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1  | INTRODUC TION

Ageing is a natural process associated with time-dependent grad-
ual deterioration of the physiological functions necessary for sur-
vival and reproduction due to several endogenous and exogenous 

(environmental) factors. The precise underlying molecular mechanisms 
of ageing has not been elucidated; however, the increased production 
of free radicals and lifespan have a strong correlation indicating that 
the increased accumulation of reactive oxygen species (ROS) to be one 
of the primary mechanisms of ageing (Sergiev, Dontsova, & Berezkin, 
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Abstract
Recently, there is a significant increase in the commercial use of goat products. 
Nevertheless, there are very few reports on the characterization of redox biomark-
ers and mitochondrial function in the goat testis. Therefore, in this study we studied 
the markers of oxidative stress and mitochondrial functions in the goat testis during 
the process of ageing. Alterations in the markers of oxidative stress/redox biomark-
ers (contents of reactive oxygen species, nitrite, lipid peroxide, protein carbonyl, 
glutathione and activities of glutathione peroxidase, monoamine oxidase) and mito-
chondrial function (Complex-I and Complex-IV activities) were elucidated during the 
process of ageing. Augmented oxidative stress and decreased mitochondrial function 
were prominent during ageing in the goat testis. Ageing can lead to induction of oxi-
dative stress and decreased production of ATP; however, the prooxidants generated 
must be effectively removed from the body by the innate antioxidant defence system 
to minimize the damage to the host tissue. Conversely, the antioxidants cannot com-
pletely scavenge the excessive amount of reactive oxygen species produced during 
ageing or pathological conditions leading to significant cell death and tissue damage. 
Thus, the use of effective and potent antioxidants in the feed could significantly re-
duce oxidative stress and improve mitochondrial function, resulting in enriched goat 
health.
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2015). Ageing also affects the reproductive system and the associated 
decline in reproductive capacity could result from a combination of 
morphological and molecular alterations in the reproductive organs 
(Handelsman & Staraj, 1985). Gonads, especially testis, are of particu-
lar interest in ageing research due to decline of reproductive capacity. 
Furthermore, ageing of testis has direct implications for longevity, as 
decreased testicular function is associated with decreased longevity in 
several species (Partridge, Gems, & Withers, 2005). Literature on tes-
ticular function and its deficits during ageing has been, thus far, limited. 
However, several studies have demonstrated that aged testes undergo 
profound structural and morphological alterations (Frungieri, Calandra, 
Bartke, & Matzkin, 2018; Jiang et al., 2014).

The commercial business and recreational farming associated 
with domestic goat (Capra aegagrus hircus, family Bovidae) is de-
veloping substantially at large numbers and the various quality 
goat-derived products are constantly being consumed around the 
world (Gall, 1996; Wilkinson & Stark, 1987). Due to the upswing in 
the comprehensive importance of goats, the goats must be raised 
healthily and have to be observed carefully to retain the well-being 
of an individual goat and its herd (Jaudas, Mobini, & Jaudas, 2006). 
In addition to the declining reproductive function, ageing testes is 
associated with loss of muscle mass and concomitant increase in fat 
mass (Katznelson et al., 1996); decreased muscle strength (Martin, 
Farrar, Wagner, & Spirduso, 2000) and decreased bone mineral den-
sity (Riggs et al., 1982), all of which can adversely affect the well-be-
ing. However, the relationship between oxidative stress and testicular 
ageing has not been investigated. Hence, this study was designed to 
demonstrate the influence of ageing on the testis of kiko goats in dif-
ferent age groups and to assess the role of oxidative stress and mito-
chondrial functions in the testis during ageing.

2  | MATERIAL S AND METHODS

2.1 | Chemicals and reagents

Thermo Scientific Pierce 660 nm Protein Assay reagent kit was 
purchased from Thermo Scientific (Pierce) for protein quantifica-
tion. Griess reagent was purchased from Thermofisher Scientific. 
2,4-Dinitrophenylhydrazine (DNPH) and nicotinamide adenine dinu-
cleotide phosphate (NADPH) were purchased from Tokyo Chemical 
Industry America. Phosphate-buffered saline (PBS), nicotinamide 
adenine dinucleotide (NADH), 2 ,̀ 7-dichlorofluorescindiacetate 
(DCF-DA), pyrogallol, phosphoric acid, O-phthalaldehyde (OPT), 
L-glutathione reduced, cytochrome c, bovine serum albumin (BSA) 
trichloroacetic acid and thiobarbituric acid were purchased from 
Sigma Aldrich.

