
sensors

Article

HortNet417v1—A Deep-Learning Architecture for the
Automatic Detection of Pot-Cultivated Peach Plant Water Stress

Md Parvez Islam 1 and Takayoshi Yamane 2,*

����������
�������

Citation: Islam, M.P.; Yamane, T.

HortNet417v1—A Deep-Learning

Architecture for the Automatic

Detection of Pot-Cultivated Peach

Plant Water Stress. Sensors 2021, 21,

7924. https://doi.org/10.3390/

s21237924

Academic Editor: Junliang Xing

Received: 4 November 2021

Accepted: 25 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Center for Agricultural Robotics, NARO, Tsukuba 3050856, Japan; p.islam@affrc.go.jp
2 Research Center for Agricultural Information Technology and National Institute of Fruit Tree and Tea Science,

NARO, Tsukuba 3050856, Japan
* Correspondence: yamanet@affrc.go.jp; Tel.: +81-29-838-6502

Abstract: The biggest challenge in the classification of plant water stress conditions is the similar
appearance of different stress conditions. We introduce HortNet417v1 with 417 layers for rapid recog-
nition, classification, and visualization of plant stress conditions, such as no stress, low stress, middle
stress, high stress, and very high stress, in real time with higher accuracy and a lower computing
condition. We evaluated the classification performance by training more than 50,632 augmented
images and found that HortNet417v1 has 90.77% training, 90.52% cross validation, and 93.00%
test accuracy without any overfitting issue, while other networks like Xception, ShuffleNet, and
MobileNetv2 have an overfitting issue, although they achieved 100% training accuracy. This research
will motivate and encourage the further use of deep learning techniques to automatically detect
and classify plant stress conditions and provide farmers with the necessary information to manage
irrigation practices in a timely manner.

Keywords: deep learning; network architecture; stem water potential; plant water stress; classification

1. Introduction

Water management is significant for controlling fruit tree growth, yield, and fruit
quality [1]. Irrigation methods for fruit trees are often determined by soil drying; however,
the condition of part of the soil does not always match that of the whole soil in the root
zone, because fruit tree roots are distributed at various depths depending on the soil type
and floor management [2]. Plant-based irrigation is a significantly better method than
soil-based estimation to save water, maintain optimal plant growth, and improve fruit
quality [3]. Stem water potential is a widely accepted method to measure plant water
status [4,5]. However, these measurements are destructive and labor intensive. Therefore,
a low-cost and non-destructive method is needed.

Due to the tremendous development and reduction in cost of image acquisition, data
storage, and computing systems, the computer vision technique has become a popular
tool for deep learning (DL). DL in general is the successor of machine learning with many
hidden layers and massive training data [6] with the capability of an automatic acquiring
for hierarchical feature and learning via non-linear filters from the bottom and thereafter
producing decision-making or classification at the top [7]. Deep learning emphasizes
the depth of the deep network structure to learn complex features with a higher level
of accuracy, enabling a network to solve problem-specific tasks such as object detection,
semantic segmentation, and image analysis. It has been reported that many well-known
DL architectures, such as LeNet, AlexNet, VGG, ResNet, GoogleNet, MobileNet, Inception,
and SqueezeNet, are widely used to identify and classify leaf diseases [8]. In agriculture,
it is difficult to separate the object from the background because of their similarity. On
the other hand, the dynamic nature of the background in orchards and farmland creates
challenges for the classification task.

Sensors 2021, 21, 7924. https://doi.org/10.3390/s21237924 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5931-853X
https://doi.org/10.3390/s21237924
https://doi.org/10.3390/s21237924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237924
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237924?type=check_update&version=2


Sensors 2021, 21, 7924 2 of 24

Wakamori et al. [9] proposed a multimodal neural network with long short-term
memory layers. Their network requires physiological and meteorological data to estimate
plant water stress with a 21% mean absolute and root-mean-squared error. Their target
plant was a rockwool-cultivated tomato grown in a greenhouse with a very short and
shallow rootzone. For physiological data, they used images of leaf wilting. The leaf-wilting
phenomenon is mostly related to daytime transpiration [10]. This might be helpful in
plants that grow inside a greenhouse. However, leaf wilt also depends on leaf age and
weather conditions, such as rainfall and wind. Our target plant is the peach tree, which is
long and deep rooted and grown mostly in open-field conditions. Soil-moisture conditions
mostly depend on the soil type, and both moisture and soil type are non-uniform in depth
and distance from the plant. The water uptake capacity also varies from plant to plant, and
transpiration varies among different parts of the peach tree.

Kamarudin et al. [11] conducted a comprehensive review of various plant water-stress
assessment methods and reported that most of the existing deep-learning solutions are
based on soil moisture estimation, soil water modelling, evapotranspiration estimation,
evapotranspiration forecasting, plant water-stress estimation, and plant water-stress identi-
fication. All of these methods use sensory measurement data for machine learning analysis,
which mostly depends on the quality of the data and the specific target application [12].
However, deep learning is mostly used in disease detection and yield prediction.

The author proposed a new DL architecture with several components (convolutions,
batch normalization, ReLU, max pooling, depth concatenation, element wise addition,
dropout, fully connected layers, softmax, classification output layer, etc.). In some litera-
ture [13,14], it is explained that deepening the DL network could increase classification
accuracy with a noisy background. Therefore, the depth of the DL architecture is fixed to
417 layers and accurately optimized based on training performance. The aim of this work
is to demonstrate the HortNet417v1 (horticulture network 417 version 1) performance
for the automatic detection of peach plant leaf water stress under various environmental
conditions.

2. Materials and Methods

Nine 9-year-old peach trees (Prunus persica (L.) Batsch cv. ‘Akatsuki’ grafted onto
‘Ohatsumomo’ peach), were planted in 60 L plastic pots in a greenhouse at the National
Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organi-
zation (NARO) in Tsukuba, Ibaraki, Japan. This experiment was conducted from 27 May
to 19 June 2020. Full bloom was 28 March and the growth stage of these trees was from
65 (stage II of the fruit-developing stage) to 88 days (stage III of that two weeks before
harvest) after full bloom. The cultivation process is shown in Figure 1.

