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ABSTRACT: The decarboxylative Minisci reaction is a versatile tool for
the direct C−H alkylation of heteroarenes, where stoichiometric amounts
of oxidants or expensive, precious metal reagents are commonly used.
Herein, we reported a photodriven decarboxylative Minisci reaction
enabled by a gallium nitride-based heterogeneous photocatalyst under mild
conditions. This method can be effectively applied to a broad substrate
scope of acids, including primary, secondary, and tertiary carboxylic acids
and N-heteroarenes effectively. The practicability and robustness of the
approach are demonstrated for the functionalization of biologically active
compounds.
KEYWORDS: Heterogeneous catalysis, Minisci reaction, Photocatalytic decarboxylation, N-heteroarenes, C−H alkylation, Gallium nitride

■ INTRODUCTION
The pursuit of direct C−H alkylation of N-heteroarenes under
mild conditions has gained much attention owing to the
ubiquitous presence of N-heteroaryl motifs in functional
materials, pharmaceuticals, and biological systems.1−3 For
this endeavor, the Minisci-type reaction serves as a useful
synthetic tool for heteroarene functionalization, which involves
the alkyl radical addition to the protonated heteroarene under
oxidative conditions.4,5 Compared with the common alkyl
radical precursors like alkyl peroxides, alkyl halides, boronic
acids, and sulfonates, the usage of aliphatic carboxylic acid
stands out due to its ease of storage, low cost, natural
abundance, and easy accessibility.6,7 Previously, some examples
of direct C−H alkylation of N-heteroarenes using aliphatic
carboxylic acid were reported with metal catalysts like silver,
copper, or iron catalysts with persulfate additive or radical
initiators such as tert-butyl peroxide under high temperatures
(Scheme 1a).8−13 While effective, the harsh reaction
conditions usually compromised synthetic application. Re-
cently, photoredox catalysis has opened new opportunities in
synthetic organic chemistry for rapid and efficient assembly of
complex molecules.14−16 Within this domain, the Glorius
group in 2017 demonstrated a mild method of direct alkylation
of N-heteroarenes using an iridium photocatalyst (Ir-PC) and
ammonium persulfate under blue LEDs (Scheme 1b).17 In
2020, Xu’s group reported a novel electro-photocatalytic
decarboxylative C−H functionalization of heteroarenes using
cerium salts (Scheme 1c).18 Both strategies possess high
functional group tolerance as well as a broad substrate scope
due to their milder reaction conditions. Installing an activation
group like N-(acyloxy)-phthalimide on carboxylic acid is
another effective strategy of the decarboxylative Minisci

Received: April 27, 2023
Revised: June 6, 2023
Accepted: June 8, 2023
Published: June 27, 2023

Scheme 1. Methods for Decarboxylative Minisci C−H
Alkylation of N-Heteroarenes
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reaction combined with photoredox and Brønsted catalysis,
achieving a broad range of substrates and enantioselective
alkylation of N-heterocycles.19−21 Despite current advance-
ments, the use of iridium or cerium catalysts leaves room for
improvement as they are either expensive or hazardous and
difficult to isolate or reuse in the eyes of overall reaction
sustainability. Furthermore, the involvement of hazardous
solvents like DMSO or HFIP also raises additional environ-
mental concerns. Therefore, to fully utilize the potential of the
photodriven decarboxylative Minisci reaction as well as to
develop greener reaction protocols, it is highly desirable to
promote an affordable and reusable photocatalyst with high
energy efficiency and recyclability.

In particular, the advancement of semiconductors as
photocatalysts has provided some of the most promising
alternative strategies for addressing the environmental and
energy issues while maintaining high catalytic performance
with the harness of solar energy.22,23 Under light irradiation,
the photogenerated electrons will travel from the valence band
(VB) to the conduction band (CB) while generating an
equivalent number of electron holes (h+). The electron−hole
pairs can further migrate to the surface of the semiconductor
and ultimately participate in redox reactions. Among the
common semiconductor photocatalysts, gallium nitride (GaN),
a wide band gap, III−V semiconductor, has superior intrinsic
properties due to its high electromigration rate, excellent
breakdown voltage, tunable wide band gap, and unique ionicity
structure leading to high reactivity, long-term stability, and
unprecedented chemical reactions.24,25 Notably, GaN pos-
sesses a valence band at −3.2 eV (with respect to vacuum
level) and a wide band gap (3.4 eV), showing its excellent
oxidizing ability.26,27 Since the generation of an alkyl radical
from oxidative decarboxylation is critical in the Minisci
reaction, this significant oxidizing power makes GaN a
potential photocatalyst candidate for direct C−H alkylation
of N-heteroarenes. Previously, alkyl radicals including methyl
radicals have been produced via semiconductor photocatalyst-
catalyzed decarboxylation for hydromethylation, hydroalkyla-
tion, dimerization, deuteration, and C(sp3)−F bond forma-
tion.28−31 These works demonstrate the feasibility and
significance of using semiconductor photocatalysts for
decarboxylative transformations. Inspired by previous liter-
ature, herein, we reported a GaN-based photocatalysis for the
decarboxylative Minisci reaction under ambient conditions
(Scheme 1d). The method includes the utilization of acetic
acid for methylation as well as other easily accessible carboxylic
acids for the alkylation of heteroarenes.

