

GOPEN ACCESS

Citation: Kenmoe S, Tchatchouang S, Ebogo-Belobo JT, Ka'e AC, Mahamat G, Guiamdjo Simo RE, et al. (2020) Systematic review and metaanalysis of the epidemiology of Lassa virus in humans, rodents and other mammals in sub-Saharan Africa. PLoS Negl Trop Dis 14(8): e0008589. https://doi.org/10.1371/journal. pntd.0008589

Editor: Amy T. Gilbert, US Department of Agriculture, UNITED STATES

Received: April 22, 2020

Accepted: July 13, 2020

Published: August 26, 2020

Copyright: © 2020 Kenmoe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.

Funding: The author(s) received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Systematic review and meta-analysis of the epidemiology of Lassa virus in humans, rodents and other mammals in sub-Saharan Africa

Sebastien Kenmoe¹, Serges Tchatchouang¹, Jean Thierry Ebogo-Belobo², Aude Christelle Ka'e³, Gadji Mahamat⁴, Raïssa Estelle Guiamdjo Simo⁴, Arnol Bowo-Ngandji⁴, Cynthia Paola Demeni Emoh⁴, Emmanuel Che⁵, Dimitri Tchami Ngongang⁴, Marie Amougou-Atsama^{1,2}, Nathalie Diane Nzukui⁶, Chris Andre Mbongue Mikangue⁴, Donatien Serge Mbaga⁴, Sorel Kenfack⁴, Sandrine Rachel Kingue Bebey⁴, Nathalie Amvongo Adjia², Atembeh Noura Efietngab², Hervé Raoul Tazokong⁴, Abdou Fatawou Modiyinji^{1,7}, Cyprien Kengne-Nde⁸, Serge Alain Sadeuh-Mba¹, Richard Njouom¹*

1 Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon, 2 Medical Research Centre, Institut of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon, 3 Virology Department, Chantal Biya International Reference Centre, Yaoundé, Cameroon, 4 Department of Microbiology, Faculty of Science, The University of Yaounde I, Yaoundé, Cameroon, 5 Vaccinology and Biobank, Chantal Biya International Reference Centre, Yaounde, Cameroon, 6 School of Health Sciences-Catholic University of Central Africa, Department of Medical Microbiology, Yaoundé, Cameroon, 7 Department of Animals Biology and Physiology, Faculty of Science, The University of Yaoundé I, Yaoundé, Cameroon, 8 Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Yaoundé, Cameroon

* njouom@pasteur-yaounde.org, njouom@yahoo.com

Abstract

Accurate data on the Lassa virus (LASV) human case fatality rate (CFR) and the prevalence of LASV in humans, rodents and other mammals are needed for better planning of actions that will ultimately reduce the burden of LASV infection in sub-Saharan Africa. In this systematic review with meta-analysis, we searched PubMed, Scopus, Africa Journal Online, and African Index Medicus from 1969 to 2020 to obtain studies that reported enough data to calculate LASV infection CFR or prevalence. Study selection, data extraction, and risk of bias assessment were conducted independently. We extracted all measures of current, recent, and past infections with LASV. Prevalence and CFR estimates were pooled using a random-effect meta-analysis. Factors associated with CFR, prevalence, and sources of between-study heterogeneity were determined using subgroup and metaregression analyses. This review was registered with PROSPERO, CRD42020166465. We initially identified 1,399 records and finally retained 109 reports that contributed to 291 prevalence records from 25 countries. The overall CFR was 29.7% (22.3-37.5) in humans. Pooled prevalence of LASV infection was 8.7% (95% confidence interval: 6.8-10.8) in humans, 3.2% (1.9-4.6) in rodents, and 0.7% (0.0-2.3) in other mammals. Subgroup and metaregression analyses revealed a substantial statistical heterogeneity explained by higher prevalence in tissue organs, in case-control, in hospital outbreak, and surveys, in retrospective studies, in urban and hospital setting, in hospitalized patients, and in West African countries. This study

suggests that LASV infections is an important cause of death in humans and that LASV are common in humans, rodents and other mammals in sub-Saharan Africa. These estimates highlight disparities between sub-regions, and population risk profiles. Western Africa, and specific key populations were identified as having higher LASV CFR and prevalence, hence, deserving more attention for cost-effective preventive interventions.

Author summary

Lassa virus (LASV) infection constitutes a major public health threat as it has a direct impact on the mortality of febrile patients, healthcare workers, pregnant women, visitors of endemic countries with a consequential negative impact on national and individual economies. It is necessary to have accurate epidemiological data on LASV infection, in order to prioritize the policies, funding for public health interventions, and health-care planning, especially in sub-Saharan Africa (SSA). Data concerning virus occurrence in rodents and other mammal species can also assist in guiding control of Lassa fever from an ecological perspective. This could include preventive measures such as the protection of food fields by anti-rodent barriers, the protection of rodent predatory fauna, the sanitation of home and particularly the food storage place and the blocking of rodent access to home and food stored. Our systematic review and meta-analysis of LASV infection in SSA has contemporarily and comprehensively summarized the prevalence of current, recent, and past infection both in humans, rodents and other mammals. Broadly, the study showed relatively high CFR estimates in humans. Additionally, Western Africa presented the highest burden of LASV infections compared to other regions. This study emphasized various populations of SSA with relatively high burden of LASV infection. We have identified specific populations at high risk of LASV infection, who may urgently benefit from routine screening, detection and management programmes. Beyond, preventive strategies should be promoted, by educating and raising people's awareness about LASV infection, and strengthening practitioners' capacities towards adequate diagnosis and proper management of this infection in SSA.

Introduction

At least 75% of emerging and re-emerging infectious diseases have an animal origin [1]. Lassa virus (LASV) is a zoonotic re-emerging pathogen and a member of the family *Arenaviridae* and the genus *Mammarenaviruses* (viruses that infect mammals). The main natural reservoir of LASV is the rodent *Mastomys natalensis* that lives in proximity with humans [2–4]. A recent study showed that up to 37.7 million people in 14 countries in sub-Saharan Africa (SSA), particularly in West Africa, were living in areas that were prone to LASV zoonotic transmission, because of the presence of rodent reservoirs in these countries [5]. The LASV is also found in other rodents and mammals species in the West Africa [6]. This presence of LASV in non-reservoirs could however represent transient or spillover infections [7]. Humans are infected either by direct contact with infected tissues, urine or excrement of rodents or indirectly through vectors such as cereals dried on the ground. Lassa virus is also transmitted from human to human by direct contact with secretions or infected blood, especially in hospitals with relatively high case fatality rates [8,9].

The LASV was isolated for the first time from two missionary nurses in the city of Lassa in north-eastern Nigeria in 1969 [10]. It is estimated that Lassa fever is responsible for 2 million infections annually in West Africa [11]. A systematic review has shown that 21 Lassa fever outbreaks recorded in Nigeria from 1969 to 2017 have been associated with approximately 6,000 suspected cases, 800 confirmed cases and nearly 700 deaths [12]. These epidemics of Lassa fever pose a constant problem in health facilities with nosocomial transmissions to health care workers and visitors of infected cases [8]. Another recent review reported 33 patients with imported cases of LASV returning from 7 West African countries and 9 other countries between 1969 and 2016 [13]. A total of 39% (12/31) of the patients with known outcomes were deceased. Lassa fever virus is listed among the WHO priority diseases in need of urgent research and development efforts and it is classified as a category "A" bioterrorism agent that can serve as biological weapons [14].

Lassa virus infection includes a wide variety of clinical presentations resulting in mild or severe forms that require medical attention and often lead to death. Asymptomatic infections also seem common. The early phase of Lassa fever is indistinguishable from other common febrile syndromes such as malaria, typhoid fever or haemorrhagic fevers caused by other viruses. Laboratory-based surveillance programs are essential for the prevention, management and control of outbreaks of LASV infections [15]. Early diagnosis and treatment are associated with better outcomes for patients with LASV [16]. Molecular assays are widely used in reference laboratories for LASV diagnosis [15,17]. However, there are still many challenges to the laboratory diagnosis of LASV including the wide diversity of LASV strains and sequences, the low sensitivity and specificity of immunoassays, and the low number of approved rapid diagnostic tests. Furthermore, there is also a possibility of cross-reaction between LASV and other Arenaviruses strains. Although promising results have been reported in the preclinical phase of the vaccine development [18], there are currently no approved vaccines against LASV infection [19]. The management of LASV fever patients is primarily mainly based on alleviating symptoms. However, encouraging results have been obtained with the administration of ribavirin in the initial phase (first week) of the disease [16].

It is recognized that the fight against zoonotic diseases can be done ideally according to the One Health approach [20]. To this end, epidemiological data from zoonotic viruses such as LASV in humans and animals are crucial in guiding common responses to this health threat. Furthermore, a recent study reported that the detection rate of the LASV in asymptomatic individuals and the identification of populations at high risk were at crucial importance [21]. We explored both the case fatality rate of the LASV in various category of human populations and the prevalence of LASV in humans, rodents and others mammals. This is important information that can inform priorities in focussing prevention efforts. Data concerning virus occurrence in rodents and other mammal species can also assist in guiding control of Lassa fever from an ecological perspective.

Methods

Design and inclusion criteria

The preferred reporting items for systematic reviews and meta–analyses (PRISMA) checklist was used for the design of this systematic review (S1 Table) [22]. This review was published to Prospero under the identification CRD42020166465. Inclusion criteria were met for studies including subjects of all ages and gender with any illness, apparently healthy individuals, rodents or other mammals. The LASV clinical case definitions present a wide variability on multiple factors such as the definition of fever, other symptoms considered, non-response to treatment for other febrile illnesses endemic in sub-Saharan Africa, past contact with

confirmed, suspect or probable cases of LASV patients or rodents and the organisation considered for guidelines. We therefore categorized the types of participants according to the inclusion criteria of the included studies. We classified the other mammals according to the highest level listed in the included articles and in agreement with the mammal classification proposed by Wilson and Reeder in 2005 [23]. Studies reporting the prevalence of LASV (virus, antigen, RNA, IgM and/or IgG) or data to calculate this estimate were included. Lassa virus prevalence was determined using any detection assays including indirect immunofluorescence, complement fixation, culture, Reverse Transcription Polymerase Chain Reaction (RT-PCR) or Enzyme Linked Immunosorbent Assay (ELISA). We selected studies conducted in SSA, as defined by the United Nations Statistics Division (UNSD), that represent the habitat of Mastomys natalensis, natural hosts of LASV [5]. All study types published in peer-reviewed journals, observational or interventional, providing cross-sectional records on the prevalence of one or more LASV markers were included. We used a conceptual definition for the included study designs, considering surveys and surveillance as a cross-sectional study. Given that epidemic context is usually associated with high prevalences, we presented epidemics as community outbreak and hospital outbreak. Studies reporting imported case data, case reports, reports, reviews, systematic reviews and meta-analyses, comments and duplicate were excluded.

Data sources and search strategy

A comprehensive search strategy designed to allow exhaustive identification of relevant studies was applied to the Pubmed, Scopus, African Journals Online, and African Index Medicus databases. Databases were consulted from 1969 to 2020 for studies published in English and French languages. The electronic search strategy was adapted to each database. <u>S2 Table</u> displays the details of the search strategy applied in the Pubmed database. The list of references from the included studies and other relevant articles were manually screened for other relevant studies.

Selection and extraction of data from included studies

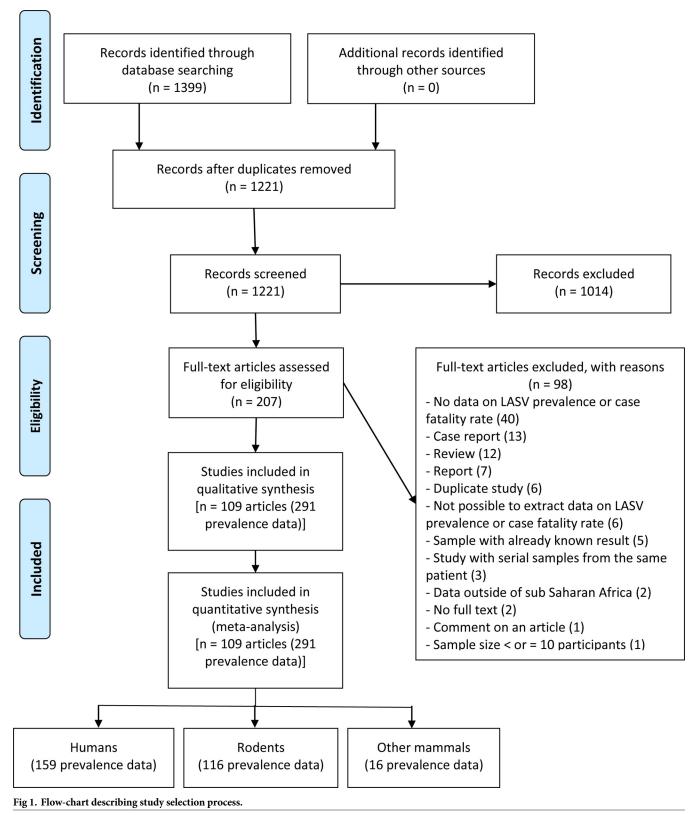
Duplicates identified from the complete list of studies were removed. The titles and abstracts of the eligible studies were independently examined by two study authors (SK and JTEB) for the selection of relevant studies. The differing opinions of the investigators regarding the selection of the studies were resolved by discussion, consensus and intervention of a third arbitrator if necessary. Data from the included studies was extracted using a google form by 18 study authors and verified by SK. The extracted data were the name of the first author, the year of publication, the study design, the inclusion criteria (ill, apparently healthy, rodent or other mammals), country, sampling method, study period, LASV detection assay, LASV detection marker (virus, antigen, RNA, IgM or IgG), type of sample used for LASV, and number of deaths within LASV positive. Disagreements observed during data extraction were resolved by discussion and consensus.

Study definitions

Studies performed in several hospitals or cities were defined as multicentric and those in a single hospital or city were defined as monocentric. We grouped the countries in accordance with the breakdown of the UNSD [24]. We considered studies that performed analysis on acute and convalescent samples in order to give a diagnosis of the infection by the rise in the IgG antibody titer. Past infections were considered for articles with unspecified antibodies or IgG positive subjects. Recent infections, contact lasting up to 12 months, were considered for articles with IgM or IgM and IgG positive subjects. Current infections were considered for studies with antigen, RNA, virus positives or subjects with an increase in antibody titer between acute and convalescent samples. People with regular contacts with any animal were defined as high risk individuals. We assumed the data of the various population categories from the same article as several individual prevalences.