2.2 | Goat testis tissue

Kiko goats of three different age groups were obtained from com-
mercial vendors. The sample size considered for each group was 5 

(n = 5) in number applicable to all the three different age groups. 
Hence a total of 15 goats were used. A two-sided t-test was used and 
significance for statistical comparisons was set at p < .05. The three 
age groups include: Neonate (13–20 days), juvenile (108–124 days) 
and adult (over 6–9 months). The goats had free access to water. 
Medium quality forage (>10% protein) were provided. Does were 
fed a pelleted supplement (16% CP, 3.04 Mcal/kg of DE, as fed) at 
454 g/d from kidding to weaning. The goats were slaughtered to col-
lect their testes. The two testes of each of the 15 goats were care-
fully removed, labelled for proper identification and placed in liquid 
nitrogen after collection until further analysis. A prober amount of 
the testes corpus (body) was weighed, minced separately with addi-
tion of Halt™ Protease Inhibitor Cocktail. This was followed by ho-
mogenization with a high-magnitude ultrasonic sonicator for 2 min 
with 2 ml PBS. The homogenate was further centrifuged at 12,000 
RPM for one hour and the supernatant was collected to be used in 
experiments.

2.3 | Reactive oxygen species (ROS) generation

The generation of reactive oxygen species generated in the tes-
tis of neonate, juvenile and adult groups was estimated via spec-
trofluorometry by measuring the conversion of non-fluorescent 
chloromethyl-DCF-DA (2′, 7- dichlorofluorescindiacetate, DCF-DA) 
to fluorescent DCF using an excitation wavelength of 492 nm and 
an emission wavelength of 527 nm. Results were expressed as 
percentage change from the control (Dhanasekaran, Tharakan, & 
Manyam, 2008; Katz et al., 2017; Zheng et al., 2014).

2.4 | Nitrite content

Nitrite content in the testis of neonate, juvenile and adult groups 
was measured using Griess reagent. An azo product formed was 
measured spectrophotometrically at 545 nm (Giustarini, Dalle-
Donne, Colombo, Milzani, & Rossi, 2008).

2.5 | Mitochondrial Complex-I activity

NADH oxidation to NAD⁺ is catalysed by mitochondrial Complex-I 
(NADH dehydrogenase). Tissue homogenate obtained from the tes-
tis of neonate, juvenile and adult groups was added to PBS and con-
version of NADH to NAD⁺ was measured spectrophotometrically 
at 340 nm (Bhattacharya et al., 2018; Ramesh et al., 2018; Ramsay, 
Dadgar, Trevor, & Singer, 1986).

2.6 | Mitochondrial Complex-IV activity

Cytochrome C oxidation is catalysed by mitochondrial 
Complex-IV (Cytochrome C oxidase). Cytochrome C oxidation was 
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spectrophotometrically measured in the testis of neonate, juvenile 
and adult groups at 550 nm (Bhattacharya et al., 2018; Ramesh 
et al., 2018; Ramsay et al., 1986; Wharton & Tzagoloff, 1967).

2.7 | Glutathione content

GSH content in the testis of neonate, juvenile and adult groups 
were measured via spectrofluorometry using O-phthalaldehyde 
(OPT) condensation (Cohn & Lyle, 1966; Muralikrishnan & 
Mohanakumar, 1998; Zheng et al., 2014).

2.8 | Glutathione peroxidase activity

Spectrophotometric method was used to measure glutathione per-
oxidase activity in the testis of neonate, juvenile and adult groups 
using NADPH as a substrate (Ahuja et al., 2017; Majrashi et al., 2018).

2.9 | Lipid peroxidation

Lipid peroxide content formed in the testis of neonate, juvenile and 
adult groups was measured via colorimetry by measuring the malon-
dialdehyde (MDA) content in the form of Thiobarbituric acid-reac-
tive substances (TBARS) (Bhattacharya et al., 2018; Dhanasekaran 
et al., 2007; Ohkawa, Ohishi, & Yagi, 1979; Zheng et al., 2014).