The pot cultivation method was used to simulate the water stress condition. The stem
water potential method verified the stress conditions of each peach tree. Three irrigation
methods were applied to create different stress conditions: (1) Wet treatment: when the
soil water potential reached −0.005 MPa, three potted trees were automatically irrigated
to maintain moist conditions. (2) Dry treatment: when the soil water potential reached
−0.050 MPa, three potted trees were automatically irrigated to maintain that level. But
during the experiment, the irrigation was stopped four times until the soil water potential
reached about −0.070 MPa.

A tensiometer (DM-8HG, Takemura Denki Seisakusho Co., Ltd., Tokyo, Japan) was
used to monitor the soil water potential at a depth of 15 cm every 10 min and photographs
were taken of these tress under various stress conditions and different water conditions.
Two matured leaves per tree were enclosed in a small hermetic aluminum foil bag at least
30 min before the measurement time. These leaves reached equilibrium with the main
stem of the tree; therefore, their water potential represented the whole tree. This method is
known to be stable to estimate the water condition of the whole tree [15,16]. The stem water
potential of each tree was measured 22 times under various stress conditions from 27 May
to 19 June 2020. A pressure chamber (Model 600, PMS Instrument Company, Albany, OR,



Sensors 2021, 21, 7924 3 of 24

USA) was used for this experiment. Photographs were taken using a smart phone equipped
with a camera (iPhone 11, Apple, Cupertino, CA, USA) (Figure 2).

Figure 1. The planted peach tree cultivation system.

Figure 2. Image-acquisition process.

We randomly take around 100 image per tree to ensure the data diversity under
various illumination conditions (shaded/sunlit), air temperatures, proximate distances,
and points of view (direction and height). A total of 25,000 images were obtained during
the experiment. Water-stress conditions were divided into five classes for subsequent
analysis by stem water potential: (1) no stress, over −0.5 MPa; (2) low stress, −0.5 to



Sensors 2021, 21, 7924 4 of 24

−1.0 MPa; (3) moderate stress, −1.0 to −1.5 MPa; (4) high stress, −1.5 to −2.0 MPa; (5) very
high stress, under −2.0 MPa.

The proposed network architecture of HortNet417v1 represents a semantic segmentation-
based network (convolution layers) and a classification-based network (softmax), as shown
in Figure 3.

Figure 3. HortNet417v1 network architecture (HS—high stress, LS—low stress, MS—moderate stress, NS—no stress,
VHS—very high stress).

The higher-level image features extracted from input image have multiple and smaller
filter sizes of 3 × 3 × 3 × 32 pixels in the second layer of the network. The convolution in the
second layer has a strong generalization ability that improves the network initial learning
performance even when the input images are conglutinated with various objects [17].

The ReLU (rectified linear unit) activation function adds non-linearities to the pro-
posed network, and converts the value of each input element that is less than zero to zero
by performing a threshold operation [18]. The ReLU layer also converts the total weighted
input from the node to the output, which overcomes the vanishing gradient problem. This
also enables the model to learn faster and perform with higher accuracy. However, ReLU
is not continuously differentiable and sometimes leads to cause the dying ReLU problem
(neuron death). To prevent this, a LeakyReLU is added, where any input value less than
zero is multiplied by a fixed scalar (fixed manually). This will not saturate with the positive
value of the input, so it can prevent the gradient from exploding/disappear during the
gradient descent process.

A ClippedReLU reduces the feature value of the output from becoming too large [19].
The batch-normalization layer transforms each input in the mini-batch, subtracts the
batch mean, and then divides the mini-batch by the standard deviation [20]. This layer
normalized the output from a previous activation layer and increased the network stability.

In addition, in order to avoid the use of mini-batch dimensions, we introduce a group
normalization layer, which divides the input channels into groups and normalizes across
each group [21]. The max pooling layer simplifies the complexity of the network by
compressing features for fast computing, and extracting main features, thereby ensuring
the invariance of feature positions and rotations [17,22]. The average pooling layer creates
a downsampled (pooled) feature by dividing the input into rectangular regions, computing
the average values of each region, adding a small amount of translation invariance, and
extracting smooth features, whereas max pooling mostly extracts features like edges [23,24].



Sensors 2021, 21, 7924 5 of 24

The dropout in the 404th layer randomly drops 10% of neurons in order to prevent
the overfitting issue. The last convolution of the 411th layer has 64 filters, with batch
normalization and ReLU activation, and then global average pooling. We added global
average pooling to the 414th layer (1 × 1 × 64) before the fully connected layer. This layer
downsamples the height and width dimensions of the input, and reduces the total number
of parameters without sacrificing performance and minimizes overfitting. After multiple
rounds of convolution and pooling, all abstract features are integrated into a vector through
a fully connected layer. This layer has five outputs, corresponding to five classes that feed
into the softmax layer for calculating the probability of the output classification layer.
These expanded features passed to the classification layer for classification [25]. Several
performance metrics, such as training/validation/test accuracy, confusion matrices, and
validation loss and training time, evaluate the proposed deep-learning network architecture.
The confusion matrices are given in terms of percentage and absolute number. Therefore,
the depth of the DL architecture is fixed to 417 layers and accurately optimized based on
training performance. The statistics of the HortNet417v1 architecture are shown in Table 1.

Table 1. Statistics of the HortNet417v1 architecture.