Evaluation of the quality of studies and synthesis of data

The quality of the included studies was independently assessed by all study authors using a dedicated scale for prevalence studies that is based on 10 components divided into two groups: internal and external validity of the study (S3 Table) [25]. The scores of 0 or 1 were assigned to each question in the assessment tool for a total score of 10 per study. The scores of 0-3, 4-6and 7-10 represented a high, moderate and low risk of bias, respectively. The disagreements were resolved by discussion and consensus. The R version 3.6.0 software (package "meta" and "metafor") through the RStudio interface was used to perform all meta-analyses [26,27]. Heterogeneity between studies was estimated by the Cochran Q test, and the I^2 and the H statistics [28]. Studies were considered to lack of evidence on heterogeneity if the p value for Q test was greater than 0.05. The I2 value was indicative of the degree of heterogeneity with values of 0%, 18%, 45%, and 75% considered for none, low, moderate and high heterogeneity respectively [29]. H values close to 1 indicated lack of evidence on heterogeneity between studies and these values were inversely correlated with degree of heterogeneity. Prevalence, 95% confidence intervals (95% CI), and prediction intervals were estimated by random effect models (DerSimonian-Laird method) [30]. The instability of the variance and the problem of the 95% CIs excluded from the range 0 to 1 were solved by the Freeman-Tukey double arcsine stabilization. Potential reasons for heterogeneity were investigated by subgroup and metaregression analyses by study design, the sampling method, the timing of data collection, the country, the UNSD region, the setting, the hospitalization, and the sample types. The dependent variable was the LASV prevalence or case fatality rate. We considered only dependent variables with at least 3 studies divided into two or more categories of the independent variables in subgroup analyses and metaregression. The independent variables were evaluated in both a univariate and a multivariate metaregression model (if p < 0.2 in the univariate model). The statistical significance threshold was 0.05 in multivariate meta-regression analysis. The publication bias was assessed by visual inspection of the asymmetry of the funnel plot and the Egger test with the value of p <0.1 indicating a potential bias [31]. As cross-sectional studies are best for prevalence studies [32], a sensitivity analysis that included only low-risk of bias and cross-sectional studies was performed.


Results

Literature search

A total of 1,399 articles were identified by electronic search in the databases and 178 duplicates eliminated (Fig 1 and S4 Table). A group of 1,014 were eliminated after examination of the titles and abstracts, leaving a total of 207 articles to be examined completely. Of the 207 articles examined completely, 109 (291 prevalence records) met the inclusion criteria, including 159 in humans, 116 in rodents, and 16 in other mammals [2–4,6,8,9,33–135].

Study quality assessment

The majority of articles in humans had a moderate risk of bias (112/159; 70.4%), followed by studies with a low risk of bias (46/159; 28.9%), and a high risk of bias (1/159; 0.6%). All articles in rodents and other mammals had a moderate risk of bias (S5 Table). No study was

https://doi.org/10.1371/journal.pntd.0008589.g001

representative of the population of a country, no study described the rate of non-respondents and only 16 performed probabilistic sampling approach.

Characteristics of studies included in meta-analysis. Twenty-five countries in SSA were represented in this review. Most of the prevalence records were from West Africa (86.6%; 252/291) and more particularly in Nigeria (31.3%; 91/291) (S6 Table). Study participants were recruited between 1965 and 2019. Two hundred and fifty-eight (88.6%; 258/291) prevalence records were cross-sectional, 106 (36.4%) were rural, 192 (66.0%) were community based, 99 (34.0%) had tested for antibodies by indirect immunofluorescence, 225 (77.3%), and had tested for LASV in serum alone. Fifty-seven prevalence records (35.9%; 57/159) focused on apparently healthy individuals and 13 (11.2%; 13/116) on *Mastomys natalensis* rodents. Only 23 of the human included studies gave a LASV suspected or probable case definition of the recruited participants. Individual data from included studies are presented in the <u>S7 Table</u>.

Meta-analysis

The included studies in this review recruited 114,848 participants, including 91,275 humans, 21,891 rodents, and 1,348 other mammals.

Case fatality rate of Lassa virus infections in humans. A total of 3063 participants recruited from 20 studies conducted in West Africa gave an overall fatality rate of 29.6% (95% CI; 22.3–37.5) (Fig 2) [8,34,37,47,49,52,53,65,70,75,87,89,100,101,109,116,117,120,123,132]. All categories of participants with common, recent or old infections had relatively high case fatality rates ranging from 9.1 to 46.7%. We obtained decreasing case fatality records from participants with current LASV infections in LASV suspected cases 34.7% (95% CI; 25.0–45.1), pregnant women 27.0% (95% CI; 12.9–43.9), febrile patients 22.1% (95% CI; 9.4–37.7), and patients with haemorrhagic symptoms 13.2% (95% CI; 0.0–53.4).

Prevalence of Lassa virus infections in humans

A total of 88,212 participants enrolled in 82 studies gave an overall prevalence of LASV of 8.7% (95% CI; 6.8–10.8) (Figs 3 and S1) [8,9,34–46,48–50,52,53,56–61,65–67,67–70,72–84,87– 89,91–97,99,100,105–108,110,113,115–123,126–130,132–136]. Regardless of the type of infection; current, recent or past, LASV suspected cases and febrile patients had the highest prevalence. In studies with participants with evidence of LASV current infection, healthcare workers (11.1%) had high prevalence. In studies with participants with evidence of LASV recent infection, apparently healthy individuals (12.6%) had high prevalence. In studies with participants with evidence of previous LASV infection patients with any disease (16.9%) had high prevalence. Apart from West Africa where current and recent LASV infections have been recorded, only past infections evidence has been recorded in other regions of SSA including Central Africa (Cameroon, Central African Republic, Guinea Equatorial, Republic of Congo and Democratic Republic of Congo), Eastern Africa (Zimbabwe and Uganda) and Northern Africa (Sudan).

Prevalence of Lassa virus infections in rodents

A total of 21,891 rodents trapped in 29 studies gave an overall prevalence of LASV of 3.2% (95% CI; 2.0–4.6) (Figs 4 and S2) [2–4,6,33,43,45,49,51,54,55,62–64,69,85,86,90,94,102–104,111,112,114,124,125,129,130]. Besides the *Mastomys species*, more particularly *Mastomys natalensis*, many other rodent species had evidence of current or previous contacts with LASV. In one study, the species *Hylomyscus pamfi* showed the highest prevalence of current contact at 41.7% [6]. In terms of current and past contacts, *Mus* species have also shown relatively high

Study	Deaths	Positive	9	Case fatality rat	e (%) 95% Cl	Weigh
Current contact_ positive among fe	brile patie	ents (2 S	itudies)			
Akhuemokhan, 2017 - Nigeria	3	13		23.08	[5.04; 53.81]	3.7%
Webb, 1986 - Sierra Leone	5	23		21.74	[7.46; 43.70]	4.4%
Random effect meta-analysis		36		22.09	[9.37; 37.75]	8.1%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.8891$						
Current contact_ positive among LA	ASV susp	ected ca	ses (12 Studies)			
Asogun, 2012 - Nigeria	61	170		35.88	[28.68; 43.58]	5.9%
Buba, 2018 - Nigeria	28	47		59.57	[44.27; 73.63]	
Dahmane, 2014 - Sierra Leone	22	36		61.11	[43.46; 76.86]	
Dan-Nwafor, 2019 - Nigeria	124	554		22.38	[18.98; 26.09]	
Fisher-Hoch, 1988 - Sierra Leone	4	32		12.50	[3.51; 28.99]	
Hamblion, 2018 - Liberia	4	14		28.57	[8.39; 58.10]	
Ipadeola, 2020 - Nigeria	325	1354	-	24.00	[21.75; 26.37]	
Maigari, 2018 - Nigeria	12	27		- 44.44	[25.48; 64.67]	
Okokhere, 2018 - Nigeria	68	284		23.94	[19.10; 29.34]	
Price, 1988 - Sierra Leone	10	70		14.29	[7.07; 24.71]	
Shaffer, 2019 - Sierra Leone	165	245	-	67.35	[61.09; 73.18]	
	4					
Shehu, 2018 - Nigeria	4	11			[10.93; 69.21]	
Random effect meta-analysis Heterogeneity: <i>I</i> ² = 95.4% [93.5%; 96.8%]	$\tau^2 = 0.028$	2844 30, p < 0.	0001	34.75	[25.04; 45.10]	02.5%
Current contact_ positive among Pa	atient with		rhagic symptoms (2 Studies)			
Li, 2016 - Sierra Leone	1	36		2.78	[0.07; 14.53]	
Ter Meulen, 1998 - Guinea, Liberia	4	12		- 33.33	[9.92; 65.11]	
Random effect meta-analysis	-	48		13.24	[0.00; 53.41]	8.5%
Heterogeneity: $l^2 = 85.4\% [40.9\%; 96.4\%]$], $\tau^2 = 0.078$	34, p = 0.	0089			
Current contact_ positive among Pr	egnant w	omen (2	Studies)			
Okogbenin, 2019 - Nigeria	11	30		36.67	[19.93; 56.14]	4.8%
Price, 1988 - Sierra Leone	14	68		20.59	[11.74; 32.12]	5.5%
Random effect meta-analysis		98		27.04	[12.87; 43.94]	10.2%
Heterogeneity: $I^2 = 62.9\% [0.0\%; 91.5\%]$	$\tau^2 = 0.010$	0, <i>p</i> = 0.	1007			
Recent contact_ positive among LA	SV suspe	cted ca	ses (1 Studv)			
Fisher-Hoch, 1995 - Nigeria	2	11		18.18	[2.28; 51.78]	3.4%
Random effect meta-analysis		11		18.18	[0.47; 47.35]	
Heterogeneity: not applicable					,	
Past contact_ positive among LASV	positive	case co	ntact (1 Study)			
Troup, 1970 - Nigeria	1	11		9.09	[0.23; 41.28]	3.4%
Random effect meta-analysis		11		9.09	[0.00; 35.01]	
Heterogeneity: not applicable				5.00	[0.00, 00.01]	0.470
Past contact_ positive among LASV	(euenact	ad case	e (1 Study)			
	-			/6.67	[01 07. 72 44]	3 00/
Carey, 1972 - Nigeria	7	15		46.67	[21.27; 73.41]	
Random effect meta-analysis		15		46.67	[21.72; 72.43]] 3.9%
Heterogeneity: not applicable						
Overall random effect meta-analysis		3063		29.67	[22.34; 37.52]] 100.0%
Residual heterogeneity: $I^2 = 94.4\%$ [92.2%	%; 96.0%], <i>µ</i>	0.000	10 20 30 40 50 60	1 1 70		
Fig 2 Human cass fatality and due to I	on viene in	cub Cal				
Fig 2. Human case fatality rate due to Las	sa virus in	sub-sana	uan Alfika.			

https://doi.org/10.1371/journal.pntd.0008589.g002

prevalence of LASV [3,63,103,125]. *Lemniscomys striatus, Rattus rattus*, and *Praomys species* also had relatively high evidence of previous contact with LASV [63,103].

Study	Total		Prevalence (%)	95% CI
Past contact_Apparently healthy individuals (48 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 99.4\%$ [99.3%; 99.4%], $r^2 = 0.0515$, $p = 0$	38959		3.82	[1.51; 6.95]
Past contact_ Apparently healthy individuals, Patient with a Random effect meta-analysis Heterogeneity: l^2 = 83.1% [56.9%; 93.4%], τ^2 = 0.0020, p = 0.0005	any illne 3164		0.58	[0.03; 1.66]
Past contact_ Febrile patients (10 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 94.3\%$ [91.5%; 96.2%], $\tau^2 = 0.0306$, $p < 0.0001$	1441	- 	19.12	[10.75; 29.11]
Past contact_ Healthcare workers (17 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 94.4\%$ [92.3%; 96.0%], $\tau^2 = 0.0105$, $p < 0.0001$	6355	Ð	6.84	[4.16; 10.07]
Past contact_ High risk individuals (3 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 95.6\%$ [90.3%; 98.0%], $\tau^2 = 0.0381$, $p < 0.0001$	500		8.58	[0.23; 25.40]
Past contact_ LASV positive case contact (4 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 44\%$ [0.0%; 81.3%], $\tau^2 = 0.0030$, $\rho = 0.1474$	295		4.15	[1.24; 8.32]
Past contact_ LASV suspected cases (5 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 99.1\%$ [98.8%; 99.4%], $\tau^2 = 0.0836$, $\rho < 0.0001$	1798		17.72	[3.05; 40.59]
Past contact_ Patient with any illness (3 Studies) Random effect meta-analysis Heterogeneity: /² = 97% [94.1%; 98.5%], τ² = 0.2054, ρ < 0.0001	135		16.94	[0.00; 67.98]
Past contact_ Patient with illnesses other than fever disease Random effect meta-analysis Heterogeneity: l^2 = 70.8% [0.6%; 91.4%], τ^2 = 0.0041, p = 0.0325	es (3 St 660		0.31	[0.00; 2.84]
Recent contact_ Apparently healthy individuals (7 Studies) Random effect meta-analysis Heterogeneity: l^2 = 98.7% [98.3%; 99.1%], τ^2 = 0.0420, ρ < 0.0001	3452		12.57	[3.98; 24.78]
Recent contact_ Febrile patients (4 Studies) Random effect meta-analysis Heterogeneity: /² = 98.6% [97.8%; 99.1%], τ² = 0.0678, ρ < 0.0001	1600		21.55	[4.59; 46.03]
Recent contact_ Healthcare workers (2 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.8231$	564	•	0.02	[0.00; 0.69]
Recent contact_ LASV suspected cases (6 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 98.9\%$ [98.5%; 99.2%], $\tau^2 = 0.1165$, $p < 0.0001$	1398		22.42	[4.40; 48.61]
Current contact_ Apparently healthy individuals (2 Studies) Random effect meta-analysis Heterogeneity: l^2 = 71.9% [0.0%; 93.7%], τ^2 = 0.0211, p = 0.0591	131	•—	0.74	[0.00; 12.23]
Current contact_ Blood donors (1 Study) Random effect meta-analysis Heterogeneity: not applicable	127	•	0.00	[0.00; 1.35]
Current contact_ Febrile patients (9 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 93.1\%$ [89.1%; 95.7%], $\tau^2 = 0.0145$, $\rho < 0.0001$	2201	₽	3.03	[0.67; 6.72]
Current contact_ Healthcare workers (2 Studies) Random effect meta-analysis Heterogeneity: l^2 = 83.7% [32.4%; 96.1%], r^2 = 0.0901, p = 0.0133	28		11.15	[0.00; 55.04]
Current contact_ LASV suspected cases (19 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 97.7\%$ [97.2%; 98.1%], $\tau^2 = 0.0129$, $p < 0.0001$	20008	-8-	25.17	[20.62; 30.01]
Current contact_ Patient with hemorrhagic fever (2 Studies) Random effect meta-analysis Heterogeneity: $l^2 = 43\%$, $\tau^2 = 0.0017$, $\rho = 0.1853$) 348	+	10.84	[6.20; 16.51]
Current contact_ Pregnant women (1 Study) Random effect meta-analysis Heterogeneity: not applicable	5048		0.87	[0.63; 1.15]
Overall random effect meta-analysis Residual heterogeneity: $l^2 = 98.8\%$ [98.7%; 98.9%], $\rho = 0$	88212	0 20 40 60 80	8.77	[6.85; 10.88]