2.10 | Protein carbonyl content

Protein carbonyl content in the testis of neonate, juvenile and adult 
groups were measured by the tagging of 2,4-dinitrophenylhydrazine 
(DNPH) to the protein carbonyl groups which results in the formation of 
stable dinitrophenyl (DNP) hydrazones which can be quantified spec-
trophotometrically at 375 nm (Dalle-Donne, Rossi, Giustarini, Milzani, 
& Colombo, 2003; Levine, Williams, Stadtman, & Shacter, 1994).

2.11 | Monoamine oxidase (MAO) activity

Total monoamine oxidase activity in the testis of neonate, juvenile 
and adult groups was measured fluorimetrically by determining the 
amount of 4-hydroxyquinoline formed as a result of kynuramine oxi-
dation (Bhattacharya et al., 2018; Majrashi et al., 2018; Morinan & 
Garratt, 1985; Muralikrishnan & Mohanakumar, 1998).

2.12 | Protein quantification

Protein was quantified using Thermo Scientific Pierce 660 nm 
Protein Assay reagent kit (Pierce, Rockford, IL). Bovine serum albu-
min (BSA) was used as a standard for protein measurement.

2.13 | Statistical analysis

Data were reported as mean ± SEM. Statistical analyses were ac-
complished using one-way analysis of variance (ANOVA) followed by 
Dunnet's multiple comparisons test (p < .05) and was determined to 
be statistically significant. The statistical analyses were performed 
using Prism-V software (La Jolla, CA, USA). All the determinants 
were made in triplicates until otherwise mentioned.

3  | RESULTS

General data: The average body weight of neonates was 
3.06 ± 0.43 kg, juvenile was 19.5 ± 3.12 kg and adult age group was 
43 ± 5.78 kg. No change in food consumption habits or any abnormal 
behaviour was noted. No statistically significant weight loss or any 
serious illness was noted in all the goats from different age groups.

3.1 | Ageing increases reactive oxygen species and 
nitrite in goat testis

The generation of reactive oxygen species (ROS) triggers oxidative 
stress and induces irreversible oxidation of lipids and proteins, which 
has lethal effects on cells leading to cell death. Statistically signifi-
cant increase in ROS generation was noted in both juvenile (p = .003) 
and adult (p = .02) goat testis when compared with neonate group 
(Figure 1a, n = 5, p < .05). Similarly, the nitrite content significantly 
increased in both juvenile (p = .05) and adult group (p = .02) on com-
parison to the neonates (Figure 1b, n = 5, p < .05). This suggests that 
ageing significantly induces oxidative stress by increasing ROS and 
nitrite content.

3.2 | Ageing inhibits mitochondrial function in 
goat testis

To explore the effects of ageing on mitochondrial function and to un-
derstand the molecular processes involved, we evaluated Complex-I 
and Complex-IV activity in three different groups. Ageing notably 
decreased mitochondrial function, as demonstrated by statistically 
significant decrease in Complex-I activity in the juvenile (p = .035) 
and adults (p = .01) when compared with the neonate group (n = 5, 
p < .05; Figure 2a). However, our results showed that ageing did not 
affect Complex-IV activity (n = 5, Figure 2b).

3.3 | Ageing alters the activities of antioxidant 
enzymes in goat testis

A defence mechanism of the cell is to promote antioxidant ex-
pression and activity, which protects against highly reactive oxy 
or nitro radicals and their harmful toxic effects. We therefore 
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investigated the effect of ageing on the activities of glutathione 
content and glutathione peroxidase activity. These play a signifi-
cant role in scavenging toxic free radicals. Ageing significantly 
decreased glutathione content in juvenile (p = .04) and adults 
(p = .01) in comparison to neonates (Figure 3a, n = 5, p < .05) and 
interestingly increased glutathione peroxidase activity in both ju-
venile (p = .05) and adults (p = .05) on comparison to neonates 
(Figure 3b, n = 5, p < .05).

