobic (more efficient) and anaerobic (less efficient) respirations [29–31]. In our present study,
three differentially expressed proteins (ENO3, PGK1, and SLC2A1) in the HIF-1 signal pathway were
associated with anaerobic respiration (Figure 4). Among them, ENO3 and PGK1 were down-regulated,
and SLC2A1 was up-regulated in the PPPCs vs. DPPCs. Besides promoting anaerobic respiration,
SLC2A1 also participates in aerobic respiration (TCA cycle). In addition, two core proteins (IDH1 and
PCK2) in the TCA cycle were up-regulated in the PPPCs. Overall, these results suggest that the energy
metabolism in the DPPCs is anaerobic-based; whereas, in the PPPCs it is aerobic-based. If that is the
case, the conversion of the cellular respiration from anaerobic to aerobic may be required during the
potentiation process of antler stem cells. It would be interesting to investigate if the initiation of antler
regeneration also adopts a state of aerobic respiration.
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The PI3K-Akt pathway is involved in multiple cellular functions [32,33]. It plays key roles
in regulating cell cycle progression, cell proliferation, differentiation, and migration [34], etc.
This pathway can be activated by many types of upstream stimulators, including growth hormones,
cytokines, and extra cellular matrix (ECM) proteins. In our present study, two ECM proteins (THBS2
and COL6A1) and their receptor ITGA8 were all up-regulated in the PPPCs (Figure 5). The interactions
between these ligands and their receptor can activate focal adhesion kinase (FAK) protein, which
may further activate PI3K class IA in the PPPCs. The up-regulation of GNG2, one of the G proteins,
in the PPPCs could directly activate PI3K class IB, and subsequently activate the PI3K-Akt pathway.
At the same time, up-regulation of the ERK protein in this pathway (Figure 5) may contribute to cell
proliferation, angiogenesis, and DNA repair of the PPPCs. This could be one of the reasons why the
PPPCs have the potential to initiate subsequent antler regeneration. However, functions of the other
two down-regulated proteins (HSP90AB1 and GNG12) in the PPPCs are thus far still unknown.

Endoplasmic reticulum (ER) plays an indispensable role in protein synthesis and secretion
including the folding of protein molecules. Correct folding of newly synthesized proteins is made
possible by several ER chaperone proteins, including the Hsp70 family member HSPA5. Unfolded
proteins cause an unfolded protein response (UPR) as a stress response in the ER. ER stress is a state in
which the folding process of proteins slows down, leading to an increase in the number of unfolded
proteins [35]. In our results, HSPA5 was found to be significantly up-regulated in the PPPCs vs. DPPCs.
Antlers experience an unprecedented growth rate during their growth phase, thus intense UPR process
is likely to be activated in the ER of antler cells. It is understandable that HSPA5 would be highly
expressed in the PPPCs, the cells that give rise to regenerating antlers, which would then help to
alleviate ER stress during antler regeneration.

Filamins are involved in cell migration via formation of orthogonal networks by crosslinking
with the actin cytoskeleton in cells. This network can change cell shape and improve cell motility [36].
The family of filamins consists of three proteins (FLNA, FLNA, and FLNC) [37]. Among them, FLNB
is the one that expresses most ubiquitously in different tissues [38]. Knockout of FLNB is found to
impair cell migration [39]. In our present study, FLNB was up-regulated in the PPPCs. Therefore,
the PPPCs that are equipped with FLNA network would acquire greater motility compared to the
DPPCs, which would undoubtedly facilitate migration of the PPPCs and hence the formation of an
antler regeneration center.

4. Materials and Methods

4.1. Tissue Sampling and Primary Culture of the PPCs

The PP was harvested from the heads of three slaughtered three-year-old sika deer (Cervus nippon)
in a commercial abattoir in Shuangyang nearby Changchun City under the approval from the
Temporary Animal Ethics Committee of Institute of Special Wild Economic Animals and Plants,
Chinese Academy of Agricultural Sciences (Permit Number: 2014–0036, date: 2014.03.15), according to
the protocol described by Li and Suttie [7]. The primary culturing of the PPPCs and the DPPCs was
conducted following the protocol described by Li et al. [40]. Cells were trypsinized and transferred
into T75 flasks (Nest Biotechnology, Hong Kong, China) and then cultured in dulbecco modified eagle
medium (DMEM) (Life Technologies, Carlsbad, CA, USA) plus 10% FBS (Gibco, Carlsbad, CA, USA),
500 U/mL penicillin, and 500 µg/mL streptomycin (Invitrogen, Carlsbad, CA, USA) for two days
before being frozen. Cells were stored in liquid nitrogen in freezing medium (FBS + 10% DMSO).