Fig 3. Prevalence of Lassa virus infections in humans in sub-Saharan Africa.

https://doi.org/10.1371/journal.pntd.0008589.g003

Study Total	Prevalence (%)	95% CI
Current contact_ Hylomyscus pamfi (1 Study) Random effect meta-analysis 12 Heterogeneity: not applicable	41.67	[14.90; 70.99]
Current contact_ Mus baoulei (1 Study)Random effect meta-analysis29Heterogeneity: l^2 = 76.5%, τ^2 = 0.0543, p = 0.039	6.96	[0.00; 39.10]
Current contact_ Mastomys species (7 Studies)Random effect meta-analysis939Heterogeneity: $I^2 = 59.3\%$, $\tau^2 = 0.0028$, $\rho = 0.022$	- 12.84	[9.46; 16.64]
Current contact_ Mastomys natalensis (10 Studies)Random effect meta-analysis4573Heterogeneity: I^2 = 96.8%, τ^2 = 0.0170, ρ < 0.001	5.47	[2.11; 10.12]
Current contact_ Mastomys erythroleucus (5 Studies)Random effect meta-analysis462Heterogeneity: $l^2 = 87.1\%$, $\tau^2 = 0.0206$, $\rho < 0.001$	3.05	[0.00; 10.28]
Current contact_ Mus (Nannomys) species (1 Study) Random effect meta-analysis 165 * Heterogeneity: not applicable	1.21	[0.02; 3.62]
Current contact_*Negative Rodents (27 Studies)Random effect meta-analysis1316Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 1.000$	0.00	[0.00; 0.00]
Current contact_ Unspecified rodents (21 Studies) Random effect meta-analysis 4826 Heterogeneity: $l^2 = 95.4\%$, $\tau^2 = 0.0249$, $p < 0.001$	4.12	[1.45; 7.79]
Past contact_ Mus baoulei (1 Study) Random effect meta-analysis 15 Heterogeneity: not applicable	• 33.33	[11.30; 59.49]
Past contact_ Mastomys natalensis (3 Studies)Random effect meta-analysis1380Heterogeneity: $l^2 = 94.3\%$, $\tau^2 = 0.0094$, $p < 0.001$	12.83	[6.23; 21.33]
Past contact_ Lemniscomys striatus (1 Study) Random effect meta-analysis 32 Heterogeneity: not applicable	12.50	[2.88; 26.59]
Past contact_Mastomys erythroleucus (2 Studies)Random effect meta-analysis367Heterogeneity: $l^2 = 93\%$, $\tau^2 = 0.0208$, $p < 0.001$	7.18	[0.22; 21.45]
Past contact_Mus minutoides (2 Studies)Random effect meta-analysis59Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.872$	- 6.58	[1.10; 15.00]
Past contact_ Praomys daltoni (2 Studies)Random effect meta-analysis299Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.818$	3.32	[1.50; 5.75]
Past contact_ Rattus rattus (2 Studies) Random effect meta-analysis 92 Heterogeneity: <i>l</i> ² = 81.7%, τ ² = 0.0348, ρ = 0.020	2.24	[0.00; 19.95]
Past contact_ Praomys rostratus (1 Study) Random effect meta-analysis 163 + Heterogeneity: not applicable	1.23	[0.02; 3.66]
Past contact_#Negative rondents (10 Studies)Random effect meta-analysis279 \square Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\rho = 0.999$	0.00	[0.00; 0.32]
Past contact_Unspecified rodents (18 Studies)Random effect meta-analysis6883Heterogeneity: $l^2 = 98.4\%$, $\tau^2 = 0.0434$, $p < 0.001$	4.39	[1.06; 9.50]
Overall random effect meta-analysis Residual heterogeneity: $l^2 = 94.8\%$, $p = 0$ 0 10	3.19	[1.98; 4.62]

Fig 4. Prevalence of Lassa virus infections in rodents in sub-Saharan Africa. *Negative rodents include Gerbilliscus species, Lemniscomys species, Praomys daltoni, Praomys species, Rattus rattus, Uranomys ruddi, Nannomys minutoides/

mattheyi, Myomys daltoni, Praomys rostratus, Lemniscomys striatus, Praomys cf. rostratus, Crocodura species, Lophuromys sikapusi, Tatera cf. guinea, Gerbilliscus kempi, Praomys jacksoni, Mus setulosus, and Mus minutoides. #Negative rodents include Gerbilliscus kempi, Mus setulosus, Praomys jacksoni, Lemniscomys bellieri/zebra, Uranomys ruddi, Crocidura buettikoferi, Gerbilliscus guineae, Lophuromys sikapusi, and Mus mattheyi.

https://doi.org/10.1371/journal.pntd.0008589.g004

Prevalence of Lassa virus infections in other mammals

A total of 1645 other mammals recruited in 8 studies gave an overall prevalence of LASV of 0.7% (95% CI; 0.0–2.3) (Fig 5) [4,49,68,71,77,81,98,103]. Only primates, carnivora and Eulipo-typhla showed evidence of current or previous contact with LASV [68,71,98,103].

Sensitivity, heterogeneity and publication bias analysis

The overall case fatality rate in humans and the overall prevalence of LASV in humans, rodents and other mammals were similar to those estimated for cross-sectional and low risk of bias studies for the vast majority of categories (Table 1). The differences were mainly observed in the categories of febrile patients. Most study categories in rodents and other mammals had a small number of studies (<5 studies) and did not allow an objective estimate of heterogeneity. Substantial heterogeneity was recorded in the remaining included human, rodent and other mammal studies. In agreement with the funnel plot symmetry and the Egger test p value, there was no publication bias in case fatality rate in humans (p-value Egger test = 0.510), LASV prevalence in humans (p-value Egger test = 0.715), and LASV prevalence in other mammals (pvalue Egger test = 0.647) analyses and evidence of publication bias in LASV prevalence in rodents (p-value Egger test = 0.045) analyses (S3-S6 Figs).

Subgroup analysis and metaregression

All LASV deaths have been recorded only in West Africa including Nigeria, Guinea, and Sierra Leone (Fig 6) [34,37,47,53,65,70,120,123]. Only the case fatality rate category in LASV suspected cases fulfilled the conditions for subgroup analyses (at least 3 studies divided into two or more categories). The case fatality rate was significantly higher in studies on community outbreak (p = 0.036), with a retrospective design (p = 0.018) [47,53,89,101,116,117], conducted in rural areas (p <0.001) [53], and in the community (p = 0.039) (S8 Table) [47]. S9 Table displayed the results of the meta-regression analysis. The final model of the case fatality rate in current LASV infection suspected cases explained 32.5% of the heterogeneity. In this model only retrospective studies presented significantly high case fatality rates (p = 0.002).

The LASV prevalence in current infections in humans was statistically higher in hospitalized febrile patients (p = 0.001), in febrile patients in Liberia and Sierra Leone (p < 0.001), in febrile patients in urban areas (p = 0.049) and in LASV suspected cases in rural areas (p = 0.048), and in case-control studies for LASV suspected cases (p < 0.001). In febrile patients, the final meta-regression model explained 0% heterogeneity for the prevalence of the current LASV infection. Case control and hospital/community-based studies showed the highest prevalence.

The LASV seroprevalence in recent infections in humans was statistically higher in Sierra Leone in apparently healthy individuals (p < 0.001) and in LASV suspected cases (p < 0.001), in urban areas in apparently healthy individuals (p = 0.015), and in case-control studies in febrile patients (p = 0.036). In apparently healthy individuals, the final meta-regression model explained 60.3% heterogeneity for the seroprevalence of recent LASV infection and Sierra Leone had the highest prevalence.

Study	Positive	Tota		Prevalence (%)	95% CI	Weigh
Past contact_Artiodactyla (3 Studies)						
Georges, 1985 - Cattle - Central African Republic	0	46		0.00	[0.00; 7.71]	5.6%
Georges, 1985 - Goat - Central African Republic	0	21	B	0.00	[0.00; 16.11]	3.9%
Georges, 1985 - Sheep - Central African Republic	0	105	— —	0.00	[0.00; 3.45]	7.1%
Random effect meta-analysis		172		0.00	[0.00; 0.82]	
Heterogeneity: $l^2 = 0\% [0.0\%; 24.6\%], \tau^2 = 0, p = 0.8711$					[0.00, 0.02]	
Past contact_Carnivora (2 Studies)						
Georges, 1985 - Dogs - Central African Republic	9	140	_	6.43	[2.98; 11.85]	7.5%
Haun, 2019 - Dogs - Liberia	10	64		15.62	[7.76; 26.86]	
Random effect meta-analysis	10	204		10.12	[2.83; 20.87]	
Heterogeneity: $I^2 = 75.2\%$ [0.0%; 94.4%], $\tau^2 = 0.0086$, $p = 0.0$	0446	204		10.12	[2.00, 20.07]	10.0 /
Past contact_Rodentia (1 Study)						
Georges, 1985 - Guinea-pig - Central African Republic	0	60		0.00	[0.00; 5.96]	6.2%
	0	60 60				
Random effect meta-analysis Heterogeneity: not applicable		60		0.00	[0.00; 2.85]	6.2%
Past contact_Primates (3 Study)						_
Ivanoff, 1982 - Unspecified - Gabon	0	34		0.00	[0.00; 10.28]	5.0%
Johnson, 1982 - Unspecified - Kenya	0	464	E Contraction of the second	0.00	[0.00; 0.79]	8.5%
Ogunro, 2019 - Monkeys - Nigeria	5	62		8.06	[2.67; 17.83]	6.2%
Random effect meta-analysis		560		1.06	[0.00; 8.92]	19.7%
Heterogeneity: $l^2 = 88.2\%$ [67.1%; 95.8%], $\tau^2 = 0.0222$, $\rho = 0.0222$	0002					
Past contact_Chiroptera (1 Study)						
Carey, 1972 - Bats - Nigeria	0	28	•	0.00	[0.00; 12.34]	4.6%
Random effect meta-analysis		28		0.00	[0.00; 6.05]	4.6%
Heterogeneity: not applicable						
Past contact_Eulipotyphla (1 Study)						
Olayemi, 2018 - Crocidura species - Nigeria	1	199	—	0.50	[0.01; 2.77]	7.9%
Random effect meta-analysis		199	\$	0.50	[0.00; 2.15]	7.9%
Heterogeneity: not applicable						
Recent contact_Primates (1 Study)						
Ogunro, 2019 - Monkeys - Nigeria	0	62		0.00	[0.00; 5.78]	6.2%
Random effect meta-analysis		62		0.00	[0.00; 2.75]	6.2%
Heterogeneity: not applicable						
Current contact_Primates (1 Study)						
Ogunro, 2019 - Monkeys - Nigeria	1	62		1.61	[0.04; 8.66]	6.2%
Random effect meta-analysis		62		1.61	[0.00; 6.80]	6.2%
Heterogeneity: not applicable						
Current contact_Chiroptera (1 Study)						
Monath, 1974 - Bats - Sierra Leone	0	75		0.00	[0.00; 4.80]	6.6%
Random effect meta-analysis		75		0.00	[0.00; 2.28]	6.6%
Heterogeneity: not applicable						
Current contact_Eulipotyphla (2 Studies)						
Monath, 1974 - Crociduira species - Sierra Leone	0	24		0.00	[0.00; 14.25]	4.2%
Olayemi, 2018 - Crociduira species - Nigeria	0	199		0.00	[0.00; 1.84]	7.9%
Random effect meta-analysis	5	223		0.00	[0.00; 1.84] [0.00; 0.31]	
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.5419$		223		0.00	[0.00, 0.31]	12.17
Overall random effect meta-analysis		1645		0.71	10 00 · 2 321	100.00
Residual heterogeneity: $l^2 = 72.3\%$ [40.0%; 87.2%], $p = 0.001$	4	1043		0.71	[0.00; 2.32]	100.09
			0 5 10 15 20 25			

https://doi.org/10.1371/journal.pntd.0008589.g005

The seroprevalence of LASV in past infections in humans was statistically higher in West African countries including Guinea, Sierra Leone, Nigeria, Mali, Ivory Coast, in context urban, especially in apparently healthy individuals/ patients with any disease and LASV suspected cases. In apparently healthy individuals, the final meta-regression model explained 75.9% heterogeneity for the seroprevalence of past LASV infection. West Africa and hospital/

	Prevalence. % (95%CI)	95% Prediction interval	N Studies	N Participants	¶H (95%CI)	§I ² (95%CI)	P heterogeneity	P Egger test
Case fatality rate in humans								
Current contact								
Positive among LASV suspected cases								
Overall	34.7 [25-45.1]	[4.7-73.7]	12	2844	4.7 [3.9-5.6]	95.4 [93.5-96.8]	< 0.001	0.276
Cross-sectional	35 [17–55.5]	[0-96.7]	7	1778	5.8 [4.7-7.1]	97 [95.5–98]	< 0.001	0.544
Low risk of bias	34.9 [18.2–53.6]	[0-93.6]	7	848	5 [4-6.3]	96.1 [93.8–97.5]	< 0.001	0.722
Positive among Pregnant women								
Overall	27 [12.9-43.9]	NA	2	98	1.6 [1-3.4]	62.9 [0-91.5]	0.101	NA
Cross-sectional	20.6 [11.7-31.1]	NA	1	68	NA	NA	1	NA
Low risk of bias	27 [12.9-43.9]	NA	2	98	1.6 [1-3.4]	62.9 [0-91.5]	0.101	NA
Positive among Febrile patients								
Overall	22.1 [9.4-37.7]	NA	2	36	1	0	0.889	NA
Cross-sectional	21.7 [6.9-41.2]	NA	1	23	NA	NA	1	NA
Low risk of bias	21.7 [6.9-41.2]	NA	1	23	NA	NA	1	NA
Positive among Patient with hemorrhagic symptoms								
Overall	13.2 [0-53.4]	NA	2	48	2.6 [1.3-5.3]	85.4 [40.9-96.4]	0.009	NA
Cross-sectional	13.2 [0-53.4]	NA	2	48	2.6 [1.3-5.3]	85.4 [40.9-96.4]	0.009	NA
Low risk of bias	13.2 [0-53.4]	NA	2	48	2.6 [1.3-5.3]	85.4 [40.9-96.4]	0.009	NA
Recent contact								
Positive among LASV suspected cases								
Overall	18.2 [0.5-47.4]	NA	1	11	NA	NA	1	NA
Cross-sectional	18.2 [0.5-47.4]	NA	1	11	NA	NA	1	NA
Past contact								
Positive among LASV suspected cases								
Overall	46.7 [21.7-72.4]	NA	1	15	NA	NA	1	NA
Positive among LASV Positive case contact								
Overall	9.1 [0-35]	NA	1	11	NA	NA	1	NA
LASV prevalence in humans								
Current contact								
LASV suspected cases								
Overall	25.2 [20.6-30]	[7.4-48.8]	20	20008	6.6 [5.9–7.3]	97.7 [97.2-98.1]	< 0.001	0.061
Cross-sectional	24.8 [19.6-30.4]	[6.2–50.2]	16	15929	6.5 [5.8–7.4]	97.7 [97-98.2]	< 0.001	0.092
Low risk of bias	34.5 [24.6-45.1]	[4.6-73.7]	10	6452	6.3 [5.4-7.4]	97.5 [96.6-98.2]	< 0.001	< 0.001
Healthcare workers								
Overall	11.1 [0-55]	NA	2	28	2.5 [1.2-5]	83.7 [32.4-96.1]	0.013	NA
Cross-sectional	31.3 [10.5-56.4]	NA	1	16	NA	NA	1	NA
Low risk of bias	31.3 [10.5-56.4]	NA	1	16	NA	NA	1	NA
Patient with hemorrhagic symptoms								
Overall	10.8 [6.2–16.5]	NA	2	348	1.3	43	0.185	NA
Cross-sectional	12.9 [9.2–17.2]	NA	1	278	NA	NA	1	NA
Low risk of bias	12.9 [9.2–17.2]	NA	1	278	NA	NA	1	NA
Febrile patients				1		1	1	1

Table 1. Summary of meta-analysis results for prevalence of Lassa virus in humans, rodents, and other mammals in sub-Saharan Africa.