Layer Name Total Number
of Layers Layer Name Total Number

of Layers

Image Input 1 Group Normalization 6
Convolution 124 Addition layer 12
ReLU 65 Depth Concatenation 7
Clipped ReLU 31 Global Average Pooling 1
Leaky ReLU 25 Concatenation 1
Dropout (10%) 1 Fully Connected 1
Batch Normalization 112 Softmax 1
Average Pooling 14 Pixel classification (Output) 1
Max Pooling 14

The learning parameters applied to train HortNet417v1 were validation frequency:
50; validation patience: inf; mini-batch size: 260; maximum epoch: 50; learn rate schedule:
piecewise; shuffle: every epoch; initial learn rate: 0.001; learn rate drop period: 10; learn
rate drop factor: 0.1; L2 regularization: 0.0001; sequence length: longest; sequence padding
value: 0; sequence padding direction: right; and epsilon: 1.00E-08. The adaptive moment
estimation (ADAM) was used to optimize the network weights. All analyses were run
using the Supercomputer FUJITSU SHIHO equipped with TESLA V100 -SXM2 32GB and
CUDA version 10.2, Deep Learning and Parallel computing Toolbox (Matlab R2020a).

For comparative analysis, we used modified pretrained network NasNet-Mobile,
ResNet-50, Xception, ShuffleNet, SqueezeNet, GoogleNet, and MobileNetv2, as shown
in Table 2.

Table 2. Network for comparative analysis.

Network Number of
Layers Input Image Size References

NasNet-Mobile 913 224 × 224 × 3 [26]
ResNet-50 177 224 × 224 × 3 [27]
Xception 170 299 × 299 × 3 [28]

ShuffleNet 172 224 × 224 × 3 [29]
SqueezeNet 68 227 × 227 × 3 [30]
GoogleNet 144 224 × 224 × 3 [31]

MobileNetv2 154 224 × 224 × 3 [32]
HortNet417v1 417 240 × 240 × 3 -

We designed HortNet417v1 in such a way that allows it to be used in both low-
powered mobile and high-powered fixed devices. Several performance metrics, such as



Sensors 2021, 21, 7924 6 of 24

training accuracy (TA), validation accuracy (VA), test accuracy (TeA), confusion matrix,
training loss (TL), validation loss (VL), sensitivity (Equation (1)), specificity (Equation
(2)), precision (Equation (3)), F1 score (Equation (4), and Matthews correlation coefficient
(MCC, Equation (5)) are used to evaluate HortNet417v1 network efficiency. However,
∆AccuracyTr−Val in Equation (6) and ∆LossTr−Val in Equation (7) are used to evaluate Hort-
Net417v1 network overfitting issue. The same performance metrics are also evaluated
on NasNet-Mobile, ResNet-50, Xception, ShuffleNet, SqueezeNet, GoogleNet, and Mo-
bileNetv2 for comparative analysis. Visualization of the predicted stress condition for
evaluating the accuracy based on validation (6266 images) and test (500 images) data are
also provided in the Results Section 3 and Discussion Section 4.

Sensitivity =
TP

TP + FN
(1)

where, TP— true positive, FN—false negative, worst value = 0, best value = +1.

Specificity =
TN

TN + FP
(2)

where, TN—true negative, worst value = 0, best value = +1.

Precision =
TP

TP + FP
(3)

where, worst value = 0, best value = +1.

F1 − score = 2 × (Sensitivity × Precision)
(Sensitivity + Precision)

(4)

where, worst value = 0, best value = +1.

MCC =
Cov(c, l)
σc × σl

=
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5)

where, Cov(c, l) is the covariance of the true classes c and predicted labels l, σc and σl are
the standard deviations, worst value = −1, best value = +1.

∆AccuracyTr−Val =
TA – VA

100
× 100 (6)

∆LossTr−Val =
TL – VL

100
× 100 (7)

We employed a network visualization feature using the deep dream function and
compute the network layer activation to visualize the activation of different layers of the net-
work. This also demonstrates how networks identify and learn features in different depths
of the network. The t-SNE (t-distributed stochastic neighbor embedding) algorithm is used
to reduce the high dimensionality and visualize the low-dimension data in a way that
respects the similarities between data points [33]. We use occlusion sensitivity and locally
interpretable model-agnostic explanation (LIME) techniques to predict the result evaluation
(what/why/how/which/where). The occlusion sensitivity technique demonstrates what
input image features are used by the network to make a classification decision and helps to
identify the reason behind the network misclassification decision [34]. The LIME technique
generates synthetic data from the input, classifying the synthetic data using the net and
then using a simpler, more interpretable machine-learning classification/regression model
to fit the classification results [35].

Figure 4 shows the pattern of image datasets for the training, validation, and testing
of HortNet417v1. In this experiment, 70% of the randomly selected images from the image
dataset were used for training and 30% for validation purposes. An independent 500-image



Sensors 2021, 21, 7924 7 of 24

dataset (100 images/stress condition) was used for testing purposes. The image dataset was
augmented, including random X and Y reflection, to prevent overfitting and to generalize
the model for better network learning. A total of 43,866 augmented images were used to
train the HortNet417v1 network.

Figure 4. Visualization of the input image dataset.

Figure 5 visualizes the experimental step (from dataset preparation to networks
training, model evaluation and prediction) for network analysis.

Figure 5. Schematic diagram of the network image dataset preparation and analysis.

3. Results
3.1. Performance Evaluation

Table 3 shows the result of several performance metrics for evaluating HortNet417v1
network efficiency. This comparative analysis shows that HortNet417v1 can classify stress
conditions with the test accuracy as high as NasNet-Mobile/Resnet-50/Xception/ShuffleNet/
MobileNetv2 and higher than GoogleNet or SqueezeNet. From Table 3, we can see that
Xception, ShuffleNet, and MobileNetv2 reached the convergence stage after 29.35, 29.23,
and 19.3 min of network training, then stopped at 25, 24, and 26 max. epochs, respectively,
with 100% training accuracy for all three networks, lower validation accuracy of 96.18%,



Sensors 2021, 21, 7924 8 of 24

92.60% and 94.13% and slightly higher test accuracy of 97.20%, 93.60% and 95.40%. This
trend demonstrated that models with higher training accuracy can be overfit by memorizing
properties of the training set but failed to predict with validation or test data with same
accuracy level [36]. The class imbalance problem of the training dataset might also affect
the lower training loss (2%, 3% and 2%) and higher validation loss (11%, 21%, 20%)
for Xception, ShuffleNet, and MobileNetv2, respectively. However, this class imbalance
problem did not affect our proposed model HortNet417v1 network performance which
shows very close training and validation loss of 21% and 20%, respectively.