3.4 | Ageing increases lipid peroxidation and protein 
carbonyl in goat testis

The generation of free radicals triggers oxidative stress and in-
duces irreversible oxidation of lipids and proteins. Therefore, lipid 

peroxidation and protein carbonyl content were investigated in this 
study. Ageing significantly induced lipid peroxidation in juvenile 
(p = .009) and adults (p = .004) in comparison to neonates (Figure 4a, 
n = 5, p < .05). Similarly, protein carbonyl content increased in both 
juvenile (p = .02) and adult group (p = .03) on comparison to neonates 
(Figure 4b, n = 5, p < .05).

3.5 | Ageing alters monoamine oxidase activity in 
goat testis

The mitochondrial location of MAO has also been reported 
(Lehninger, 1975), and MAO is used as a marker enzyme to indicate 
the presence of the outer membrane in the mitochondria. Ageing 
significantly decreased monoamine oxidase activity in the juvenile 

F I G U R E  1   Statistical comparisons were made using one-way ANOVA/Dunnett's multiple comparison test. Note (*) indicates 
a statistically significant difference when compared with controls. (a) Effect of ageing on ROS generation: ROS was measured 
spectrofluorimetrically. Ageing showed a significant increase in ROS generation (*p < .05, n = 5). ROS was measured as relative fluorescence 
units (492/527 nm)/mg. Results are expressed as (%) change as compared to the control ± SEM. (b) Effect ageing on Nitrite content: Nitrite 
content was measured spectrophotometrically. Ageing showed a significant increase in Nitrite content (*p < .05, n = 5). Nitrite content was 
measured as the absorbance of chromophoric azo product (545 nm) resulting from the reaction of NO2 with sulfanilamide under acidic 
condition. Results are expressed as (%) change as compared to the control ± SEM
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(p = .02) and adult (p = .01) as compared to the neonates (Figure 5, 
n = 5, p < .05).

4  | DISCUSSION

Age-dependent elevation in mitochondrial oxidative stress can con-
tribute to decrease in testicular function. In this study, we report 
that ageing increased markers of oxidative stress/redox biomarkers 
such as ROS and nitrite, decreased mitochondrial complex activity, 
decreased antioxidant enzymes and promoted oxidation products 
formation in goat testis. Compelling evidence has shown that ageing 
can promote oxidative stress and lead to decreased function in vari-
ous organs as well as several pathological conditions (Pole, Dimri, & 
Dimri, 2016). However, there are minimal studies that have related 
the changes in the markers of oxidative stress/redox biomarkers 
and mitochondrial functions with ageing scrotum. To the best of our 
knowledge this is the first report describing the impact of ageing on 
oxidative stress and mitochondrial function in goat testis.

Ageing (the physiological process of becoming older) represents 
the accrual of anatomical, physiological, biochemical, hormonal, 
neurochemical, physical, social and mental changes in an ani-
mal or humans over a defined period of time (López-Otín, Blasco, 
Partridge, Serrano, & Kroemer, 2013). Ageing (senescence) surges 

the susceptibility to age-associated diseases, whereas genetics de-
termines vulnerability or resistance between species and individuals 
within species (Jeck, Siebold, & Sharpless, 2012). Sexual functions 
of goats have shown to decline during ageing (Smith, Brown, & 
Parkinson, 2006).

In this study ageing induced significant and profound increase 
in oxidative stress in addition to noteworthy decrease in the mito-
chondrial function in the goat testis. During the process of ageing, 
there was an increase in the production of reactive oxygen species 
and nitrites. The results obtained from this study indicate that the 
potential source of ROS formation is Complex I. Mitochondria acts 
as major site of ROS production, wherein electrons are transferred 
through the electron mitochondrial chain (ETC) in order to decrease 
the molecular oxygen. Similar to our results, other studies have re-
ported that decreased activity of electron transport chain (ETC) 
complexes increase mitochondrial ROS production (Murphy, 2009). 
In our study, we found a statistically significant reduction in Complex 
I activity in juvenile and adult goat testis with no significant changes 
in Complex IV activity. Mitochondrial ROS formation is inversely re-
lated to Complex I activity which might indicate that the mitochon-
drial ROS generation is primarily due to compromised Complex I, and 
to a lesser extent in Complex IV (Zorov, Juhaszova, & Sollott, 2014). 
Mitochondrial electron transport is an important subcellular source 
of ROS. Complex I, also, is an integral membrane complex of the 