■ RESULT AND DISCUSSION
To initiate our research, we first examined the methylation of
heteroarenes reaction between lepidine (1) and 2 equiv of
acetic acid (2) in acetonitrile at room temperature under an
argon atmosphere for 6 h. A broad-spectrum xenon lamp
served as the light source, and commercial GaN powders were
used as the catalyst. To our delight, 21% of the desired product
(1a) was observed (Table 1, entry 1). Examination of solvents
(entries 2−5) showed that acetonitrile gave the highest
reactivity among common solvents (entries 2−5). For further
optimization, we explored the deposition of metal as a
cocatalyst on the semiconductor surface to significantly
improve the catalytic performance. For example, previous
works have shown that the loading of metallic palladium and
platinum on TiO2 significantly enhanced photocatalytic fatty

acid decarboxylation.32,33 Encouraged by such a design, various
metals were photodeposited on GaN powders. Interestingly,
the deposition of copper had little effect on the catalyst’s
activity, while the deposition of platinum and palladium
showed a positive influence (entries 6−8). Additional
optimization revealed 3 wt % Pd/GaN to be the most efficient
catalyst, affording 66% yield of the desired product (Table S1).
With the optimal reaction time, we were able to increase the
yield to 72% (entry 9). Control experiments showed that the
argon atmosphere was crucial for this reaction, and both light
and catalyst are necessary for this reaction (entries 11−13).

With the optimized conditions in hand, we proceeded to
investigate the substrate scope of the carboxylic acid reactant,
as shown in Table 2. Simple aliphatic acids, including primary
(1a, 1b, and 1d), secondary (1c), and tertiary (1e and 1f)
carboxylic acids, worked smoothly in the reaction, giving
moderate to high yields. The heterocyclic derivative 2-
thiopheneacetic acid (1g) gave a good yield of 66%. Short-
chain aliphatic acids such as hexanoic and decanoic acids (1h
and 1i) can be well tolerated, affording the corresponding
products in 76% and 68% yields, respectively. This validates
the feasibility of using easily accessible fatty acids as effective
coupling partners by this method. Moreover, benzylic
analogues, such as phenylacetic, 2-phenylpropanoic, and o-
tolylacetic acids (1j, 1k, and 1l) worked well in this
transformation, giving the corresponding products in good
yields. Under the same conditions, the fluoro, chloro, and
bromo (1m, 1n, and 1o) substituted substrates performed in
good yields. The strong electron-withdrawing compound (1p)
also performed well in this reaction, albeit with a slightly lower
yield than that of the electron-donating substrate (1q). Steric
hindrance did not influence the reactivity, as the desired
product could be obtained from the bulky substrates (1r, 1s)
with high yields. Additionally, gram-scale synthesis was
performed between lepidine and cyclohexane carboxylic acid,
which shows the potential for industrial large-scale applica-
tions.

Table 1. Reaction Condition Optimizationa

entry solvent (1 mL) catalyst yield, %

1 CH3CN GaN 21
2 MeOH GaN 13
3 THF GaN 4
4 H2O GaN 6
5 hexane GaN 14
6 CH3CN 3.0 wt % Cu/GaN 15
7 CH3CN 3.0 wt % Pt/GaN 46
8 CH3CN 3.0 wt % Pd/GaN 66
9b CH3CN 3.0 wt % Pd/GaN 72
10c CH3CN 3.0 wt % Pd/GaN 70
11d CH3CN 3.0 wt % Pd/GaN 27
12 CH3CN N/A n.d.
13e CH3CN 3.0 wt % Pd/GaN n.d.

aReaction conditions: All reactions were run at a 0.1 mmol scale of 1
with 5 mg of catalyst under Xe lamp irradiation at room temperature
and under an inert atmosphere for 6 h. bReaction time: 8 h. cReaction
time: 10 h. dUnder air atmosphere. eUnder darkness.
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Next, the substrate scope of heteroarenes was examined.
Various quinoline moieties can be successfully converted into
the corresponding alkylated products with up to 78% yield
(2a−2d and 2g). However, lower conversions observed with

bulky substrates are likely due to weak contact with the catalyst
surface. Other heterocycles such as quinoxalinone and
benzoquinoline (2e and 2f) were also compatible with this
method. To explore the stability of the heterogeneous catalyst,