Table 3. Training performance (comparative analysis).

Network Time
(Min)

Max
Epoch TA (%) VA (%) TeA (%) TL (%) VL (%)

NasNet-
Mobile 225.58 25 98.50 96.10 96.80 3.00 11.00

ResNet-50 26.35 25 98.85 94.56 94.00 4.00 16.00
Xception 29.23 24 100 96.18 97.20 2.00 11.00
ShuffleNet 23.18 22 100 92.60 93.60 3.00 21.00
SqueezeNet 6.54 27 58.85 59.16 62.00 89.00 87.00
GoogleNet 1.31 3 28.85 30.08 20.00 15.50 15.20
MobileNetv2 19.3 26 100 94.13 95.40 2.00 20.00
HortNet417v1 213 36 90.77 90.52 93.00 21.00 20.00

NasNet-Mobile and ResNet-50 reached their convergence stage after 225.58 and
26.35 min at 25 max epochs with 98.50% and 98.85% training accuracy, respectively.
SqueezeNet and GoogleNet achieved their convergence stage after 6.54 and 1.31 min
of network training, then stopped at 27 and 3 max epochs with only 58.85% and 28.85%
training accuracy, respectively. Our proposed HortNet417v1 network reached its con-
vergence stage after 213 min of training, then stopped at 36 max epochs with 90.77%
training accuracy.

From Figure 6, it is clear that the highest ∆AccuracyTr−Val is observed with Shuf-
fleNet (7.4%), MobileNetv2 (5.87%), ResNet-50 (4.29%), NasNet-Mobile (2.4%), and Xcep-
tion (3.82%), while a negative ∆AccuracyTr−Val is found with GoggleNet (−1.23%) and
SqueezeNet (−0.31%). The lowest ∆AccuracyTr−Val is observed with the HortNet417v1
(0.25%) network, and this demonstrated that the network learns without any overfitting
issue. On the other hand, the highest ∆LossTr−Val is observed with GoogleNet (0.03%)
and SqueezeNet (0.02%), and the negative ∆LossTr−Val is observed with MobileNetv2
(−0.18%), ShuffleNet (−0.18%), ResNet-50 (−0.12%), Xception (−0.09%), and NasNet-
Mobile (−0.08%). The lowest ∆LossTr−Val is also observed with the HortNet417v1 (0.01%)
network. In both cases (∆ differences between training and validation accuracy and ∆
differences between training and validation loss), the network demonstrates stability, and
it is possible to improve network performance by adding more data.

It can be seen from the confusion chart in Figure 7a, with a validation dataset, that
the higher classification accuracy of 96.5% was achieved for the very high stress condi-
tion, followed by no stress (92.6%), moderate stress (87.1%), low stress (89.7%) and high
stress (93.2%).

However, the confusion chart in Figure 7b, with a test dataset, also demonstrated
that this accuracy increased from 92.6% to 98.9% (very high stress), from 92.6% to 96.9%
(no stress), and from 87.1% to 90.3% (moderate stress); meanwhile, it fell slightly from
89.7% to 89.0% (low stress) and from 93.2% to 90.5% (high stress). This performance can be
improved by adding more data patterns with a training dataset.

Figure 8 shows the performance indicators of each single class. Even when the data
of each class is unbalanced, the HortNet417v1 network achieves the best value for all
individual classes.



Sensors 2021, 21, 7924 9 of 24

Figure 6. Visualization of network stability.

Figure 7. Confusion matrix with validation (a) and test (b) datasets.

Figure 8. Evaluation of the individual stress condition.

3.2. Visualization of the Predicted Stress Condition for Evaluating Accuracy Based on Test Data

Figure 9a shows 20 randomly selected predicted images to evaluate the accuracy
based on 6266 validation and 500 image data sets. The network is perfectly classified based
on the validation and test images, and in both cases, as shown in Figure 9a,b, only one
misclassification occurred. This issue was caused by the similar plant responses under low
and moderate stress conditions (low stress: −0.5 to −1.0 MPa; moderate stress: −1.0 to
−1.5 MPa). By adding various patterns with the training dataset for low and moderate
stress conditions, especially in a range from −0.8 MPa to −1.2 MPa, it is possible to
overcome this problem.



Sensors 2021, 21, 7924 10 of 24

Figure 9. Prediction based on validation (a) and test (b) image datasets.

3.3. Visualization of the Network Feature and Layer Activations

Figure 10 Visualization of the network feature using deep dream (i, iii, v, vii) and layer
activations (ii, iv, vi, viii) at different depths of the HortNet417v1 network.

Figure 10. Cont.



Sensors 2021, 21, 7924 11 of 24

Figure 10. Cont.



Sensors 2021, 21, 7924 12 of 24

Figure 10. Cont.



Sensors 2021, 21, 7924 13 of 24

Figure 10. Cont.



Sensors 2021, 21, 7924 14 of 24

Figure 10. Visualization of network features and layer activations at different depths of the network.



Sensors 2021, 21, 7924 15 of 24

3.3.1. Convolution Layer

In the shallow depth of the network (layer 2), the input image size is 240 × 240 with
32 filters (Figure 10a(i)), and the weight and bias for learnable parameters are 3 × 3 × 3 × 32
and 1 × 1 × 32, respectively. In the middle depth (139th layer), the input image size is
15 × 15 with 256 filters (Figure 10a(iii)), and the weight and bias for learnable parameters
are 3 × 3 × 128 × 256 and 1 × 1 × 256, respectively. In the deep depth (layer 313), the
image size is 8 × 8 with 512 filters (Figure 10a(v)), and the weight and bias for learnable
parameters are 3 × 3 × 512 × 512 and 1 × 1 × 512, respectively. In the final convolution
layer (411th), the image size is 1 × 2 with 64 filters (Figure 10a(vii)), and the weight and
bias for learnable parameters are 3 × 3 × 128 × 64 and 1 × 1 × 64, respectively. The
learnable feature is the response of the CNN (convolution neural network) layer to an
input, as shown in Figure 10a(ii,iv,vi,viii).