F I G U R E  2   Statistical comparisons 
were made using one-way ANOVA/
Dunnett's multiple comparison test. Note 
(*) indicates a statistically significant 
difference when compared with controls. 
(a) Effect of ageing on Complex-I activity: 
Complex-I activity was measured 
spectrophotometrically using NADH as 
substrate. Ageing showed a significant 
decrease in Complex-I activity (*p < .05, 
n = 5). Results are expressed as (%) change 
as compared to the control ± SEM. (b) 
Effect of ageing on Complex-IV activity: 
Complex-IV activity was measured 
colorimetrically using cytochrome-C as 
substrate. Ageing did not affect Complex-
IV activity. Results are expressed as (%) 
change as compared to the control ± SEM
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electron transport chain that catalyses electron transfer from NADH 
to ubiquinone. Complex I is an important site of superoxide anion 
generation in mitochondria (Hansford, Hogue, & Mildaziene, 1997). 
The produced superoxide is then scavenged by the mitochondrial 
enzyme superoxide dismutase to produce H2O2. Therefore, a de-
ficient complex I activity can be considered a potential source of 
ROS in ageing tissues (Zalewska, Ziembicka, Żendzian-Piotrowska, 
& Maciejczyk, 2019). Although ROS production may not be critical 
factor for ageing (López-Otín et al., 2013), they are more likely to 
exacerbate age-related diseases progression via oxidative damage 
and interaction with mitochondria (Dias, Junn, & Mouradian, 2013).

During ageing, mitochondria—the primary source of ROS—are 
often subjected to oxidative damage at a level that supersedes the 
protective capacity of the antioxidant response. Toxic effects of ROS 
on cellular components lead to accumulation of oxidative damage 
which causes cellular dysfunction with age (Di Meo, Reed, Venditti, 
& Victor, 2016). Due to their reactivity, high concentrations of ROS 
can cause oxidative stress by disrupting the balance of antioxidant 
and prooxidant levels (Zuo, Hemmelgarn, Chuang, & Best, 2015). We 
found a statistically significant decline in antioxidant (glutathione) 
levels. A decline in antioxidant system leads to increased susceptibil-
ity to oxidative stress especially in elderly as there is a decline in the 
efficiency of the endogenous antioxidant systems. Hence, organs 
with high rates of oxygen consumption and limited respiration levels 
such as brain and heart, are highly susceptible to this phenomenon. 

This partially explains the high prevalence of cardiovascular diseases 
and neurological disorders in the elderly (Corbi et al., 2008). Similarly, 
the decline in antioxidant system in the testis could account for the 
decline in sexual and reproductive capacities. Interestingly we found 
an increase in the glutathione peroxidase activity in juvenile and 
adult goat testis which we believe could be attributed to the com-
pensatory response.

The altered prooxidant-antioxidant redox status is more likely 
triggered by net effect of low antioxidants and increased reactive 
oxygen species (Chung et al., 2009; Lennicke, Rahn, Lichtenfels, 
Wessjohann, & Seliger, 2015). An imbalance between prooxidant-an-
tioxidant redox status and the dysregulation of the immune system 
as seen in ageing may lead to the exaggerated systemic inflamma-
tory response with activation of inflammatory mediators. Hence, 
chronic inflammation as seen in ageing may serve as a pathophysi-
ologic association which converts normal functional changes to the 
age-related degenerative diseases (Viola & Soehnlein, 2015).

This increase in the reactive oxygen species in the juvenile and 
adult goats may be associated with the innate (non-specific) immune 
system. The respiratory burst associated with the innate immunity 
is a process that involves enzymes and produces several types of 
reactive oxygen species. The reactive oxygen species essentially 
impact cellular processes by affecting the cell signalling, transcrip-
tion factor and translation regulator under the controlled physio-
logical conditions which in turn affects the cell growth. However, 