Table 2. Substrate Scope of Photocatalytic Decarboxylative Minisci Reaction by GaN-Based Photocatalysisa

aReaction conditions: 1 (0.1 mmol), 2 (0.2 mmol, 2.0 equiv), and 3 wt % Pd/GaN (5 mg) in CH3CN (1.0 mL) were stirred under Xe light
irradiation at room temperature for 8 h under Ar atmosphere. bReaction conditions: 1 (1.0 g, 0.93 mL, 7.0 mmol), 2 (1.8 g, 14.0 mmol, 2.0 equiv),
and 3 wt % Pd/GaN (100 mg) in CH3CN (10.0 mL) were stirred under Xe light irradiation at room temperature for 48 h under Ar atmosphere.
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we performed a recycling test with the model methylation
reaction. The same catalyst was isolated and reused repeatedly
for a total of six reactions without significantly lowering the
yield (Figure S1), demonstrating its long-term stability.

Transmission electron microscopy (TEM) characterization
was done to gain insight into the catalyst. The images showed
that the metallic Pd nanoparticles were successfully deposited
with good distribution on the surface of GaN (Figures S2 and
S3). Previous reports have shown that the deposition of high
work function metal Pd on GaN could form the Schottky
junction, which is critical for charge transfer.34,35 These metal−
semiconductor interfaces can significantly increase the lifetime
of electron−hole pairs, enhancing the catalytic activity.36−38

Figure 1a displays the photoluminescence spectra of

commercial GaN and the designed 3 wt % Pd/GaN. The
intensity of the photoluminescence emission decreases as Pd
nanoparticles are deposited on the surface of GaN. This
phenomenon suggests that the electron transfer from GaN to
Pd nanoparticles has occurred, leading to improvement of
charge separations. To further investigate this electron transfer,
X-ray photoelectron spectroscopy (XPS) analysis was
performed. Figure 1b illustrates the Pd 3d peaks of Pd/C
and 3 wt % Pd/GaN. The Pd 3d peaks of 3 wt % Pd/GaN
appear at 334.5 and 340.0 eV, which is a shift toward lower
binding energy as compared to Pd 3d peaks of Pd/C (336.9
and 342.0 eV) and confirms the electron transfer from the
semiconducting GaN to Pd nanoparticles.

To investigate the mechanism of the reported photocatalytic
alkylation via decarboxylation, 2 equiv of 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO) was added to inhibit the reaction
under the standard conditions (Figure 2a). The cyclohexyl-
TEMPO product was achieved in 60% yield with a significant
decrease in the generation of the desired alkylated product.
The TEMPO adduct was detected by mass spectroscopy (MS)
(Figure S4). The result suggests that the reaction goes through
a radical based mechanism. Furthermore, electro-paramagnetic
resonance (EPR) studies were conducted to corroborate a
possible radical mechanism. With the presence of Pd/GaN
catalyst, the obvious EPR signal of cyclohexyl-DMPO
component could be obtained (Figure 2b). The detected
signal agreed with the reported literature.39 This result
supports the production of an alkyl radical species via the
semiconductor catalyzed decarboxylation. As for the isotopic
study (Figure 2c), d4-acetic acid was applied for the
methylation of lepidine. Deuterated dimethylquinoline, 12%,
was obtained (Figure S5), demonstrating that the methyl
group originated from acetic acid.

Based on prior research and the mechanistic investigations
described above, a tentative mechanism was proposed, as

shown in Figure 3. Upon photoexcitation, the carboxylic acid
will be oxidized to a radical anion by the photogenerated hole

at the surface of GaN. After the loss of a proton, the anion
intermediate would become an acyloxyl radical, which would
readily turn into an alkyl radical via the release of CO2. Then,
the alkyl radical would rapidly add to the electron-deficient
heteroarenes, generating intermediate a. The adduct radical
can be further oxidized by the catalyst following deprotonation
to obtain the desired alkylated product. The photogenerated
electrons eventually reduce protons to H2. The generation of
H2 was verified by GC-TCD (gas chromatography-thermal
conductivity detector).

■ CONCLUSION
In conclusion, we demonstrated the direct C−H alkylation of
N-heteroarenes via a photodriven decarboxylative Minisci

Figure 1. (a) Photoluminescence spectra of GaN and 3 wt % Pd/
GaN. (b) Pd 3d spectra of Pd/C and 3 wt % Pd/GaN.

Figure 2. Mechanistic studies for photocatalytic decarboxylative
Minisici reaction by GaN-based photocatalysis. (a) Radical-trap
experiment with TEMPO. (b) EPR analysis. (c) Isotopic-labeling
experiment with d4-acetic acid.

Figure 3. Proposed mechanism for the decarboxylative Minisci
reaction.
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reaction. The method is enabled by the heterogeneous Pd/
GaN catalyst. Broad scopes of carboxylic acids and
heteroarenes were functionalized with high efficiency. The
recycling test and gram-scale synthesis showed the possibility
of applications for the sustainable and efficient synthesis of
complex organic molecules.
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