3.3.2. Batch-Normalization Layer

In the shallow depth layer (3rd), the input image size is 240 × 240 with 32 filters
(Figure 10b(i)), and the offset and scale for learnable parameters are 1 × 1 × 32 and
1 × 1 × 32, respectively. In the middle depth layer (142th), the input image size is 15 × 15
with 256 filters (Figure 10b(iii)), and the offset and scale for learnable parameters are
1 × 1 × 256 and 1 × 1 × 256, respectively. In the deep depth (layer 316), the image size is
8 × 8 with 512 filters, and the offset and scale for learnable parameters are 1 × 1 × 512 and
1 × 1 × 512 (Figure 10b(v)), respectively. In the final convolution (layer 412), the image size
is 1 × 2 with 64 filters (Figure 10b(vii)), and the offset and scale for learnable parameters
are 1 × 1 × 64 and 1 × 1 × 64, respectively. The learnable feature is the response of the
batch-normalization layer, as shown in Figure 10b(ii,iv,vi,viii).

3.3.3. Rectified Linear Unit (ReLU) Layer

In the shallow depth layer (4th), the input image size is 240 × 240 with 32 filters
(Figure 10c(i)). In the middle depth (148th layer), the input image size is 8 × 8 with
512 filters (Figure 10c(iii)). In the deep depth layer (324th), the image size is 8 × 8 with
512 filters (Figure 10c(v)). In the final ReLU (layer 413), the image size is 1 × 2 with
64 filters (Figure 10c(vii)). The learnable feature is the response of the ReLU layer, as shown
in Figure 10c(ii,iv,vi,viii).

3.3.4. LeakyReLU

In the shallow depth (19th layer), the input image size is 240 × 240 with 32 filters
(Figure 10d(i)). In the middle depth layer (221th layer), the input image size is 8 × 8 with
512 filters (Figure 10d(iii)). In the deep depth layer (327th), the image size is 8 × 8 with
512 filters (Figure 10d(v)). In the final LeakyReLU (layer 407th), the image size is 1 × 2
with 256 filters (Figure 10c(vii)). The learnable feature is the response of the LeakyReLU
layer to an input, as shown in Figure 10d(ii,iv,vi,viii).

3.3.5. ClippedReLU

In the shallow depth (layer 26th), the input image size is 120 × 120 with 64 filters
(Figure 10e(i)). In the middle depth layer (244th), the input image size is 8 × 8 with
512 filters (Figure 10d(iii)). In the final ClippedReLU (layer 339th), the image size is 8 × 8
with 512 filters (Figure 10d(v)). Figure 10e(ii,iv,vi) shows the learnable feature which is the
response of a ClippedReLU layer to an input.

3.3.6. Average Pooling

In the shallow depth (layer 15th), the input image size is 240 × 240 with 32 filters
(Figure 10f(i)). In the middle depth (120th layer), the input image size is 60 × 60 with
256 filters (Figure 10f(iii)). In the deep depth layer (160th), the image size is 8 × 8 with
512 filters (Figure 10f(v)). The learnable feature is the response of the average pooling layer
to an input, as shown in Figure 10f(ii,iv,vi).



Sensors 2021, 21, 7924 16 of 24

3.3.7. Max Pooling

In the shallow depth (190th layer), the input image size is 60 × 60 with 512 filters
(Figure 10g(i)). In the middle depth (252th layer), the input image size is 8 × 8 with
512 filters (Figure 10g(iii)). In the deep layer (354th), the image size is 8 × 8 with 512 filters
(Figure 10g(v)). The learnable feature which is the response of the maximum (max) pooling
layer to an input termed “activation”, as shown in Figure 10g(ii,iv,vi).

3.3.8. Addition Layer

In the shallow depth (55th layer), the input image size is 120 × 120 with 64 filters
(Figure 10h(i)). In the middle depth layer (138th), the input image size is 60 × 60 with
128 filters (Figure 10h(iii)). In the deep depth layer (336th), the image size is 8 × 8 with
512 filters (Figure 10h(v)). In the final addition layer (402th), the image size is 1 × 1 with
256 filters (Figure 10h(vii)). The learnable feature is the response of the addition layer to an
input, as shown in Figure 10h(ii,iv,vi,viii).

3.3.9. Depth Concatenation

In the shallow depth layer (56th), the input image size is 120 × 120 with 192 filters
(Figure 10i(i)). In the middle depth (189th layer), the input image size is 60 × 60 with
512 filters (Figure 10i(iii)). In the deep depth layer (203th), the image size is 15 × 15 with
512 filters (Figure 10i(v)). In the final addition layer (307th), the image size is 15 × 15
with 512 filters (Figure 10i(vii)). The learnable feature, that is, the response of the depth
concatenation layer to an input termed “activation”, as shown in Figure 10i(ii,iv,vi,viii).

3.3.10. Concatenation and Dropout

In the deep layer, the image size of the concatenation layer (203th) is 1 × 2 with
256 filters (Figure 10j(i)). In the dropout layer (404th), the image size is 1 × 2 with 256 filters
(Figure 10k(i)). This layer also removes 10% of the unused neurons from the network. The
learnable feature is the response of the concatenation and dropout layers to an input, as
shown in Figure 10j(ii) and 10k(ii), respectively.

3.3.11. Group Normalization

The image size of the group normalization layer (278th layer) is 1 × 1 with 1024 filters
(Figure 10l(i)). At layer 382th, the image size is 1 × 1 with 1024 filters (Figure 10l(iii)). The
learnable feature is the response of the group normalization layer to the input, as shown in
Figure 10l(ii,iv).

3.3.12. Global Average Pooling

We use global average pooling before the fully connected layer to reduce the network
dimension. At the 414th layer, the image size is 1 × 1 with 64 filters (Figure 10m(i)). The
learnable feature, that is, the response of the global average pooling layer to the input, is
shown in Figure 10m(ii).