	Prevalence. % (95%CI)	95% Prediction interval	N Studies	N Participants	¶H (95%CI)	§I ² (95%CI)	P heterogeneity	P Egger test
Overall	3 [0.7-6.7]	[0-21.7]	9	2201	3.8 [3-4.8]	93.1 [89.1-95.7]	< 0.001	0.1
Cross-sectional	2.6 [0.3-6.6]	[0-23.7]	7	1927	4.1 [3.2–5.3]	94.2 [90.3-96.5]	< 0.001	0.11
Low risk of bias	6.5 [0.1-20.3]	[0-100]	3	751	5.1 [3.5-7.4]	96.1 [91.7-98.2]	< 0.001	0.421
Pregnant women								
Overall	0.9 [0.6-1.1]	NA	1	5048	NA	NA	1	NA
Low risk of bias	0.9 [0.6-1.1]	NA	1	5048	NA	NA	1	NA
Apparently healthy individuals								
Overall	0.7 [0-12.2]	NA	2	131	1.9 [1-4]	71.9 [0-93.7]	0.059	NA
Cross-sectional	0 [0-1.5]	NA	1	114	NA	NA	1	NA
Blood donors								
Overall	0 [0-1.3]	NA	1	127	NA	NA	1	NA
Cross-sectional	0 [0-1.3]	NA	1	127	NA	NA	1	NA
Low risk of bias	0 [0-1.3]	NA	1	127	NA	NA	1	NA
Recent contact								
LASV suspected cases								
Overall	22.4 [4.4-48.6]	[0-100]	6	1398	9.7 [8.3–11.4]	98.9 [98.5-99.2]	< 0.001	0.621
Cross-sectional	19.3 [1.9-48.1]	[0-100]	5	1326	10.6 [9–12.6]	99.1 [98.8-99.4]	< 0.001	0.782
Low risk of bias	22.8 [0.4-62.7]	[0-100]	4	668	8.9 [7.2–11.1]	98.8 [98.1-99.2]	< 0.001	0.002
Febrile patients								
Overall	21.6 [4.6-46]	[0-100]	4	1600	8.5 [6.8–10.7]	98.6 [97.8-99.1]	< 0.001	0.446
Cross-sectional	10.1 [0-33.5]	NA	2	482	6.5 [4.2–10.2]	97.7 [94.3-99]	< 0.001	NA
Low risk of bias	30.4 [13.2–51]	NA	2	1332	6.1 [3.8–9.7]	97.3 [93.2-98.9]	< 0.001	NA
Apparently healthy individuals								
Overall	12.6 [4-24.8]	[0-64.7]	7	3452	8.9 [7.6–10.4]	98.7 [98.3-99.1]	< 0.001	0.752
Cross-sectional	12.8 [3.9–25.8]	[0-69.5]	6	3435	9.7 [8.3–11.4]	98.9 [98.5-99.2]	< 0.001	0.684
Low risk of bias	11.5 [0.4–34.3]	[0-100]	3	1946	12.6 [10.2– 15.5]	99.4 [99–99.6]	< 0.001	0.295
Healthcare workers								
Overall	0 [0-0.7]	NA	2	564	1	0	0.823	NA
Cross-sectional	1.1 [0.4–2.2]	NA	1	552	NA	NA	1	NA
Low risk of bias	1.1 [0.4–2.2]	NA	1	552	NA	NA	1	NA
Past contact								
Febrile patients								
Overall	19.1 [10.8–29.1]	[0-60]	10	1441	4.2 [3.4–5.2]	94.3 [91.5-96.2]	< 0.001	0.486
Cross-sectional	19.9 [9.6-32.6]	[0-69.5]	7	1291	5.1 [4.1-6.3]	96.1 [93.9–97.5]	< 0.001	0.57
Low risk of bias	3.3 [0-13.4]	NA	2	326	1.9 [1-4.1]	73.2 [0-94]	0.053	NA
LASV suspected cases								
Overall	17.7 [3.1-40.6]	[0-98.6]	5	1798	10.6 [9–12.6]	99.1 [98.8-99.4]	< 0.001	0.554
Cross-sectional	17.7 [3.1-40.6]	[0-98.6]	5	1798	10.6 [9–12.6]	99.1 [98.8-99.4]	< 0.001	0.554
Low risk of bias	7 [0-25.8]	NA	2	762	7.3 [4.8–11.1]	98.1 [95.6–99.2]	< 0.001	NA
Patient with any illness								
Overall	16.9 [0-68]	[0-100]	3	135	5.8 [4.1-8.2]	97 [94.1–98.5]	< 0.001	< 0.001
Cross-sectional	16.9 [0-68]	[0-100]	3	135	5.8 [4.1-8.2]	97 [94.1–98.5]	< 0.001	< 0.001
High risk individuals								
Overall	8.6 [0.2-25.4]	[0-100]	3	500	4.8 [3.2-7.1]	95.6 [90.3-98]	< 0.001	0.78
Cross-sectional	8.6 [0.2-25.4]	[0-100]	3	500	4.8 [3.2-7.1]	95.6 [90.3-98]	< 0.001	0.78

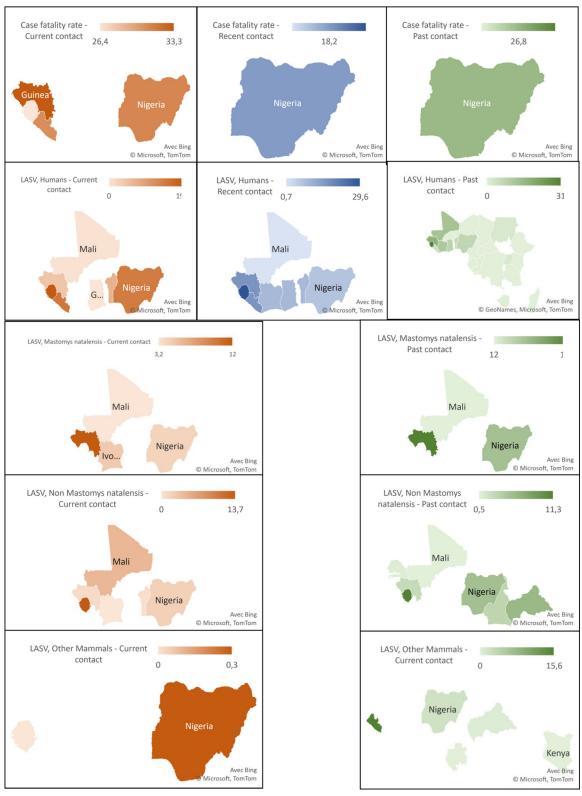
	Prevalence. % (95%CI)	95% Prediction interval	N Studies	N Participants	¶H (95%CI)	§I ² (95%CI)	P heterogeneity	P Egger test
Low risk of bias	26.1 [19.6-33.2]	NA	1	161	NA	NA	1	NA
Healthcare workers								
Overall	6.8 [4.2–10.1]	[0-23]	15	6355	4.2 [3.6-5]	94.4 [92.3–96]	< 0.001	0.922
Cross-sectional	8.3 [5.3-11.9]	[0.3-24.7]	11	5940	4.5 [3.7-5.4]	95 [92.7–96.5]	< 0.001	0.728
Low risk of bias	12.3 [9.7–15.2]	NA	1	552	NA	NA	1	NA
LASV Positive case contact								
Overall	4.2 [1.2-8.3]	[0-24.1]	4	295	1.3 [1-2.3]	44 [0-81.3]	0.147	0.998
Apparently healthy individuals								
Overall	3.8 [1.5–7]	[0-38.8]	48	38959	12.7 [12.2– 13.3]	99.4 [99.3-99.4]	< 0.001	0.424
Cross-sectional	3.4 [1.2–6.5]	[0-37.4]	46	37989	12.7 [12.2– 13.3]	99.4 [99.3–99.4]	< 0.001	0.377
Low risk of bias	7.5 [0.8–20]	[0-68.1]	6	5446	13.6 [12–15.5]	99.5 [99.3–99.6]	< 0.001	0.327
Apparently healthy individuals, Patient with any illness								
Overall	0.6 [0-1.7]	[0-9]	4	3164	2.4 [1.5-3.9]	83.1 [56.9-93.4]	< 0.001	0.466
Cross-sectional	0.3 [0-1.1]	[0-33.1]	3	2864	2.1 [1.2–3.9]	78.4 [30.4–93.3]	0.01	0.851
Patient with illnesses other than fever diseases								
Overall	0.3 [0-2.8]	[0-80.8]	3	660	1.9 [1-3.4]	70.8 [0.6–91.4]	0.032	0.717
Cross-sectional	0.3 [0-2.8]	[0-80.8]	3	660	1.9 [1-3.4]	70.8 [0.6-91.4]	0.032	0.717
Low risk of bias	0 [0-0.3]	NA	2	202	1	0	0.537	NA
LASV prevalence in rodents								
Current contact								
Hylomyscus pamfi								
Overall	41.7 [14.9–71]	NA	1	12	NA	NA	1	NA
Cross-sectional	41.7 [14.9–71]	NA	1	12	NA	NA	1	NA
Mastomys species								
Overall	12.8 [9.5–16.6]	[4.3-24.9]	7	939	1.6 [1-2.4]	59.3 [6.4-82.3]	0.022	0.124
Cross-sectional	12.8 [9.5–16.6]	[4.3-24.9]	7	939	1.6 [1-2.4]	59.3 [6.4-82.3]	0.022	0.124
Mus baoulei								
Overall	7 [0-39.1]	NA	2	29	2.1 [1-4.3]	76.5 [0-94.7]	0.039	NA
Cross-sectional	7 [0-39.1]	NA	2	29	2.1 [1-4.3]	76.5 [0–94.7]	0.039	NA
Mastomys natalensis								
Overall	5.5 [2.1-10.1]	[0-28.2]	10	4573	5.6 [4.7-6.6]	96.8 [95.4-97.7]	< 0.001	0.942
Cross-sectional	5.5 [2.1-10.1]	[0-28.2]	10	4573	5.6 [4.7-6.6]	96.8 [95.4-97.7]	< 0.001	0.942
Mastomys erythroleucus								
Overall	3 [0-10.3]	[0-42.4]	5	462	2.8 [1.9-4.1]	87.1 [72.3-94]	< 0.001	0.059
Cross-sectional	3 [0-10.3]	[0-42.4]	5	462	2.8 [1.9-4.1]	87.1 [72.3–94]	< 0.001	0.059
Mus (Nannomys) species								
Overall	1.2 [0-3.6]	NA	1	165	NA	NA	1	NA
Cross-sectional	1.2 [0-3.6]	NA	1	165	NA	NA	1	NA
*Negative Rodents								
Overall	0 [0-0]	[0-0]	27	1316	1 [1-1]	0 [0-0]	1	< 0.00
Cross-sectional	0 [0-0]	[0-0]	27	1316	1 [1-1]	0 [0-0]	1	< 0.00
Unspecified rodents								
Overall	4.1 [1.5-7.8]	[0-28.1]	21	4826	4.7 [4.1-5.3]	95.4 [94.1-96.5]	< 0.001	0.969

