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The complexities inherent in EHR data create discrepancies between real-world evidence and RCTs,
posing substantial challenges in determining whether a treatment is likely to have a beneficial impact
compared to the standard of care in RCTs. The objective of this study is to enhance the prediction of
efficacy direction for repurposed drugs tested in RCTs for heart failure (HF). To achieve this, we
propose an efficacy direction prediction framework that integrates drug-target predictions with EHR-
based Emulation Trials (ET) to derive surrogate endpoints for prediction using HF prognostic markers.
Our validation of the proposed novel drug-target prediction model against the BETA benchmark
demonstrates superior performance, surpassing existing baseline algorithms. Furthermore, an
evaluation of our framework in identifying 17 repurposeddrugs—derived from266phase3HFRCTs—
using data from 59,000 patients at the Mayo Clinic highlights its remarkable predictive accuracy.

Heart failure (HF) is a critical medical condition with high rates of hospi-
talization andmortality1, where the heart fails to adequately pump blood to
meet the body’s needs2. There is an urgent need for improved therapeutic
approaches to effectively manageHF symptoms, enhance the quality of life,
and increase survival rates. Drug repurposing is an innovative approach to
drugdiscovery that involvesfindingnew therapeutic uses for existingdrugs3.
Since the safety profiles of the drugs (e.g., pharmacokinetics/pharmacody-
namics) for repurposing are already established through rigorous tests in the
early phases4,5, predicting the potential efficacy direction6,7 (i.e., beneficial or
not compared to the current standard of care) of the repurposed drug
candidate is critical to streamline the process and efficiently allocate
resources for the large-scale trials like phase 3 clinical trials, which can be
challenging (e.g., 20% failure rate for HF8) and costly due to multiple
factors9.

A growing trend involves leveraging real-world data, such as Electronic
Health Records (EHR), to simulate randomized trials (RCTs) for assessing
treatment outcomes, referred to as emulated trials (ET)6,10–18. Contrary to the

controlled settings of RCTs, ETs utilize observational data from everyday
clinical practices. This data encompasses the complexities of patient his-
tories stored in databases, the absence of certain biomarkers or specific
diagnostic images, and incomplete records of symptoms17. Although ETs
are theoretically expected to adhere to the same eligibility criteria as RCTs,
within the “target trial framework,”12 to select appropriate patient groups
and extract relevant data from EHR for efficacy evaluation, the
discrepancies16,17 between RCT standards and EHRdata present a challenge
in executing an ET for estimating treatment effect19–25. Although state-of-
the-art ET methods26,27 have incorporated AI to balance confounders and
streamline patient selection criteria, their primary focus has not been on
enhancing the accuracy of estimation. Furthermore, their performance in
efficacy estimation—both in terms of direction and level—remains
untested.

This study introduces a novel framework for predicting one of the key
metrics in prioritizing repurposed drugs—efficacy direction6,7—which
assesses whether initiating the repurposed drug is likely to be beneficial
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compared to the standard of care. Specifically, the framework integrates
drug-target prediction and EHR-based ETs to derive a surrogate measure
for assessing drug efficacy direction based on HF prognostic markers. For
drug-target prediction, we propose a novel model that leverages drug che-
mical compositions, protein sequences, and heterogeneous biomedical
knowledge bases, evaluated against the BETA28 benchmark. For ET, we
conducted virtual clinical trials using a general emulation protocol to esti-
mate the probability of abnormal lab results forHFprognosticmarkers. The
final efficacy direction prediction will be generated based on the integration
of predicted novel drug targets with an odds-ratio-based normalization
derived froma logistic regressionmodel for abnormal prognostic biomarker
risk estimation based on ET. To evaluate the proposed framework, we
manually identified 17 repurposed HF drugs from 266 phase 3 RCTs—7
with a beneficial effect and 10 without. Our analysis encompassed 11 HF-
related prognostic markers: B-type Natriuretic Peptide (BNP), N-terminal
pro-BNP (NT-proBNP), Troponin T (TnT), Troponin I (TnI), Renin,
Aldosterone, Estimated Glomerular Filtration Rate (eGFR), C-Reactive
Protein (CRP), Blood Urea Nitrogen (BUN), Creatinine, and Hemoglobin.
Additionally, we considered two patient cohorts—HF with preserved
ejection fraction (HFpEF) andHFwith reducedejection fraction (HFrEF)—
as well as HF medications (ACE inhibitors, Beta-Blockers, Angiotensin II
Receptor Blockers, andLoopDiuretics) and biological factors (e.g., sex). The
proposed framework significantly improved predictive accuracy compared
to traditional EHR-based ET methods. Notably, While EHR-based ET can
estimate both the magnitude and direction of treatment effects using odds
ratios derived from the logistic regression model, our focus is solely on
predicting efficacy direction.