3.3.13. Fully Connected Layer

The fully connected layer (415th layer) connects all the neurons in the previous layer,
then combines all the features learned by the previous layer to identify larger patterns to
classify the images. The image size of this layer is 1 × 1 (Figure 10n(i)) with five stress
conditions. The learnable features (indicated in black and gray) are the response of the
fully connected layer to the input, as shown in Figure 10n(ii).

3.3.14. Softmax Layer

The softmax function normalizes the input in the channel dimension and is used for
the probability distributions of the output with a scale ranging from 0 to 1. The output of
this layer is 1 × 1 (Figure 10o(i)) with 5 outputs of the stress condition and their probability



Sensors 2021, 21, 7924 17 of 24

distribution. The learnable feature (indicated in black) is the response of the softmax layer
to an input, is shown in Figure 10o(ii).

4. Discussion

We conducted a live demonstration in the orchard of the National Institute of Fruit
and Tea Science in Tsukuba, Japan (June, 2021), and deployed the HortNet417v1 net-
work using a laptop equipped with the BUFFALO wide-angle web camera BSW200MBK
(1920 × 1080 pixels: 30 fps) and Matlab R2020a. Twenty three plants were randomly
selected, of which 19 were pot-cultivated and four were soil-grown in the open field.
The network detects the water stress status of peach trees in real time with an accuracy
rate of 73%. However, under the same conditions, MobileNetv2 shows an accuracy of
75%, which is slightly higher than the HortNet417v1 network. We generated a t-SNE
plot (Figures 11–13) to visualize the features of the first convolution, final convolution,
and softmax activation layers and to evaluate the distance between various water-stress
conditions of the pot-cultivated peach plants. The occlusion sensitivity in Figure 14 shows
the change in the probability of belonging to the right stress condition, and also shows how
the network learns features from the training data.

Figure 11. Visualization of data distribution using t-SNE (t-distributed stochastic neighbor embed-
ding) algorithm.



Sensors 2021, 21, 7924 18 of 24

Figure 12. Exploration of observations in the t-SNE plot based on validation data.

Figure 13. Exploration of observations in the t-SNE plot based on test data.



Sensors 2021, 21, 7924 19 of 24

Figure 14. Cont.



Sensors 2021, 21, 7924 20 of 24Sensors 2021, 21, x FOR PEER REVIEW 21 of 25 
 

 

 
(i) RGB Image (ii) Occlusion sensitivity (iii) LIME 

(d) No-stress conditions 

 
(i) RGB Image (ii) Occlusion sensitivity (iii) LIME 

(e) Very-high-stress conditions 

Figure 14. Visualization of the HortNet417v1 network decision behind the prediction of classifica-
tion of the peach plant stress condition. 

4.1. Network Stress Condition Prediction Accuracy Evaluation Using the TSNE Algorithm 
Figure 11a visualizes the different intensities of the validation dataset distribution in 

the first convolution, final convolution, and softmax activation layers of the HortNet417v1 
network. The majority of the stress conditions are separated, as shown in Figure 11b, while 
low stress data overlapped with moderate and high stress data. Figure 11c visualizes the 
different intensities of the test dataset distribution in the first convolution, final convolu-
tion, and softmax activation layers of the HortNet417v1 network. The majority of the 
stress conditions are separated, as shown in Figure 11d, while low stress data overlapped 
slightly with moderate and high stress data. This overlap is what we have observed in the 
validation and test data distribution and is caused by low, moderate, and high stress con-
ditions. The images of these conditions are like to the images of the network and misclas-
sified. By adding various patterns of the low, moderate, and high stress conditions, it is 
possible to solve this problem. 

Figure 14. Visualization of the HortNet417v1 network decision behind the prediction of classification
of the peach plant stress condition.

4.1. Network Stress Condition Prediction Accuracy Evaluation Using the TSNE Algorithm

Figure 11a visualizes the different intensities of the validation dataset distribution in
the first convolution, final convolution, and softmax activation layers of the HortNet417v1
network. The majority of the stress conditions are separated, as shown in Figure 11b, while
low stress data overlapped with moderate and high stress data. Figure 11c visualizes the
different intensities of the test dataset distribution in the first convolution, final convolution,
and softmax activation layers of the HortNet417v1 network. The majority of the stress
conditions are separated, as shown in Figure 11d, while low stress data overlapped slightly
with moderate and high stress data. This overlap is what we have observed in the validation
and test data distribution and is caused by low, moderate, and high stress conditions. The
images of these conditions are like to the images of the network and misclassified. By
adding various patterns of the low, moderate, and high stress conditions, it is possible to
solve this problem.

4.2. Exploration of Observations in the t-SNE (t-Distributed Stochastic Neighbor Embedding) Plot

The cross-validation classification in the last layer (output) is shown in Figure 12.
The circle in the figure represents observation number 346, which provides the successful
classification of the visualization of the cross-validation result of the 346th observation



Sensors 2021, 21, 7924 21 of 24

image from the validation data (actual and predicted stress conditions: high stress). This is
difficult for the unexperienced human eye to detect. However, observer number 3 shows
the misclassified visualization (actual: high stress; predicted: no stress) of the 3rd image
from the validation dataset.

The classification ability of the output is shown in Figure 13. The circle in the figure
shows observation number 30, which provides the successful classification (actual and
predicted stress condition: high stress) of the visualization of the 30th image from the
test data. This is also difficult for the unexperienced human eye to detect. However,
observation number 378 shows the misclassified visualization of the 376th image from the
test dataset (actual: high stress, predicted: no stress). The misclassification occurred due
to the network’s inability to learn the pattern differences among low, moderate, and high
stress conditions.