	Prevalence. % (95%CI)	95% Prediction interval	N Studies	N Participants	¶H (95%CI)	§I ² (95%CI)	P heterogeneity	P Eggen test
Cross-sectional	4.2 [1.4-8]	[0-28.7]	20	4760	4.8 [4.2-5.5]	95.7 [94.4-96.7]	< 0.001	0.976
Past contact								
Mus baoulei								
Overall	33.3 [11.3-59.5]	NA	1	15	NA	NA	1	NA
Cross-sectional	33.3 [11.3-59.5]	NA	1	15	NA	NA	1	NA
Mastomys natalensis								
Overall	12.8 [6.2-21.3]	[0-100]	3	1380	4.2 [2.7-6.4]	94.3 [86.8–97.6]	< 0.001	0.979
Cross-sectional	12.8 [6.2-21.3]	[0-100]	3	1380	4.2 [2.7-6.4]	94.3 [86.8–97.6]	< 0.001	0.979
Lemniscomys striatus								
Overall	12.5 [2.9-26.6]	NA	1	32	NA	NA	1	NA
Cross-sectional	12.5 [2.9-26.6]	NA	1	32	NA	NA	1	NA
Mastomys erythroleucus								
Overall	7.2 [0.2-21.5]	NA	2	367	3.8 [2.1-6.9]	93 [76.7–97.9]	< 0.001	NA
Cross-sectional	7.2 [0.2–21.5]	NA	2	367	3.8 [2.1-6.9]	93 [76.7–97.9]	< 0.001	NA
Mus minutoides								
Overall	6.6 [1.1–15]	NA	2	59	1	0	0.872	NA
Cross-sectional	6.6 [1.1-15]	NA	2	59	1	0	0.872	NA
Praomys daltoni								
Overall	3.3 [1.5-5.7]	NA	2	299	1	0	0.818	NA
Cross-sectional	3.3 [1.5-5.7]	NA	2	299	1	0	0.818	NA
Rattus rattus								
Overall	2.2 [0-20]	NA	2	92	2.3 [1.1-4.8]	81.7 [22.3-95.7]	0.02	NA
Cross-sectional	2.2 [0-20]	NA	2	92	2.3 [1.1-4.8]	81.7 [22.3-95.7]	0.02	NA
Praomys rostratus								
Overall	1.2 [0-3.7]	NA	1	163	NA	NA	1	NA
Cross-sectional	1.2 [0-3.7]	NA	1	163	NA	NA	1	NA
#Negative rondents								
Overall	0 [0-0.3]	[0-0.5]	10	279	1 [1-1]	0 [0-0]	0.999	< 0.00
Cross-sectional	0 [0-0.3]	[0-0.5]	10	279	1 [1-1]	0 [0-0]	0.999	< 0.00
Unspecified rodents								
Overall	4.4 [1.1-9.5]	[0-39]	18	6883	7.9 [7.2-8.8]	98.4 [98.1-98.7]	< 0.001	0.266
Cross-sectional	4.4 [1.1-9.5]	[0-39]	18	6883	7.9 [7.2-8.8]	98.4 [98.1-98.7]	< 0.001	0.266
Other Mammals								
Current contact								
Primates								
Overall	1.6 [0-6.8]	NA	1	62	NA	NA	1	NA
Cross-sectional	1.6 [0-6.8]	NA	1	62	NA	NA	1	NA
Chiroptera								
Overall	0 [0-2.3]	NA	1	75	NA	NA	1	NA
Cross-sectional	0 [0-2.3]	NA	1	75	NA	NA	1	NA
Eulipotyphla								
Overall	0 [0-0.3]	NA	2	223	1	0	0.542	NA
Cross-sectional	0 [0-0.3]	NA	2	223	1	0	0.542	NA
Recent contact								
Primates								
Overall	0 [0-2.8]	NA	1	62	NA	NA	1	NA

	Prevalence. % (95%CI)	95% Prediction interval	N Studies	N Participants	¶H (95%CI)	§I ² (95%CI)	P heterogeneity	P Egger test
Cross-sectional	0 [0-2.8]	NA	1	62	NA	NA	1	NA
Past contact								
Artiodactyla								
Overall	0 [0-0.8]	[0-26.3]	3	172	1 [1-1.2]	0 [0-24.6]	0.871	0.001
Cross-sectional	0 [0-0.8]	[0-26.3]	3	172	1 [1-1.2]	0 [0-24.6]	0.871	0.001
Carnivora								
Overall	10.1 [2.8-20.9]	NA	2	204	2 [1-4.2]	75.2 [0-94.4]	0.045	NA
Cross-sectional	10.1 [2.8-20.9]	NA	2	204	2 [1-4.2]	75.2 [0-94.4]	0.045	NA
Rodentia								
Overall	0 [0-2.8]	NA	1	60	NA	NA	1	NA
Cross-sectional	0 [0-2.8]	NA	1	60	NA	NA	1	NA
Primates								
Overall	1.1 [0-8.9]	[0-100]	3	560	2.9 [1.7-4.9]	88.2 [67.1-95.8]	< 0.001	0.478
Cross-sectional	1.1 [0-8.9]	[0-100]	3	560	2.9 [1.7-4.9]	88.2 [67.1-95.8]	< 0.001	0.478
Chiroptera								
Overall	0 [0-6.1]	NA	1	28	NA	NA	1	NA
Cross-sectional	0 [0-6.1]	NA	1	28	NA	NA	1	NA
Eulipotyphla								
Overall	0.5 [0-2.1]	NA	1	199	NA	NA	1	NA
Cross-sectional	0.5 [0-2.1]	NA	1	199	NA	NA	1	NA

CI: confidence interval; N: Number; 95% CI: 95% Confidence Interval; NA: not applicable.

 \P H estimates the extent of heterogeneity, a value of H = 1 indicates lack of evidence on heterogeneity of effects and a value of H >1 indicates a potential heterogeneity of effects.


s: 1² describes the proportion of total variation in study estimates that is due to heterogeneity, a value > 50% indicates presence of heterogeneity. All these estimates were obtained using random effect meta-analysis

https://doi.org/10.1371/journal.pntd.0008589.t001

community-based studies showed the highest prevalences. In febrile patients, the final metaregression model explained 54.1% heterogeneity for the seroprevalence of past LASV infection. Non-probabilistic and West Africa studies showed the highest prevalences. In LASV suspected cases, the final meta-regression model explained 99.0% heterogeneity for the seroprevalence of past LASV infection and studies conducted in urban setting showed the highest prevalences. In patients with any disease, the final meta-regression model explained 100% heterogeneity for the seroprevalence of past LASV infection and studies conducted in hospitals showed the highest prevalences. In patients with diseases other than fever, the final meta-regression model explained 100% heterogeneity for the seroprevalence of past LASV infection and studies conducted in West Africa showed the highest prevalences.

The LASV prevalence in current infections in Mastomys species was statistically higher in West African countries (p < 0.001) including Guinea and Sierra Leone and in spleen samples (p = 0.004). In the Mastomys species, the final meta-regression model explained 100% heterogeneity for the prevalence of the current LASV infection and the studies conducted in Sierra Leone presented the highest prevalences.

The LASV seroprevalence in past infections in Mastomys natalensis was statistically higher in Nigeria (p = 0.001). In Mastomys natalensis, the final meta-regression model explained 82.0% heterogeneity for the prevalence of the current LASV infection and the studies conducted in Guinea showed the highest prevalences.

Fig 6. Lassa virus case fatality rate in humans and Lassa virus prevalence in humans, rodents, and other mammals in sub-Saharan Africa, 1970–2020. LASV: Lassa virus prevalence; Past contacts denote articles with unspecified antibodies or IgG positive subjects. Recent contacts denote articles with IgM or IgM and IgG positive subjects. Current contacts denote studies with antigen, RNA, virus positives or subjects with an increase in antibody titer between acute and convalescent samples. Current, recent and past contacts are

indicated by shades of red, blue and green respectively. Lines 1, 2, 3, 4 and 5 indicate the LASV case fatality rate in humans, the prevalence of LASV in humans, *Mastomys natalensis*, non-*Mastomys natalensis* rodents and other mammals respectively.

https://doi.org/10.1371/journal.pntd.0008589.g006

Discussion

Our study presents the most comprehensive records to date on the LASV human case fatality rate and LASV prevalence in humans, rodents, and other mammals. We estimated an overall LASV case fatality rate of around 30% and a LASV prevalence around 10%, 3%, and 1% in humans, rodents, and other mammals respectively. The prevalence of LASV infections was higher in West African region, in LASV suspect cases, febrile patients, patients with haemor-rhagic symptoms, healthcare workers, apparently healthy patients, and patient with any diseases. In addition to *Mastomys natalensis*, the main reservoir of LASV [137], this study clarifies the LASV current contact estimated mainly by RT-PCR and culture assays in *Hylomyscus pamfi, Mus baoulei, Mastomys erythroleucus*, and *Mus (Nannomys) species*. In the present work, the primates have shown evidence of LASV antigen and antibodies. Carnivora and Eulipotyphla have shown evidence of past contact with LASV through antibody detection.

This relatively high overall case fatality rate of around 30% due to LASV infections is surprising in this era of availability of antivirals such as ribavirin which have been shown to be effective in the early phase of LASV infections in individuals with of elevated aspartate aminotransferase [138]. The case fatality rate of 27.1% observed in pregnant women in this study is comparable to that of a recent meta-analysis which also included this same population [139]. This meta-analysis had however included studies with pregnant women with suspected or probable LASV infections [140,141]. Patients who died with past LASV infections presented in this work may be those IgM and/or IgG positive in the early stage of infection rather than sequelae of mortality from an old infection. Indeed, it has been shown that IgM is produced from the 4th day and rarely persists beyond one month in LASV infections [142-144]. Immunoglobulin G appear around the 8th day after the onset of symptoms and persist longer. Although reported in only two studies, compared to other subgroups, it was surprising to record a relatively low case fatality rate of 13,2% among participants with haemorrhagic symptoms, since bleeding is known as a predictor of bad outcomes in viral haemorrhagic symptoms [145]. This could be explained by several factors including the management and the treatment delay implemented in these studies with patients with haemorrhagic symptoms.

The various stakeholders in human and animal health should make concerted efforts to fight LASV. This fight should not be limited to healthcare professionals, but should also include funding agencies, politicians, citizens and all relevant stakeholders. This study shows that studies using direct methods of detecting LASV have been conducted only in West Africa. Thus, additional research using direct detection assays for current LASV infections are needed outside West Africa where past and recent LASV infections have been reported. On human side, Lassa fever should be taken into account in the differential diagnosis of febrile illnesses across West Africa in addition to the common febrile illnesses such as malaria, typhoid fever and dengue. This study highlights the need to educate people in SSA about the signs and symptoms of Lassa fever and to keep dwellings safe from rodents by creating adequate food storage spaces. All LASV infections in healthcare workers could have been reduced or avoided through actions such as 1) educating healthcare workers about Lassa fever guidelines and the risk of infection during their activity, 2) strengthening the use of personal protective equipment; and 3) training in the adequate use of personal protective equipment. Findings from this study point out the need to establish LASV laboratory-based surveillance programs across West Africa. The construction of well-equipped laboratories and research centre would help to

quickly diagnose and treat Lassa fever. To this end, the development of a simple rapid diagnostic test would be of great added value for the diagnosis of patients. Additional research on viral factors (viral load, genotype), biomarkers, clinical and socio-demographic factors associated with mortality from the LASV is necessary. We identified a single study with LASV prevalence record among pregnant women. This suggests an urgent need to provide more data on the proportion of pregnant women with LASV infections. This study clearly demonstrates that LASV is a highly lethal pathogen, so the paradox of infections recorded in apparently asymptomatic individuals remains to be elucidated in particular their role in the transmission chain of LASV infection.

The results of this study suggest that apart from *Mastomys natalensis*, other rodent species may be involved in the LASV transmission. Most IgG-positive results detected in small mammals outside the LASV-endemic zone beyond West Africa during this study are probably signatures of the several arenaviruses other than Lassa that continue to be described across sub Saharan Africa of late. Nevertheless, these results are equally crucial for portrayal in a manuscript like this; as these arenaviruses are related by varying degrees to LASV and their epidemiological significance needs to be further understood. An effort should be directed towards the sequencing and phylogenetic characterization of the LASV strains identified. The promotion of research on the development of vaccines in rodents or other mammals sensitive to LASV which can subsequently be adapted for human vaccination is necessary. There should be a recognition of LASV surveillance in rodents and other mammals to better control the risk of human infection.

Most of the included studies used the Josiah strain as an antigen for the detection of antibodies in serological methods. Due to the great variability of LASV, however, it may have antibodies that do not recognize the Josiah antigen. This suggests the possibility of having false negative results in some included studies. There is a high probability of cross-reactions between Arenavirus species [146,147]. Although plaque reduction neutralisation test which is the most specific assay in serological detection has been used to assess result in 19 included studies, the potential cross reactions associated with other serological methods suggests the possibility of false positive results in some studies included. Another important weakness to highlight in this study is the absence or variability in the case definitions of LASV infections in the included studies.

These results regarding the vector role of LASV for non-*Mastomys natalensis* rodents should be interpreted with caution, because these infections could rather reflect a spillover infection or a misclassification of rodents due to the same number of chromosomes in certain species [7]. It should also be noted that all of the studies on current LASV detected in non-Mastomys rodents have used either RT-PCR, culture or Antigen detection by ELISA. Regarding the detection of RNA by RT-PCR, none of these studies sequenced the viruses detected and could therefore be subject to false positive results [146,147]. The only study that isolated LASV by culture raised the possibility of an incorrect classification of rodent species [124]. Antibodies suggesting past contacts with LASV in *Mastomys natalensis* and non-*Mastomys natalensis* rodents have been reported in the present study. These antibodies could, however, be acquired transplacentally or by lactation in young rodents [148]. The ages of trapped rodents were unfortunately not reported in most included studies.

Conclusions

Despite its limitations, this systematic review provides a comprehensive overview of the case fatality rate due to LASV in humans and the prevalence of LASV in humans, rodents and other mammals. We carried out a categorization of meta-analyses according to the different

categories of population and target of the LASV sought. Meta-analyses suggest a relatively high case fatality rate and a prevalence of LASV infection influenced by geographic locations. The results of the study suggest that LASV is widespread in West Africa. It also appears that apart from *Mastomys natalensis*, other rodents could serve as reservoirs for LASV.

Supporting information

S1 Table. Preferred reporting items for systematic reviews and meta-analyses checklist. (PDF)

S2 Table. Search strategy in Medline (Pubmed). (PDF)

S3 Table. Items for risk of bias assessment. (PDF)

S4 Table. Main reasons of exclusion of eligible studies. (PDF)

S5 Table. Risk of bias assessment. (PDF)

S6 Table. Characteristics of included studies. (PDF)

S7 Table. Individual characteristics of included studies. (PDF)

S8 Table. Subgroup of human case fatality rate and prevalence of Lassa virus in humans, rodents, and other animals in sub-Saharan Africa. (PDF)

S9 Table. Univariable and multivariable meta-regression analysis on the human case fatality rate and prevalence of Lassa virus in humans, rodents, and other animals. (PDF)

S1 Fig. Prevalence of Lassa virus infections in humans in sub-Saharan Africa. (PDF)

S2 Fig. Prevalence of Lassa virus infections in rodents in sub-Saharan Africa. (PDF)

S3 Fig. Funnel plot for publication for Lassa virus case fatality rate in humans. (PDF)

S4 Fig. Funnel plot for publication for Lassa virus prevalence in humans. (PDF)

S5 Fig. Funnel plot for publication for Lassa virus prevalence in rodents. (PDF)

S6 Fig. Funnel plot for publication for Lassa virus prevalence in other mammals. (PDF)

Author Contributions

Conceptualization: Sebastien Kenmoe, Richard Njouom.

Data curation: Sebastien Kenmoe, Serges Tchatchouang, Jean Thierry Ebogo-Belobo, Aude Christelle Ka'e, Gadji Mahamat, Raïssa Estelle Guiamdjo Simo, Arnol Bowo-Ngandji, Cynthia Paola Demeni Emoh, Emmanuel Che, Dimitri Tchami Ngongang, Marie Amougou-Atsama, Nathalie Diane Nzukui, Chris Andre Mbongue Mikangue, Donatien Serge Mbaga, Sorel Kenfack, Sandrine Rachel Kingue Bebey, Nathalie Amvongo Adjia, Atembeh Noura Efietngab, Hervé Raoul Tazokong, Abdou Fatawou Modiyinji, Cyprien Kengne-Nde.