The PPCs were not further purified into sub-cell populations as over 95% of these cells are known
to express the embryonic stem cell marker CD9 [6]. Cells were retrieved from storage and grown in
the culture medium to sub-confluence (around 85%) in T75 flasks prior to use.
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4.2. Protein Extraction and Labeling

After discarding the culture medium in the T75 flasks, sorbitol solution (Sigma-Aldrich,
Saint Louis, MO, USA) was used to rinse the cells. Subsequently, cells were trypsinized
and re-suspended in the sorbitol solution, and then washed in the same solution three times.
The cell pellet was re-suspended in 500 µL lysis buffer (7 mol/L Urea, 2 mol/L Thiourea,
4% 3-[(3-Cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (CHAPS), and 1% protease
inhibitor cocktail) (General Electric healthcare, Fairfield, CT, USA). A Bullet Blender (Next Advance,
Averill Park, NY, USA) was used to break the cells after the addition of stainless steel beads (0.5 mm in
diameter; 0.5:1.0 ratios of beads). Supernatants were collected after centrifugation at 12,000 r/min and
4 ◦C for 5 min, and protein concentration of the supernatant was measured using the Protein Assay
Kit I (Bio-Rad, Hercules, CA, USA).

An aliquot of 200 µg from each sample was mixed with 4 µg trypsin (Sigma-Aldrich, Saint Louis,
MO, USA) at a final ratio of 1:50 (trypsin: sample), and incubated overnight at 37 ◦C. After completion
of trypsin digestion, peptides were dried in a vacuum drier. Peptides were then labeled with iTRAQ
reagents according to manufacturer’s instructions (Applied Biosystems, Carlsbad, CA, USA). Labeled
samples were fractionated using a 4.6 mm × 250 mm Durashell-C18 column (Agela, Tianjin, China) in
a RIGOL L-3000 high-performance liquid chromatography (HPLC) system (Beijing RIGOL Technology
Co., Ltd., Beijing, China). After reconstitution of the labeled peptide mixture with 100 µL of buffer
A (98% ddH2O, 2% acetonitrile, pH 10), the mixture was separated using HPLC at a flow rate of
0.7 mL/min. The elution process was done with buffer B (98% acetonitrile, 2% ddH2O, pH 10) as
follows: 1 min 5% buffer B; 2–62 min 5%–32% buffer B; 62–64 min 32%–95% buffer B; 64–68 min
95% buffer B; 68–72 min decreasing to 5% buffer B. The elution process of fractionation was monitored
by measuring the absorbance at 214 nm. Fractions were desalted with a Ziptip column (Millipore,
Boston, MA, USA), and vacuum-dried.

4.3. Analysis of Proteins Using a LC-ESI-MS/MS

A TripleTOF 5600 coupled with an Eksigent NanoLC-2D system (Applied Biosystems) was
used for protein identification and quantification. The peptide mixture was loaded into a C18
EASY-Spray column (3 µm, 12 cm × 75 µm; Agilent, Palo Alto, CA, USA) and separated using
buffer A’ (100% ultrapure water, 0.1% formic acid) for 15 min at a flow rate of 2 µL/min. Peptides were
eluted at 350 nL/min. The elution process was done with buffer B’ (100% acetonitrile, 0.1% formic acid)
as follows: 1 min 4% buffer B’; 2–65 min 4%–32% buffer B’; 65–70 min 32%–95% buffer B’; 70–82 min
95% buffer B’; 82–85 min decreasing to 4% buffer B’; 85–90 min 4% buffer B’.

Peptides were subjected to nanoelectrospray ionization tandem mass spectrometry through a
TripleTOF 5600 coupled in line to the HPLC system, with an electrospray voltage of 2.1 kV and
capillary temperature of 250 ◦C. The analytical cycle included a MS survey scan and the scan range
was 350–1800 m/z. Intact peptides were detected at a resolution of no less than 70,000 full width at
half maximum (FWHM) with a 60 ms accumulation time.