4.3. Predicted Result Evaluation Based on Occlusion Sensitivity and the LIME (Locally
Interpretable Model-Agnostic Explanation) Technique

The occlusion sensitivity of all images and the red color in LIME indicate the most
important areas of the image that the network uses for classification decisions (Figure 14a
(ii, iii; top and bottom). Figure 14a shows that the network predicted a high-stress condition
with a probability of 0.90 and 0.59, respectively. The occlusion sensitivity (Figure 14a(ii))
indicating the reason for the prediction is in the middle part for IMG_0621HS and the right
corner of the lower part for IMG_5267HS. However, the LIME (Figure 14a(iii)) indicates
that the reason for the prediction is in the left corner of the top part for IMG_0621HS and
the middle to left corner of the lower part for IMG_5267HS.

In Figure 14b(i; top, bottom), the network predicted the low stress condition with a
probability of 0.98 and 0.91, respectively. The occlusion sensitivity (Figure 14b(ii)) indicating
the reason for the prediction is shown in the middle of the top part (background) for
IMG_4357LS. However, occlusion sensitivity indicates that the reason for the prediction
is in the left and right corners of the top part and the right corner of the lower part for
IMG_0993LS. The LIME (Figure 14b(iii)) suggests that the reason for the prediction is in the
middle (mostly background) of the top part for IMG_0621HS and the left corner of the top
part for MG_5267HS. Both the occlusion sensitivity and the LIME technique shows that
the features of IMG_4357LS are learned incorrectly. This can be solved by adding more LS
training data.

In Figure 14c(i; top, bottom), the predicted probability of the moderate stress condi-
tion is 0.91 and 0.99, respectively. The occlusion sensitivity (Figure 14c(ii)) indicates the
reason for the prediction is in the right corner of the lower and top part, respectively, for
IMG_2983MS. For image IMG_5029MS, the network also shows that the reason for the
prediction is in the bottom of the lower part. In both cases, the right corner of the top part
(background) for IMG_2983MS and the bottom of the lower part for IMG_5029MS indicate
that the features are learned incorrectly. The LIME (Figure 14c(iii)) suggests that the reason
for prediction is in the left, middle, and right parts for IMG_2983MS and the middle part
for IMG_5029MS. In this case, the LIME technique indicates a more accurate position than
the occlusion sensitivity.

In Figure 14d(i; top, bottom), the network predicts the no stress condition with a
probability of 0.86 and 0.98, respectively. The occlusion sensitivity (Figure 14d(ii)) indicates
the reason for the prediction is the right corner of the lower part for IMG_2721NS and the
middle of the top part for IMG_2586NS. LIME (Figure 14d(iii)) shows that the reason for
the prediction is mainly in the middle and slightly right parts of IMG_2721NS. However,
for image IMG_2856NS, the network shows the left and right corners of the top and middle
of the lower part. In both IMG_2721NS and IMG_2856NS, the LIME technique also shows
a slightly inaccurate position (lower and top right) as compared to the occlusion sensitivity.

In Figure 14e(i; top, bottom), the prediction probability for the very high stress condi-
tion is 0.71 and 0.98, respectively. The occlusion sensitivity (Figure 14e(ii)) indicates the
reason for the prediction is in the right corner of the top part for IMG_0241VHS and the
middle to the left of the lower part for IMG_1399VHS. LIME (Figure 14e(iii)) shows that



Sensors 2021, 21, 7924 22 of 24

the main reason for the prediction is in the middle of the lower half of IMG_0241VHS and
the left corner of the lower half of IMG_1399VHS.

5. Conclusions

This article mainly describes the HortNet417v1 architecture and provides network
performance results by evaluating various performance indicators. We use the most de-
scriptive approach to prove that HortNet417v1 can classify various water-stress conditions
of the pot-cultivated peach plants. The main findings are as follows:

− Classification of uneven data sets under various stress conditions, which may lead to
lack of information and diversity of images and stress conditions. Most pre-trained
networks converge with higher accuracy after 25 epochs but HortNet417v1 requires
36 epochs and more time to achieve higher accuracy. This response is because the
weight of the pretrained model (Xception, ShuffleNet, and MobileNetv2) which is
trained with millions of images, when actuated on a new training dataset, can converge
at a faster rate than a network like HortNet417v1 in which network weights are
randomly initialized instead of inherited from the previous model.

The research directions we are about to proceed along are as follows:

− In this experiment, we collect image data through a handheld mobile phone. In our
next experiment, we will use some other fixed imaging platform surrounding the
target plant to capture more time series data under various stress conditions and thus
will improve the image data diversity and imbalance of the data amount between the
stress conditions.

− Since the development of the network is a continuous process, the authors plan to
modify the network structure, optimize the network hyperparameters, and train the
network with more data to improve the prediction accuracy in real time. Then, this
technology makes it possible to extend the study to a large agricultural area, not only
for peach trees, but also for other types of fruit tree.

Author Contributions: Conceptualization, T.Y. and M.P.I.; methodology, M.P.I.; software, M.P.I.;
validation, M.P.I. and T.Y.; formal analysis, M.P.I.; investigation, M.P.I.; resources, T.Y. and M.P.I.; data
curation, T.Y. and M.P.I.; writing—original draft preparation, M.P.I.; writing—review and editing,
M.P.I. and T.Y.; visualization, M.P.I.; supervision, T.Y.; project administration, T.Y.; funding acquisition,
T.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP21K05585.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be available upon completion of project and publication of
the project report upon request to the corresponding author. Any request will be reviewed and
approved by the sponsor, NARO, intellectual property department, researcher, and staff on the basis
of the absence of competing interest. Once approved, data can be transferred after signing of a data
access agreement and confidentiality agreement.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this article.

References
1. Bryla, D.R.; Dickson, E.; Shenk, R.; Johnson, R.; Crisosto, C.H.; Trout, T.J. Influence of irrigation method and scheduling on

patterns of soil and tree water status and its relation to yield and fruit quality in peach. J. Am. Soc. Hort. Sci. 2005, 40, 2118–2124.
2. Parker, M.L.; Hull, J.; Perry, R.L. Orchard floor management affects peach rooting. J. Am. Soc. Hort. Sci. 1993, 118, 714–718.