Formal analysis: Sebastien Kenmoe, Cyprien Kengne-Nde.

Methodology: Sebastien Kenmoe, Serges Tchatchouang, Jean Thierry Ebogo-Belobo, Aude Christelle Ka'e, Gadji Mahamat, Raïssa Estelle Guiamdjo Simo, Arnol Bowo-Ngandji, Cynthia Paola Demeni Emoh, Emmanuel Che, Dimitri Tchami Ngongang, Marie Amougou-Atsama, Nathalie Diane Nzukui, Chris Andre Mbongue Mikangue, Donatien Serge Mbaga, Sorel Kenfack, Sandrine Rachel Kingue Bebey, Nathalie Amvongo Adjia, Atembeh Noura Efietngab, Hervé Raoul Tazokong, Abdou Fatawou Modiyinji, Cyprien Kengne-Nde, Serge Alain Sadeuh-Mba.

Project administration: Sebastien Kenmoe, Richard Njouom.

Supervision: Sebastien Kenmoe, Richard Njouom.

Validation: Sebastien Kenmoe.

Writing - original draft: Sebastien Kenmoe.

Writing – review & editing: Sebastien Kenmoe, Serges Tchatchouang, Jean Thierry Ebogo-Belobo, Aude Christelle Ka'e, Gadji Mahamat, Raïssa Estelle Guiamdjo Simo, Arnol Bowo-Ngandji, Cynthia Paola Demeni Emoh, Emmanuel Che, Dimitri Tchami Ngongang, Marie Amougou-Atsama, Nathalie Diane Nzukui, Chris Andre Mbongue Mikangue, Donatien Serge Mbaga, Sorel Kenfack, Sandrine Rachel Kingue Bebey, Nathalie Amvongo Adjia, Atembeh Noura Efietngab, Hervé Raoul Tazokong, Abdou Fatawou Modiyinji, Cyprien Kengne-Nde, Serge Alain Sadeuh-Mba, Richard Njouom.

References

- 1. OIE. OneHealth: OIE—World Organisation for Animal Health. [cited 13 Jun 2020]. Available: https:// www.oie.int/en/for-the-media/onehealth/
- Kouadio L, Nowak K, Akoua-Koffi C, Weiss S, Allali BK, Witkowski PT, et al. Lassa Virus in Multimammate Rats, Côte d'Ivoire, 2013. Emerg Infect Dis. 2015; 21: 1481–1483. https://doi.org/10.3201/eid2108.150312 PMID: 26196447
- Lecompte E, Fichet-Calvet E, Daffis S, Koulémou K, Sylla O, Kourouma F, et al. Mastomys natalensis and Lassa Fever, West Africa. Emerg Infect Dis. 2006; 12: 1971–1974. <u>https://doi.org/10.3201/</u> eid1212.060812 PMID: 17326956
- Monath TP, Newhouse VF, Kemp GE, Setzer HW, Cacciapuoti A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science. 1974; 185: 263–265. https://doi. org/10.1126/science.185.4147.263 PMID: 4833828
- Mylne AQN, Pigott DM, Longbottom J, Shearer F, Duda KA, Messina JP, et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg. 2015; 109: 483–492. <u>https://doi.org/10. 1093/trstmh/trv047</u> PMID: 26085474
- 6. Olayemi A, Cadar D, Magassouba N, Obadare A, Kourouma F, Oyeyiola A, et al. New Hosts of The Lassa Virus. Sci Rep. 2016; 6: 25280. https://doi.org/10.1038/srep25280 PMID: 27140942
- Granjon L, Duplantier J-M, Catalan J, Britton-Davidian J. Systematics of the genus Mastomys (Thomas, 1915) (Rodentia: Muridae): a review. Belgian Journal of Zoology. 1997; 127: 7–18.
- Fisher-Hoch SP, Tomori O, Nasidi A, Perez-Oronoz GI, Fakile Y, Hutwagner L, et al. Review of cases of nosocomial Lassa fever in Nigeria: the high price of poor medical practice. BMJ. 1995; 311: 857– 859. https://doi.org/10.1136/bmj.311.7009.857 PMID: 7580496

- Monath TP, Mertens PE, Patton R, Moser CR, Baum JJ, Pinneo L, et al. A hospital epidemic of Lassa fever in Zorzor, Liberia, March-April 1972. Am J Trop Med Hyg. 1973; 22: 773–779. <u>https://doi.org/10.4269/ajtmh.1973.22.773</u> PMID: 4745236
- Frame JD, Jr JMB, Gocke DJ, Troup JM. Lassa Fever, a New Virus Disease of Man from West Africa. The American Journal of Tropical Medicine and Hygiene. 1970; 19: 670–676. https://doi.org/10.4269/ ajtmh.1970.19.670 PMID: 4246571
- McCormick JB. Lassa Fever. Emergence and Control of Rodent-Borne Viral Diseases. Elsevier; 1999. pp. 177–195.
- Okwor TJ, Ndu AC, Okeke TA, Aguwa EN, Arinze-Onyia SU, Chinawa A, et al. A review of Lassa fever outbreaks in Nigeria From 1969 to 2017: Epidemiologic profile, determinants and public health response. Nigerian Journal of Medicine. 2018; 27: 219–233–233.
- Kofman A, Choi MJ, Rollin PE. Lassa Fever in Travelers from West Africa, 1969–2016. Emerg Infect Dis. 2019; 25: 236–239. https://doi.org/10.3201/eid2502.180836 PMID: 30666924
- Mehand MS, Al-Shorbaji F, Millett P, Murgue B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018; 159: 63– 67. https://doi.org/10.1016/j.antiviral.2018.09.009 PMID: 30261226
- Mazzola LT, Kelly-Cirino C. Diagnostics for Lassa fever virus: a genetically diverse pathogen found in low-resource settings. BMJ Global Health. 2019; 4: e001116. <u>https://doi.org/10.1136/bmjgh-2018-001116</u> PMID: 30899575
- McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, et al. Lassa fever. Effective therapy with ribavirin. N Engl J Med. 1986; 314: 20–26. <u>https://doi.org/10.1056/</u> NEJM198601023140104 PMID: 3940312
- Takah NF, Brangel P, Shrestha P, Peeling R. Sensitivity and specificity of diagnostic tests for Lassa fever: a systematic review. BMC Infect Dis. 2019; 19: 647. <u>https://doi.org/10.1186/s12879-019-4242-6</u> PMID: 31324229
- Mateo M, Reynard S, Carnec X, Journeaux A, Baillet N, Schaeffer J, et al. Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Sci Transl Med. 2019;11. https://doi.org/10.1126/scitranslmed.aaw3163 PMID: 31578242
- Salami K, Gouglas D, Schmaljohn C, Saville M, Tornieporth N. A review of Lassa fever vaccine candidates. Curr Opin Virol. 2019; 37: 105–111. https://doi.org/10.1016/j.coviro.2019.07.006 PMID: 31472333
- Videla OE, Urzua JO. The benefits of incorporating the One Health concept into the organisation of Veterinary Services. Rev—Off Int Epizoot. 2014; 33: 401–406, 393–399. PMID: 25707170
- Sigfrid L, Moore C, Salam AP, Maayan N, Hamel C, Garritty C, et al. A rapid research needs appraisal methodology to identify evidence gaps to inform clinical research priorities in response to outbreaks results from the Lassa fever pilot. BMC Med. 2019;17. <u>https://doi.org/10.1186/s12916-019-1250-8</u> PMID: 30764819
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6. <u>https://doi.org/10.1371/journal.pmed.</u> 1000097 PMID: 19621072
- 23. Wilson DE, Reeder DM. Mammal Species of the World. A Taxonomic and Geographic Reference. 3rd ed. Johns Hopkins University Press; 2005. Available: http://www.press.jhu.edu
- 24. United Nations Statistics Division—Millennium Indicators. [cited 6 Mar 2020]. Available: https:// unstats.un.org/unsd/mi/africa.htm
- Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012; 65: 934– 939. https://doi.org/10.1016/j.jclinepi.2011.11.014 PMID: 22742910
- 26. Schwarzer G. meta: An R package for meta-analysis. R News. 2007; 7: 40-5.
- 27. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017 [cited 28 Sep 2018]. Available: https://www.r-project.org/
- Cochran WG. The Combination of Estimates from Different Experiments. Biometrics. 1954; 10: 101– 129. https://doi.org/10.2307/3001666
- 29. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016; 7: 55–79. https://doi.org/10.1002/jrsm.1164 PMID: 26332144
- Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013; 67: 974–978. https://doi.org/10.1136/jech-2013-203104 PMID: 23963506
- **31.** Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315: 629–634. https://doi.org/10.1136/bmj.315.7109.629 PMID: 9310563

- Noordzij M, Dekker FW, Zoccali C, Jager KJ. Study designs in clinical research. Nephron Clin Pract. 2009; 113: c218–221. https://doi.org/10.1159/000235610 PMID: 19690439
- Agbonlahor DE, Erah A, Agba IM, Oviasogie FE, Ehiaghe AF, Wankasi M, et al. Prevalence of Lassa virus among rodents trapped in three South-South States of Nigeria. J Vector Borne Dis. 2017; 5.
- Akhuemokhan OC, Ewah-Odiase RO, Akpede N, Ehimuan J, Adomeh DI, Odia I, et al. Prevalence of Lassa Virus Disease (LVD) in Nigerian children with fever or fever and convulsions in an endemic area. PLoS Negl Trop Dis. 2017;11. https://doi.org/10.1371/journal.pntd.0005711 PMID: 28671959
- Akoua-Koffi C, Ter Meulen J, Legros D, Akran V, Aïdara M, Nahounou N, et al. [Detection of anti-Lassa antibodies in the Western Forest area of the Ivory Coast]. Med Trop (Mars). 2006; 66: 465–468.
- Arnold RB, Gary GW. A neutralization test survey for Lassa fever activity in Lassa, Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1977; 71: 152–154. <u>https://doi.org/10. 1016/0035-9203(77)90085-2 PMID: 560072</u>
- Asogun DA, Adomeh DI, Ehimuan J, Odia I, Hass M, Gabriel M, et al. Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation. PLoS Negl Trop Dis. 2012;6. https://doi.org/10.1371/journal.pntd.0001839 PMID: 23029594
- Babalola SO, Babatunde JA, Remilekun OM, Amaobichukwu AR, Abiodun AM, Jide I, et al. Lassa virus RNA detection from suspected cases in Nigeria, 2011–2017. Pan Afr Med J. 2019;34. <u>https://doi.org/10.11604/pamj.2019.34.76.16425 PMID: 31819792</u>
- Bajani MD, Tomori O, Rollin PE, Harry TO, Bukbuk ND, Wilson L, et al. A survey for antibodies to Lassa virus among health workers in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1997; 91: 379–381. https://doi.org/10.1016/s0035-9203(97)90247-9 PMID: 9373625
- 40. Baumann J, Knüpfer M, Ouedraogo J, Traoré BY, Heitzer A, Kané B, et al. Lassa and Crimean-Congo Hemorrhagic Fever Viruses, Mali. Emerging Infect Dis. 2019; 25: 999–1002. <u>https://doi.org/10.3201/eid2505.181047</u> PMID: 31002054
- Bausch DG, Demby AH, Coulibaly M, Kanu J, Goba A, Bah A, et al. Lassa fever in Guinea: I. Epidemiology of human disease and clinical observations. Vector Borne Zoonotic Dis. 2001; 1: 269–281. https://doi.org/10.1089/15303660160025903 PMID: 12653127
- Blackburn NK, Searle L, Taylor P. Viral haemorrhagic fever antibodies in Zimbabwe schoolchildren. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982; 76: 803–805. <u>https://doi.org/10.1016/0035-9203(82)90113-4</u> PMID: 6761909
- **43.** Boiro I, Lomonossov NN, Sotsinski VA, Constantinov OK, Tkachenko EA, Inapogui AP, et al. [Clinicoepidemiologic and laboratory research on hemorrhagic fevers in Guinea]. Bull Soc Pathol Exot Filiales. 1987; 80: 607–612. PMID: 3440310
- 44. Bonney JHK, Osei-Kwasi M, Adiku TK, Barnor JS, Amesiya R, Kubio C, et al. Hospital-Based Surveillance for Viral Hemorrhagic Fevers and Hepatitides in Ghana. Kasper M, editor. PLoS Negl Trop Dis. 2013; 7: e2435. https://doi.org/10.1371/journal.pntd.0002435 PMID: 24069490
- 45. Bowen GS, Wulff H, Casals J, Noonan A, Downs WG. Lassa fever in Onitsha, East Central State, Nigeria, in 1974. 1975; 6.
- 46. Branco LM, Grove JN, Boisen ML, Shaffer JG, Goba A, Fullah M, et al. Emerging trends in Lassa fever: redefining the role of immunoglobulin M and inflammation in diagnosing acute infection. Virol J. 2011; 8: 478. https://doi.org/10.1186/1743-422X-8-478 PMID: 22023795
- Buba MI, Dalhat MM, Nguku PM, Waziri N, Mohammad JO, Bomoi IM, et al. Mortality Among Confirmed Lassa Fever Cases During the 2015–2016 Outbreak in Nigeria. Am J Public Health. 2018; 108: 262–264. https://doi.org/10.2105/AJPH.2017.304186 PMID: 29267063
- 48. Bukbuk DN, Fukushi S, Tani H, Yoshikawa T, Taniguchi S, Iha K, et al. Development and validation of serological assays for viral hemorrhagic fevers and determination of the prevalence of Rift Valley fever in Borno State, Nigeria. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2014; 108: 768–773. https://doi.org/10.1093/trstmh/tru163 PMID: 25344695
- 49. Carey DE, Kemp GE, White HA, Pinneo L, Addy RF, Fom ALMD, et al. Lassa fever Epidemiological aspects of the 1970 epidemic, Jos, Nigeria. Trans R Soc Trop Med Hyg. 1972; 66: 402–408. <u>https://doi.org/10.1016/0035-9203(72)90271-4</u> PMID: 5046380
- Clements TL, Rossi CA, Irish AK, Kibuuka H, Eller LA, Robb ML, et al. Chikungunya and O'nyongnyong Viruses in Uganda: Implications for Diagnostics. Open Forum Infectious Diseases. 2019;6. https://doi.org/10.1093/ofid/ofz001 PMID: 31660384
- Coulibaly-N'Golo D, Allali B, Rieger T, Akoua-Koffi C. Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: Implications for Evolution of Arenaviruses in Africa. PLoS ONE. 2011; 6: 9.
- Dan-Nwafor CC, Ipadeola O, Smout E, Ilori E, Adeyemo A, Umeokonkwo C, et al. A cluster of nosocomial Lassa fever cases in a tertiary health facility in Nigeria: Description and lessons learned, 2018.