F I G U R E  3   Statistical comparisons 
were made using one-way ANOVA/
Dunnett's multiple comparison test. 
Note (*) indicates a statistically 
significant difference when compared 
with controls. (a) Effect of ageing on 
glutathione content: Glutathione content 
was measured spectrophotometrically. 
Ageing showed a significant depletion in 
GSH content (*p < .05, n = 5). Results are 
expressed as (%) change as compared to 
the control ± SEM. (b) Effect of ageing 
on glutathione peroxidase activity: 
Glutathione peroxidase activity was 
measured spectrophotometrically using 
NADPH as substrate. Ageing showed 
a significant increase in glutathione 
peroxidase activity (*p < .05, n = 5). 
Results are expressed as (%) change as 
compared to the control ± SEM
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excessive production and prolonged exposure of reactive oxygen 
species can induce lipid peroxides and protein carbonyls (Hauck 
& Bernlohr, 2016). In our study, we found a statistically significant 
increase in lipid peroxidation and protein carbonyl content in ju-
venile and adult goat testis. Lipid peroxidation has shown to affect 
the sperm survival and the sperm fertility (Guthrie & Welch, 2012). 
Lipid peroxidation-induced decreased sperm motility is because of 
the reactive oxygen species-induced lesion in ATP utilization or in 
the contractile apparatus of the flagellum and can result in testicular 
hypoplasia and infertility.

The mitochondrial theory of ageing is still deliberated as an 
extension of the free radical hypothesis. Given the close relation-
ship between oxidative stress, inflammation and ageing, the oxi-
dation-inflammatory theory of ageing has been proposed: ageing 
is a loss of homeostasis due to a chronic oxidative stress. The 
consequent activation of the immune system induces an inflam-
matory state that creates a vicious circle in which chronic oxida-
tive stress and inflammation feed each other, and consequently, 
increases the age-related morbidity and mortality (Fuente & 
Miquel, 2009).

F I G U R E  4   Statistical comparisons 
were made using one-way ANOVA/
Dunnett's multiple comparison test. Note 
(*) indicates a statistically significant 
difference when compared with controls. 
(a) Effect of ageing on lipid peroxide 
formation: Lipid peroxide was measured 
spectrophotometrically. Due to the 
increased ROS generation and Nitrite 
content, ageing induced a significant 
formation of lipid peroxide (*p < .05, n = 5). 
Lipid peroxide formation was measured 
as TBARS formed (532 nm)/mg protein. 
Results are expressed as (%) change as 
compared to the control ± SEM. (b) Effect 
of ageing on protein carbonyl content: 
Protein carbonyl content was measured 
spectrophotometrically at 375 nm. Ageing 
induced a significant increase in protein 
carbonyl content (*p < .05, n = 5). Protein 
carbonyl content was measured as DNP 
hydrazones formed/mg protein. Results 
are expressed as (%) change as compared 
to the control ± SEM
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F I G U R E  5   Effect of ageing on 
monoamine oxidase activity: Monoamine 
oxidase activity was measured 
spectrofluorimetrically using kynuramine 
as substrate. Ageing significantly 
decreased monoamine oxidase activity 
(*p < .05, n = 5). Results are expressed 
as (%) change as compared to the 
control ± SEM. Statistical comparisons 
were made using one-way ANOVA/
Dunnett's multiple comparison test. Note 
(*) indicates a statistically significant 
difference when compared with controls
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The health and lifespan of the cell is related to caloric restric-
tion, functions of DNA, fibroblasts, mitochondria and oxidative 
stress. Nevertheless, there is a significant gap in the current liter-
ature in the veterinary health about the role of oxidative stress and 
mitochondrial functions and its pertinent effect on the scrotum of 
the domestic and farm-raised animals. The results obtained from 
this study regarding the changes in the oxidative stress and mito-
chondrial functions can help with the production, maintenance and 
sustenance of the goats. The limitations of the study are that we 
evaluated only the redox homeostasis parameters. We intent to per-
form other proteomics, endocrine and biochemical markers to eval-
uate several age-related changes in goat testis. Furthermore, we will 
evaluate markers of inflammation, apoptosis and histological sec-
tions to study the senescence-related changes. This study will help 
in designing innovative and novel healthy diets to provide during 
ageing. Our study can further help to augment goat preservation by 
providing different age-appropriate diet to goat.

5  | CONCLUSION

Health and lifespan of goats has been related to oxidative stress 
and mitochondrial functions. There is a constant increase in the 
prooxidants and decreased antioxidants & ATP contents dur-
ing ageing in goat testis. The results from this study clearly es-
tablished the altered redox status and mitochondrial dysfunction 
during ageing in goat testis. Herein, we provide a strong basis for 
future mechanistic studies and therapeutic strategies to improve 
the well-being of goats.
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