[CrossRef]
3. Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [CrossRef]

[PubMed]
4. Abrisqueta, I.; Conejero, W.; Valdes-Vela, M.; Vera, J.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Stem water potential estimation of

drip-irrigated early-maturing peach trees under Mediterranean conditions. Comput. Electron. Agric. 2015, 114, 7–13. [CrossRef]

http://doi.org/10.21273/JASHS.118.6.714
http://doi.org/10.1093/jxb/erh213
http://www.ncbi.nlm.nih.gov/pubmed/15286143
http://doi.org/10.1016/j.compag.2015.03.004


Sensors 2021, 21, 7924 23 of 24

5. Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Using midday stem water potential
for scheduling deficit irrigation in mid–late maturing peach trees under Mediterranean conditions. Irrig. Sci. 2016, 34, 161–173.
[CrossRef]

6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
7. Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future

perspectives. Trends Plant Sci. 2018, 23, 883–898. [CrossRef]
8. Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468.
9. Wakamori, K.; Mizuno, R.; Nakanishi, G.; Mineno, H. Multimodal neural network with clustering-based drop for estimating

plant water stress. Comput. Electron. Agric. 2020, 168, 105118. [CrossRef]
10. Fricke, W. Water transport and energy. Plant Cell Environ. 2017, 40, 977–994. [CrossRef]
11. Kamarudin, M.H.; Ismail, Z.H.; Saidi, N.B. Deep learning sensor fusion in plant water stress assessment: A comprehensive review.

Appl. Sci. 2021, 11, 1403. [CrossRef]
12. Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation

in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [CrossRef]
13. Simonyan, K.; Zisserman, A. A very deep convolutional networks for large-scale image recognition. In Proceeding of the 3rd

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
14. He, K.; Zhang, X.; Ren, S.; Jian, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
15. McCutchan, H.; Shackel, K.A. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv.

French). J. Am. Soc. Hort. Sci. 1992, 117, 607–611.
16. Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.;

et al. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology. 1997, 7, 23–29.
17. Zhang, Q.; Liu, Y.; Gong, C.; Chen, Y.; Yu, H. Application of deep learning for dense scenes analysis in agriculture: A review.

Sensors 2020, 20, 1520. [CrossRef]
18. Nair, V.; Geoffrey, E.H. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
19. Hannan, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al. Deep

Speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567, 12.
20. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,

37, 11.
21. Wu, Y.; He, K. Group Normalization. arXiv 2018, arXiv:1803.0849, 10.
22. Scherer, D.; Mueller, A.; Behnke, S. Evaluation of pooling operations in convolution architectures for object recognition. In

Proceedings of the 20th International Conference on Artificial Neural Networks, Thessaloniki, Greece, 15–18 September 2010.
23. Nagi, J.; Ducatelle, F.; Di Caro, G.A.; Ciresan, D.; Meier, U.; Giusti, A.; Nagi, F.; Schmidhuber, J.; Gambardella, L.M. Max-pooling

convolutional neural networks for vision-based hand gesture recognition. In Proceedings of the IEEE International Conference
on Signal and Image Processing Applications, Kuala Lumpur, Malaysia, 16–18 November 2011.

24. Yani, M.; Irawan, B.; Setiningsih, C. Application of transfer learning using convolutional neural network method for early
detection of Terry’s nail. J. Phys. Conf. Ser. 2019, 1201, 10. [CrossRef]

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolution neural networks. Adv. Neural Inf. Proc.
Syst. 2012, 25, 1097–1105.

26. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. arXiv 2017,
arXiv:1707.07012, 14.

27. He, K.; Zhang, X.; Ren, S.; Jian, S. Identity mappings in deep residual networks. In Proceedings of the 14th European Conference
on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016.

28. Chollet, F. Xception: Deep learning with depthwise separable convolutions. arXiv 2017, arXiv:1610.02357, 8.
29. Zhang, X.; Xinyu, Z.; Mengxiao, L.; Jian, S. ShuffleNet: An extremely efficient convolutional neural network for mobile devices.

arXiv 2017, arXiv:1707.01083, 9.
30. Landola, F.N.; Song, H.; Matthew, W.; Moskewicz, K.A.; William, J.D.; Kurt, K. SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and <0.5 MB model size. In Proceedings of the International Conference on Learning Representations, Toulon,
France, 24–26 April 2016.

31. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. arXiv 2014, arXiv:1409.4842, 12.

32. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE/CVM Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 23–28 June 2018.

33. Van der Maaten, L.; Geoffrey, H. Visualizing data using t-SNE. J. Mac. Learn. Res. 2008, 9, 2579–2605.
34. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014; Fleet, D., Pajdla,

T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014.

http://doi.org/10.1007/s00271-016-0493-9
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.tplants.2018.07.004
http://doi.org/10.1016/j.compag.2019.105118
http://doi.org/10.1111/pce.12848
http://doi.org/10.3390/app11041403
http://doi.org/10.1016/j.compag.2018.05.012
http://doi.org/10.3390/s20051520
http://doi.org/10.1088/1742-6596/1201/1/012052


Sensors 2021, 21, 7924 24 of 24

35. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
26–29 August 2016.

36. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016.


	Introduction 
	Materials and Methods 
	Results 
	Performance Evaluation 
	Visualization of the Predicted Stress Condition for Evaluating Accuracy Based on Test Data 
	Visualization of the Network Feature and Layer Activations 
	Convolution Layer 
	Batch-Normalization Layer 
	Rectified Linear Unit (ReLU) Layer 
	LeakyReLU 
	ClippedReLU 
	Average Pooling 
	Max Pooling 
	Addition Layer 
	Depth Concatenation 
	Concatenation and Dropout 
	Group Normalization 
	Global Average Pooling 
	Fully Connected Layer 
	Softmax Layer 


	Discussion 
	Network Stress Condition Prediction Accuracy Evaluation Using the TSNE Algorithm 
	Exploration of Observations in the t-SNE (t-Distributed Stochastic Neighbor Embedding) Plot 
	Predicted Result Evaluation Based on Occlusion Sensitivity and the LIME (Locally Interpretable Model-Agnostic Explanation) Technique 

	Conclusions 
	References