International Journal of Infectious Diseases. 2019; 83: 88–94. <u>https://doi.org/10.1016/j.ijid.2019.03</u>. 030 PMID: 30930184

- **53.** Dahmane A, van Griensven J, Van Herp M, Van den Bergh R, Nzomukunda Y, Prior J, et al. Constraints in the diagnosis and treatment of Lassa Fever and the effect on mortality in hospitalized children and women with obstetric conditions in a rural district hospital in Sierra Leone. Trans R Soc Trop Med Hyg. 2014; 108: 126–132. https://doi.org/10.1093/trstmh/tru009 PMID: 24535150
- 54. Demartini JC, Green DE, Monath TP. Lassa virus infection in Mastomys natalensis in Sierra Leone. 1975; 12.
- 55. Demby AH, Inapogui A, Kargbo K, Koninga J, Kourouma K, Kanu J, et al. Lassa fever in Guinea: II. Distribution and prevalence of Lassa virus infection in small mammals. Vector Borne Zoonotic Dis. 2001; 1: 283–297. https://doi.org/10.1089/15303660160025912 PMID: 12653128
- Demby AH, Chamberlain J, Brown DW, Clegg CS. Early diagnosis of Lassa fever by reverse transcription-PCR. Journal of Clinical Microbiology. 1994; 32: 2898–2903. <u>https://doi.org/10.1128/JCM.32.12</u>. 2898-2903.1994 PMID: 7883875
- Ehichioya DU, Asogun DA, Ehimuan J, Okokhere PO, Pahlmann M, Ölschläger S, et al. Hospitalbased surveillance for Lassa fever in Edo State, Nigeria, 2005–2008: Lassa fever in Edo State, Nigeria. Tropical Medicine & International Health. 2012; 17: 1001–1004. <u>https://doi.org/10.1111/j.1365-3156.2012.03010.x</u> PMID: 22594713
- Emmerich P, Günther S, Schmitz H. Strain-specific antibody response to Lassa virus in the local population of west Africa. Journal of Clinical Virology. 2008; 42: 40–44. <u>https://doi.org/10.1016/j.jcv.2007</u>. 11.019 PMID: 18164653
- Emmerich P, Thome-Bolduan C, Drosten C, Gunther S, Ban E, Sawinsky I, et al. Reverse ELISA for IgG and IgM antibodies to detect Lassa virus infections in Africa. Journal of Clinical Virology. 2006; 37: 277–281. https://doi.org/10.1016/j.jcv.2006.08.015 PMID: 16996789
- Fabiyi A, Tomori O, Pinneo P. Lassa fever antibodies in hospital personnel in the Plateau State of Nigeria. Niger Med J. 1979; 9: 23–25. PMID: 463337
- 61. Fabiyi A. Use of the complement fixation (CF) test in Lassa fever surveillance. 1975; 4.
- 62. Fair J, Jentes E, Inapogui A, Kourouma K, Goba A, Bah A, et al. Lassa Virus-Infected Rodents in Refugee Camps in Guinea: A Looming Threat to Public Health in a Politically Unstable Region. Vector-Borne and Zoonotic Diseases. 2007; 7: 167–171. https://doi.org/10.1089/vbz.2006.0581 PMID: 17627434
- Fichet-Calvet E, Becker-Ziaja B, Koivogui L, Günther S. Lassa Serology in Natural Populations of Rodents and Horizontal Transmission. Vector-Borne and Zoonotic Diseases. 2014; 14: 665–674. https://doi.org/10.1089/vbz.2013.1484 PMID: 25229705
- 64. Fichet-Calvet E, Lecompte E, Koivogui L, Soropogui B, Doré A, Kourouma F, et al. Fluctuation of Abundance and Lassa Virus Prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne and Zoonotic Diseases. 2007; 7: 119–128. https://doi.org/10.1089/vbz.2006.0520 PMID: 17627428
- Fisher-Hoch S, McCormick JB, Sasso D, Craven RB. Hematologic dysfunction in Lassa fever. J Med Virol. 1988; 26: 127–135. https://doi.org/10.1002/jmv.1890260204 PMID: 3183637
- 66. Frame JD, Jahrling PB, Yalley-Ogunro JE, Monson MH. Endemic Lassa fever in Liberia. II. Serological and virological findings in hospital patients. Trans R Soc Trop Med Hyg. 1984; 78: 656–660. <u>https://doi.org/10.1016/0035-9203(84)90232-3 PMID: 6390808</u>
- **67.** Frame JD, Casals J, Dennis EA. Lassa virus antibodies in hospital personnel in western Liberia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1979; 73: 219–224. <u>https://doi.org/10.1016/0035-9203(79)90218-9 PMID: 382467</u>
- Georges AJ, Gonzalez JP, Abdul-Wahid S, Saluzzo JF, Meunier DMY, McCormick JB. Antibodies to Lassa and lassa-like viruses in man and mammals in the Central African Republic. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1985; 79: 78–79. <u>https://doi.org/10.1016/0035-9203</u> (85)90242-1 PMID: 2986324
- 69. Gonzalez JP, Josse R, Johnson ED, Merlin M, Georges AJ, Abandja J, et al. Antibody prevalence against haemorrhagic fever viruses in randomized representative central African populations. Research in Virology. 1989; 140: 319–331. https://doi.org/10.1016/s0923-2516(89)80112-8 PMID: 2505350
- 70. Hamblion EL, Raftery P, Wendland A, Dweh E, Williams GS, George RNC, et al. The challenges of detecting and responding to a Lassa fever outbreak in an Ebola-affected setting. International Journal of Infectious Diseases. 2018; 66: 65–73. https://doi.org/10.1016/j.ijid.2017.11.007 PMID: 29138016
- Haun BK, Kamara V, Dweh AS, Garalde-Machida K, Forkay SSE, Takaaze M, et al. Serological evidence of Ebola virus exposure in dogs from affected communities in Liberia: A preliminary report. Rimoin AW, editor. PLoS Negl Trop Dis. 2019; 13: e0007614. <u>https://doi.org/10.1371/journal.pntd.</u> 0007614 PMID: 31329600

- 72. Helmick C, Scribner C, Webb P, Krebs J, Mccormick J. NO EVIDENCE FOR INCREASED RISK OF LASSA FEVER INFECTION IN HOSPITAL STAFF. The Lancet. 1986; 328: 1202–1205. https://doi.org/10.1016/S0140-6736(86)92206-3
- Henderson BE, Gary GW, Kissling RE, Frame JD, Carey DE. Lassa fever virological and serological studies. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1972; 66: 409–416. https://doi.org/10.1016/0035-9203(72)90272-6 PMID: 4625715
- 74. Ibekwe T, Nwegbu M, Okokhere P, Adomeh D, Asogun D. The sensitivity and specificity of Lassa virus IgM by ELISA as screening tool at early phase of Lassa fever infection. Niger Med J. 2012; 53: 196. https://doi.org/10.4103/0300-1652.107552 PMID: 23661877
- 75. Ipadeola O, Furuse Y, Ilori EA, Dan-Nwafor CC, Akabike KO, Ahumibe A, et al. Epidemiology and case-control study of Lassa fever outbreak in Nigeria from 2018 to 2019. Journal of Infection. 2020; S0163445320300013. https://doi.org/10.1016/j.jinf.2019.12.020 PMID: 31926184
- 76. Isere EE, Fatiregun A, Ilesanmi O, Ijarotimi I, Egube B, Adejugbagbe A, et al. Lessons Learnt from Epidemiological Investigation of Lassa Fever Outbreak in a Southwest State of Nigeria December 2015 to April 2016. PLoS Curr. 2018 [cited 25 Feb 2020]. https://doi.org/10.1371/currents.outbreaks. bc4396a6650d0ed1985d731583bf5ded PMID: 30094105
- 77. Ivanoff B, Duquesnoy' P, Languillat' G, Saluzzo' JF, Georges' A, Gonzalez' JP, et al. Haemorrhagic fever in Gabon. I. Incidence of Lassa, Ebola and Marburg viruses in Haut-Ogoou6. 1982; 2.
- Jahrling PB, Frame JD, Smith SB, Monson MH. Endemic Lassa fever in Liberia. III. Characterization of Lassa virus isolates. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1985; 79: 374–379. https://doi.org/10.1016/0035-9203(85)90386-4 PMID: 3898483
- **79.** Johnson BK, Ocheng D, Gichogo A, Okiro M, Libondo D, Tukei PM, et al. Antibodies against haemorrhagic fever viruses in Kenya populations. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1983; 77: 731–733. https://doi.org/10.1016/0035-9203(83)90216-x PMID: 6419422
- Johnson BK, Ocheng D, Gitau LG, Gichogo A, Tukei PM, Ngindu A, et al. Viral Haemorrhagic Fever Surveillance in Kenya, 1980–198. 1983; 1.
- Johnson' BK, Gitau LG, Gichogop A, Tukei' M, Else' JG, Suleman MA, et al. Marburg, Ebota and Rift Valley fever virus antibodies in East African primates. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982; 4. <u>https://doi.org/10.1016/0035-9203(82)90003-7</u> PMID: 7043806
- Keane E, Gilles HM. Lassa fever in Panguma Hospital, Sierra Leone, 1973–6. BMJ. 1977; 1: 1399– 1402. https://doi.org/10.1136/bmj.1.6073.1399 PMID: 861652
- Kernéis S, Koivogui L, Magassouba N, Koulemou K, Lewis R, Aplogan A, et al. Prevalence and Risk Factors of Lassa Seropositivity in Inhabitants of the Forest Region of Guinea: A Cross-Sectional Study. Aksoy S, editor. PLoS Negl Trop Dis. 2009; 3: e548. <u>https://doi.org/10.1371/journal.pntd.</u> 0000548 PMID: 19924222
- Klempa B, Koulemou K, Auste B, Emmerich P, Thomé-Bolduan C, Günther S, et al. Seroepidemiological study reveals regional co-occurrence of Lassa- and Hantavirus antibodies in Upper Guinea, West Africa. Trop Med Int Health. 2012; n/a-n/a. https://doi.org/10.1111/tmi.12045 PMID: 23279760
- Lalis A, Leblois R, Lecompte E, Denys C, ter Meulen J, Wirth T. The Impact of Human Conflict on the Genetics of Mastomys natalensis and Lassa Virus in West Africa. Mores CN, editor. PLoS ONE. 2012; 7: e37068. https://doi.org/10.1371/journal.pone.0037068 PMID: 22615894
- 86. Leski TA, Stockelman MG, Moses LM, Park M, Stenger DA, Ansumana R, et al. Sequence Variability and Geographic Distribution of Lassa Virus, Sierra Leone—Volume 21, Number 4—April 2015— Emerging Infectious Diseases journal—CDC. 2015 [cited 26 Oct 2019]. https://doi.org/10.3201/ eid2104.141469 PMID: 25811712
- Li W-G, Chen W-W, Li L, Ji D, Ji Y-J, Li C, et al. The etiology of Ebola virus disease-like illnesses in Ebola virusnegative patients from Sierra Leone. Oncotarget. 2016;7. <u>https://doi.org/10.18632/</u> oncotarget.6589 PMID: 26683705
- Lukashevich IS, Clegg JC, Sidibe K. Lassa virus activity in Guinea: distribution of human antiviral antibody defined using enzyme-linked immunosorbent assay with recombinant antigen. J Med Virol. 1993; 40: 210–217. https://doi.org/10.1002/jmv.1890400308 PMID: 8355019
- Maigari IM, Jibrin YB, Umar MS, Lawal SM, Gandi AY. Descriptive features of Lassa fever in Bauchi, Northeastern Nigeria—a retrospective review. Research Journal of Health Sciences. 2018; 6: 149. https://doi.org/10.4314/rejhs.v6i3.7
- 90. Mariën J, Borremans B, Gryseels S, Soropogui B, De Bruyn L, Bongo GN, et al. No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasites Vectors. 2017; 10: 210. <u>https://doi.org/10.1186/s13071-017-2146-0</u> PMID: 28449693

- Mathiot CC, Fontenille D, Georges AJ, Coulanges P. Antibodies to haemorrhagic fever viruses in Madagascar populations. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1989; 83: 407–409. https://doi.org/10.1016/0035-9203(89)90519-1 PMID: 2515626
- 92. McCarthy MC, Haberberger RL, Salib AW, Soliman BA, El-Tigani A, Watts DM. Evaluation of arthropod-borne viruses and other infectious disease pathogens as the causes of febrile illnesses in the Khartoum Province of Sudan. 1996; 6.
- McCormick JB, King IJ, Webb PA, Johnson KM, O'Sullivan R, Smith ES, et al. A Case-Control Study of the Clinical Diagnosis and Course of Lassa Fever. J Infect Dis. 1987; 155: 445–455. https://doi.org/ 10.1093/infdis/155.3.445 PMID: 3805772
- McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A Prospective Study of the Epidemiology and Ecology of Lassa Fever. J Infect Dis. 1987; 155: 437–444. <u>https://doi.org/10.1093/infdis/155</u>. 3.437 PMID: 3805771
- Meunier DM, Johnson ED, Gonzalez JP, Georges-Courbot MC, Madelon MC, Georges AJ. [Current serologic data on viral hemorrhagic fevers in the Central African Republic]. Bull Soc Pathol Exot Filiales. 1987; 80: 51–61. PMID: 3607998
- Nakounné E, Selekon B, Morvan J. Veille microbiologique: les fièvres hémorragiques virales en République centrafricaine; 2000; 8.
- 97. Nimo-Paintsil SC, Fichet-Calvet E, Borremans B, Letizia AG, Mohareb E, Bonney JHK, et al. Rodentborne infections in rural Ghanaian farming communities. Schieffelin J, editor. PLoS ONE. 2019; 14: e0215224. https://doi.org/10.1371/journal.pone.0215224 PMID: 31017931
- Ogunro BN, Olugasa BO, Kayode A, Ishola OO, Kolawole ON, Odigie EA, et al. Detection of Antibody and Antigen for Lassa Virus Nucleoprotein in Monkeys from Southern Nigeria. JEGH. 2019 [cited 25 Feb 2020]. https://doi.org/10.2991/jegh.k.190421.001 PMID: 31241870
- 99. O'Hearn AE, Voorhees MA, Fetterer DP, Wauquier N, Coomber MR, Bangura J, et al. Serosurveillance of viral pathogens circulating in West Africa. Virol J. 2016; 13: 163. <u>https://doi.org/10.1186/</u> s12985-016-0621-4 PMID: 27716429
- Okogbenin S, Okoeguale J, Akpede G, Colubri A, Barnes KG, Mehta S, et al. Retrospective Cohort Study of Lassa Fever in Pregnancy, Southern Nigeria. Emerg Infect Dis. 2019; 25: 1494–1500. <u>https://</u> doi.org/10.3201/eid2508.181299 PMID: 31310586
- 101. Okokhere P, Colubri A, Azubike C, Iruolagbe C, Osazuwa O, Tabrizi S, et al. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. The Lancet Infectious Diseases. 2018; 18: 684–695. <u>https://doi.org/10.1016/S1473-3099(18)30121-X PMID: 29523497</u>
- 102. Okoror LE, Esumeh FI, Agbonlahor DE, Umolu PI. Lassa virus: Seroepidemiological survey of rodents caught in Ekpoma and environs. Trop Doct. 2005; 35: 16–17. <u>https://doi.org/10.1258/0049475053001912 PMID</u>: 15712534
- 103. Olayemi A, Oyeyiola A, Obadare A, Igbokwe J, Adesina AS, Onwe F, et al. Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasites Vectors. 2018; 11: 416. <u>https://doi.org/10.1186/s13071-018-2991-5 PMID: 30005641</u>
- 104. Olayemi A, Obadare A, Oyeyiola A, Igbokwe J, Fasogbon A, Igbahenah F, et al. Arenavirus Diversity and Phylogeography of *Mastomys natalensis* Rodents, Nigeria. Emerg Infect Dis. 2016; 22: 687–690. https://doi.org/10.3201/eid2204.151595 PMID: 26926035
- 105. Oloniniyi OK, Unigwe US, Okada S, Kimura M, Koyano S, Miyazaki Y, et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl Trop Dis. 2018;12. https://doi.org/10.1371/journal.pntd.0006971 PMID: 30500827
- 106. Omilabu SA, Badaru SO, Okokhere P, Asogun D, Drosten C, Emmerich P, et al. Lassa Fever, Nigeria, 2003 and 2004. Emerg Infect Dis. 2005; 11: 1642–1644. <u>https://doi.org/10.3201/eid1110.041343</u> PMID: 16355508
- 107. Paix MA, Poveda JD, Malvy D, Bailly C, Merlin M, Fleury HJ. [Serological study of the virus responsible for hemorrhagic fever in an urban population of Cameroon]. Bull Soc Pathol Exot Filiales. 1988; 81: 679–682. PMID: 3064937
- 108. Panning M, Emmerich P, Ölschläger S, Bojenko S, Koivogui L, Marx A, et al. Laboratory Diagnosis of Lassa Fever, Liberia. Emerg Infect Dis. 2010; 16: 1041–1043. <u>https://doi.org/10.3201/eid1606.100040</u> PMID: 20507774
- **109.** Price ME, Fisher-Hoch SP, Craven RB, McCormick JB. A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy. 1988; 297: 4.
- 110. Rodhain F, Gonzalez JP, Mercier E, Helynck B, Larouze B, Hannoun C. Arbovirus infections and viral haemorrhagic fevers in Uganda: a serological survey in Karamoja district, 1984. Transactions of the