4.4. Database Search

Quantitative proteomic analysis of sika deer peptides is limited by the availability of species
specific genome or intact protein databases. In order to compensate for this, we used ProteinPilot 2.0.1
software (Applied Biosystems) to search against both the NCBI nr database (including Homo sapiens,
Bos taurus, Bos mutus, and Ovis aries) as well as a database created by six-frame translation of our
own PPPC and DPPC transcriptome databases (total size: 5.6 Gb; non-redundant unigene number:
63,766; N50 length: 1598 bp; average length: 886 bp). The transcriptome accession number in the
Short Read Archive of the NCBI database was SRP041164. The proteome database translated from our
own transcriptome and relevant annotation information can be found in the supplementary Files 1
and 2. Thresholds of confidence above 95% and global false discovery rate from fit less than 1% were
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firstly used for both protein identification and quantitative analysis. The following criteria were used
for the identification of proteins: a mass tolerance of ±15 ppm was allowed for precursor ions and
±20 milli mass unit (mmu) for fragment ions; a maximum of two missed cleavages were allowed in
the trypsin digests; cysteine carbamidomethylation (57.021 Da) was considered as a static modification;
methionine oxidation (15.995 Da), iTRAQ labeling of lysines and the N-terminal amino group of
peptides were set as dynamic modifications; proteins containing at least two unique peptides were
used for the follow-up quantification analysis; fold change thresholds for those proteins defined as
up-regulated or down-regulated proteins were a set at 1.5 (1 × 1.5 = +1.5; fold regulation calculation
for those >1) or 0.67 (−1/0.67 = −1.5; fold regulation calculation for those <1); p-value < 0.05 was the
threshold for statistical significance. The iTRAQ analysis of antler stem cells was summarized in a
flow chat (Figure 7).
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4.5. Bioinformatics Analysis

Functional classifications and enrichment analyses of Gene Ontology (GO) of the up- and
down-regulated differentially expressed proteins were carried out by ClueGO (Version 2.2.5)
plugin [41] in Cytoscape (version 3.4.0) [42]. Kappa statistic was utilized in the ClueGO; it was
used in a similar way as described by Huang et al. [43] to connect the GO terms in the network.
The ontology node shapes of “biological process”, “cell component”, and “molecular function” were
ellipse, hexagon, and diamond, respectively. The following criteria were used: p-value for each
GO term was calculated after Bonferroni step down correction and only terms with p-value <0.05
were shown; the network specificity was set to medium; GO term fusion was used to diminish the
redundancy of the terms shared by similar associated proteins, then the most representative parent or
child term was retained; the kappa score, which was calculated based on the number of proteins shared
between GO terms, was set to 0.4; the organic layout (yFiles) was selected as the preferred layout,
and the other parameters were set by default. STRING (version 10.0) was employed to perform a
protein-protein interaction analysis based on compiled available experimental evidence and statistical
enrichment tests were executed for KEGG pathway annotations [44].
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4.6. Validation by qRT-PCR

Five differentially expressed proteins were randomly selected for further validation using
qRT-PCR. Total RNA from both DPPCs and PPPCs were extracted using Trizol and purified with
a silica-based spin column (Sangon, Shanghai, China) according to the manufacturer’s protocol.
The reverse transcription was performed with 1300 ng of RNA/sample using a PrimeScriptTM

First-Strand cDNA Synthesis Kit (TaKaRa, Dalian, China) following the manufacturer’s instructions.
Gene-specific primers (Table S5) were designed using Primer Premier 5.0 (PREMIER Biosoft
International, Palo Alto, CA, USA). Reactions were carried out using the ABI 7500 system (Applied
Biosystems) with FastStart Universal SYBR Green Master (ROX) (Roche, Switzerland). GAPDH was
used as the house-keeping gene for normalization. The qRT-PCR data were analyzed using the 2−∆∆Cq

method. The results are presented as mean ± SD. Statistical significance was evaluated using Student’s
t-test in GraphPad Prism 5 (version 5.01) (GraphPad Software, La Jolla, CA, USA). The p-value <0.05
was considered statistically significant. Results of each gene were all conducted in triplicate.

5. Conclusions

Overall, this is the first comprehensive study of differentially expressed proteins in the PPPCs
vs. DPPCs using a quantitative proteomic approach. The first step of antler regeneration is a process
from dormant to potentiated states in antler stem cells. In this study, we found this process may be
regulated by multiple factors and signaling pathways. Further research is needed to validate the
functions for some of the identified proteins in this study and to explore the novel molecular regulatory
mechanisms underlying progression from dormant to potentiated states in antler stem cells (i.e., antler
regeneration), for the only mammalian organ that can fully regenerate.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/11/1778/s1.
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