Royal Society of Tropical Medicine and Hygiene. 1989; 83: 851–854. https://doi.org/10.1016/0035-9203(89)90352-0 PMID: 2559514

- 111. Safronetz D, Sogoba N, Lopez JE, Maiga O, Dahlstrom E, Zivcec M, et al. Geographic Distribution and Genetic Characterization of Lassa Virus in Sub-Saharan Mali. PLoS Negl Trop Dis. 2013;7. <u>https://doi.org/10.1371/journal.pntd.0002582</u> PMID: 24340119
- Safronetz D, Lopez JE, Sogoba N, Traore' SF, Raffel SJ, Fischer ER, et al. Detection of Lassa virus, Mali. Emerging Infect Dis. 2010; 16: 1123–1126. https://doi.org/10.3201/eid1607.100146 PMID: 20587185
- 113. Salu OB, James AB, Bankolé HS, Agbla JM, Da Silva M, Gbaguidi F, et al. Molecular confirmation and phylogeny of Lassa fever virus in Benin Republic 2014–2016. African Journal of Laboratory Medicine. 2019;8. https://doi.org/10.4102/ajlm.v8i1.803 PMID: 31534915
- 114. Saluzzo JF, Adam F, McCormick JB, Digoutte JP. Lassa Fever Virus in Senegal. Journal of Infectious Diseases. 1988; 157: 605–605. https://doi.org/10.1093/infdis/157.3.605 PMID: 3343533
- Schoepp RJ, Rossi CA, Khan SH, Goba A, Fair JN. Undiagnosed Acute Viral Febrile Illnesses, Sierra Leone. Emerg Infect Dis. 2014; 20: 1176–1182. https://doi.org/10.3201/eid2007.131265 PMID: 24959946
- 116. Shaffer JG, Schieffelin JS, Gbakie M, Alhasan F, Roberts NB, Goba A, et al. A medical records and data capture and management system for Lassa fever in Sierra Leone: Approach, implementation, and challenges. Verdonck K, editor. PLoS ONE. 2019; 14: e0214284. <u>https://doi.org/10.1371/journal.pone.0214284 PMID: 30921383</u>
- 117. Shehu NY, Gomerep SS, Isa SE, Iraoyah KO, Mafuka J, Bitrus N, et al. Lassa Fever 2016 Outbreak in Plateau State, Nigeria—The Changing Epidemiology and Clinical Presentation. Front Public Health. 2018; 6: 232. https://doi.org/10.3389/fpubh.2018.00232 PMID: 30211144
- 118. Smith EA, Fabiyi A, Kuteyi OE, Tomori O. Epidemiological aspect of the 1976 Pankshin Lassa fever outbreak. Niger Med J. 1979; 9: 20–22. PMID: 463336
- 119. Sogoba N, Rosenke K, Adjemian J, Diawara SI, Maiga O, Keita M, et al. Lassa Virus Seroprevalence in Sibirilia Commune, Bougouni District, Southern Mali. Emerg Infect Dis. 2016; 22: 657–663. https:// doi.org/10.3201/eid2204.151814 PMID: 26981786
- 120. ter Meulen J, Koulemou K, Wittekindt T, Windisch K, Strigl S, Conde S, et al. Detection of Lassa Virus Antinucleoprotein Immunoglobulin G (IgG) and IgM Antibodies by a Simple Recombinant Immunoblot Assay for Field Use. Journal of Clinical Microbiology. 1998; 36: 3143–3148. <u>https://doi.org/10.1128/</u> JCM.36.11.3143-3148.1998 PMID: 9774554
- 121. Tomori O, Fabiyi A, Sorungbe A, Smith A, McCormick JB. Viral hemorrhagic fever antibodies in Nigerian populations. Am J Trop Med Hyg. 1988; 38: 407–410. https://doi.org/10.4269/ajtmh.1988.38.407 PMID: 3128130
- 122. Van der Waals FW, Pomeroy KL, Goudsmit J, Asher DM, Gajdusek DC. Hemorrhagic fever virus infections in an isolated rainforest area of central Liberia. Limitations of the indirect immunofluorescence slide test for antibody screening in Africa. Trop Geogr Med. 1986; 38: 209–214. PMID: 3092415
- 123. Webb PA, McCormick JB, King IJ, Bosman I, Johnson KM, Elliott LH, et al. Lassa fever in children in Sierra Leone, West Africa. Trans R Soc Trop Med Hyg. 1986; 80: 577–582. <u>https://doi.org/10.1016/0035-9203(86)90147-1 PMID: 3810792</u>
- 124. Wulff H, Fabiyi A, Monath TP. Recent isolations of Lassa virus from Nigerian rodents. Bull World Health Organ. 1975; 52: 609–613. PMID: 1085216
- 125. Yadouleton A, Agolinou A, Kourouma F, Saizonou R, Pahlmann M, Bedié SK, et al. Lassa Virus in Pygmy Mice, Benin, 2016–2017. Emerg Infect Dis. 2019; 25: 1977–1979. https://doi.org/10.3201/eid2510.180523 PMID: 31365854
- 126. Yalley-Ogunro JE, Frame JD, Hanson AP. Endemic Lassa fever in Liberia. VI. Village serological surveys for evidence of Lassa virus activity in Lofa County, Liberia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1984; 78: 764–770. <u>https://doi.org/10.1016/0035-9203(84)90013-0</u> PMID: 6398530
- 127. Cummins D, McCormick JB, Bennett D, Samba JA, Farrar B, Machin SJ, et al. Acute sensorineural deafness in Lassa fever. JAMA. 1990; 264: 2093–2096. PMID: 2214077
- 128. Frame JD, Yalley-Ogunro JE, Hanson AP. Endemic Lassa fever in Liberia. V. Distribution of Lassa virus activity in Liberia: hospital staff surveys. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1984; 78: 761–763. https://doi.org/10.1016/0035-9203(84)90012-9 PMID: 6398529
- 129. Gonzalez JP, McCormick JB, Saluzzo JF, Herve JP, Georges AJ, Johnson KM. An arenavirus isolated from wild-caught rodents (Pramys species) in the Central African Republic. Intervirology. 1983; 19: 105–112. https://doi.org/10.1159/000149344 PMID: 6862813
- 130. Keenlyside RA, McCormick JB, Webb PA, Smith E, Elliott L, Johnson KM. Case-control study of Mastomys natalensis and humans in Lassa virus-infected households in Sierra Leone. Am J Trop Med Hyg. 1983; 32: 829–837. https://doi.org/10.4269/ajtmh.1983.32.829 PMID: 6881432

- 131. Meulen JT, Lukashevich I, Sidibe K, Inapogui A, Marx M, Dorlemann A, et al. Hunting of Peridomestic Rodents and Consumption of Their Meat as Possible Risk Factors for Rodent-to-Human Transmission of Lassa Virus in the Republic of Guinea. The American Journal of Tropical Medicine and Hygiene. 1996; 55: 661–666. https://doi.org/10.4269/ajtmh.1996.55.661 PMID: 9025695
- 132. Troup JM, White HA, Fom AL, Carey DE. An outbreak of Lassa fever on the Jos plateau, Nigeria, in January-February 1970. A preliminary report. Am J Trop Med Hyg. 1970; 19: 695–696. <u>https://doi.org/10.4269/ajtmh.1970.19.695 PMID: 4987549</u>
- 133. Bloch A. A serological survey of Lassa fever in Liberia. 1978; 3.
- 134. Dan-Nwafor CC, Furuse Y, Ilori EA, Ipadeola O, Akabike KO, Ahumibe A, et al. Measures to control protracted large Lassa fever outbreak in Nigeria, 1 January to 28 April 2019. Eurosurveillance. 2019;24. https://doi.org/10.2807/1560-7917.ES.2019.24.20.1900272 PMID: 31115314
- 135. Johnson ED, Gonzalez JP, Georges A. Haemorrhagic fever virus activity in equatorial Africa: distribution and prevalence of filovirus reactive antibody in the Central African Republic. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1993; 87: 530–535. <u>https://doi.org/10.1016/0035-9203(93)90075-2</u> PMID: 8266402
- 136. ter Meulen J, Lenz O, Koivogui L, Magassouba N, Kaushik SK, Lewis R, et al. Short communication: Lassa fever in Sierra Leone: UN peacekeepers are at risk. Trop Med Int Health. 2001; 6: 83–84. https://doi.org/10.1046/j.1365-3156.2001.00676.x PMID: 11251899
- Ogbu O, Ajuluchukwu E, Uneke CJ. Lassa fever in West African sub-region: an overview. J Vector Borne Dis. 2007; 44: 1–11. PMID: 17378212
- Eberhardt KA, Mischlinger J, Jordan S, Groger M, Günther S, Ramharter M. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. International Journal of Infectious Diseases. 2019; 87: 15–20. https://doi.org/10.1016/j.ijid.2019.07.015 PMID: 31357056
- 139. Kayem ND, Benson C, Aye CYL, Barker S, Tome M, Kennedy S, et al. Lassa fever in pregnancy: a systematic review and meta-analysis. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2020; traa011. https://doi.org/10.1093/trstmh/traa011 PMID: 32125412
- 140. Monson MH, Cole AK, FRAME JD, SERWINT JR, ALEXANDER S, JAHRLINGI PB. Pediatric Lassa Fever: A Review of 33 Liberian Cases. The American Journal of Tropical Medicine and Hygiene. 1987; 36: 408–415. https://doi.org/10.4269/ajtmh.1987.36.408 PMID: 3826501
- Frame JD. Clinical Features of Lassa Fever in Liberia. Clinical Infectious Diseases. 1989; 11: S783– S789. https://doi.org/10.1093/clinids/11.Supplement_4.S783 PMID: 2749109
- 142. Wulff H, Johnson KM. Immunoglobulin M and G responses measured by immunofluorescence in patients with Lassa or Marburg virus infections. Bulletin of the World Health Organization. 1979; 57: 631–635. PMID: 118812
- 143. Branco LM, Boisen ML, Andersen KG, Grove JN, Moses LM, Muncy IJ, et al. Lassa hemorrhagic fever in a late term pregnancy from northern sierra leone with a positive maternal outcome: case report. Virol J. 2011; 8: 404. https://doi.org/10.1186/1743-422X-8-404 PMID: 21843352
- 144. Bausch DG, Rollin PE, Demby AH, Coulibaly M, Kanu J, Conteh AS, et al. Diagnosis and Clinical Virology of Lassa Fever as Evaluated by Enzyme-Linked Immunosorbent Assay, Indirect Fluorescent-Antibody Test, and Virus Isolation. Journal of Clinical Microbiology. 2000; 38: 2670–2677. <u>https://doi.org/ 10.1128/JCM.38.7.2670-2677.2000 PMID: 10878062</u>
- 145. Laoprasopwattana K, Chaimongkol W, Pruekprasert P, Geater A. Acute Respiratory Failure and Active Bleeding Are the Important Fatality Predictive Factors for Severe Dengue Viral Infection. Ooi EE, editor. PLoS ONE. 2014; 9: e114499. <u>https://doi.org/10.1371/journal.pone.0114499</u> PMID: 25460594
- 146. Amanat F, Duehr J, Oestereich L, Hastie KM, Ollmann Saphire E, Krammer F. Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses. mSphere. 2018;3. https://doi.org/10.1128/mSphere.00189-18 PMID: 29720525
- 147. La Posta VJ, Auperin DD, Kamin-Lewis R, Cole GA. Cross-protection against lymphocytic choriomeningitis virus mediated by a CD4+ T-cell clone specific for an envelope glycoprotein epitope of Lassa virus. J Virol. 1993; 67: 3497–3506. https://doi.org/10.1128/JVI.67.6.3497-3506.1993 PMID: 7684468
- 148. Jiménez de Oya N, Alonso-Padilla J, Blázquez A-B, Escribano-Romero E, Escribano JM, Saiz J-C. Maternal transfer of antibodies to the offspring after mice immunization with insect larvae-derived recombinant hepatitis E virus ORF-2 proteins. Virus Research. 2011; 158: 28–32. https://doi.org/10. 1016/j.virusres.2011.02.019 PMID: 21376089