Results
Proposed framework—integration EHR-based emulation with
drug-target prediction
Our proposed an efficacy direction prediction framework that integrates
drug-target predictionwith EHR-based ET. The process comprises four key
steps (refer to Fig. 1a for the study design): 1) identifying genes associated
with the disease (i.e., HF), 2) predicting drug targets based on HF-related
genes, 3) extracting the study cohort fromEHR, and 4) prediction of efficacy
direction based on ET and drug-target prediction.

In the initial phases, we developed an innovative algorithm for pre-
dicting targets. This algorithm is designed to use information from the
chemical structure of drugs, the sequence of proteins, and biomedical
relationships, with the aim of reconstructing the original knowledge graph.
This reconstruction facilitates the prediction of new potential associations
between drugs and their targets. In the subsequent stages, we employed a
trial emulation framework29–32 to predict the likelihood of achieving a
normal prognostic marker during follow-up when receiving a repurposed
drug, using a logistic regression model. We evaluated 11 HF prognostic
markers (i.e., NT-proBNP, BNP, TnT, TnI, Creatinine, BUN, eGFR,
Hemoglobin, Renin, Aldosterone, CRP) while adjusting for a wide range of
variables from the Mayo Clinic (MC) database, including three biological
factors—age, sex, and ethnicity—as well as various HFmedications such as
ACEIs, BBs, ARBs, and LDs. Additionally, we examined HF subtypes,
including HFrEF andHFpEF, and incorporated BASELINE cohorts, which
are specific cohorts required by the original RCTs. TheMCpatient database
includes a total of 59,102 HF patients. For statistical details, please refer to
Table 1. The flow of data generation for this study is detailed in Fig. 2. To
estimate the probability of a drug’s potential benefit in clinical trials (i.e., the
direction of efficacy) compared to the standard of care, we normalized the
odds ratio, derived from the logistic regression coefficient, and integrated it
with predicted targets. For a comprehensive explanation of these methods,
please see “Section Methods”.

Evaluation of the drug-target prediction model using the BETA
benchmark and prediction of 17 RCT drugs
In this section, we carry out two evaluations for our proposed drug-target
predictionmodel (depicted inFig. 1b): (1) an evaluationbasedon seven tests

and 344 tasks from the BETA benchmark, and (2) an evaluation focused on
predicting 17 drugs used in HF RCTs.

For the BETA benchmark evaluation, seven tests were performed to
test the model with different tasks, including general screening, target and
drug screening by category, identifying specific drugs and targets, and drug
repurposing for diseases. To compare ourmodel’s performance, we used six
state-of-the-art predictive models (DTINet33, bioLNE34, NeoDTI35,
DeepPurpose36, DeepDTA37, GraphDTA38) as baseline methods. The pro-
posedmethodperformedexceptionallywellwith an average general score of
96.1% ± 3.3% for Test 0, 86.5% ± 17.0% for Test 1, 92.6%± 8.0% for Test 2,
45.4% ± 26.2% for Test 4, 83.5% ± 9.5% for Test 5, 67.1%± 14.8% for Test 6
(see Fig. 3a). Our proposed method was outstanding, with 266 out of 404
tasks (65.8%) outperforming other methods across all seven tests (Supple-
mentary Fig. 4). It’s important to note that for test 4, we counted the average
precision for the top 10, 20, 50, and100,whichmade 80 tasks counted rather
than 20 tasks counted in the BETA. For each test, our proposed method
achieved excellent results with 10/10 (100.0%), 61/90 (67.8%), 66/
72(91.7%), 62/72(86.1%), 42/80 (52.5%), 17/40 (42.5%), 8/40 (20.0%).
Please refer to the SupplementaryFigs. 5–16 formoredetailed results in each
BETA tasks.

For the prediction of 17RCTdrugs for phase 3HF clinical trials (7with
a beneficial effect and 10without in the original RCTs), the predictions of 25
HF-related genes are displayed in Fig. 3b. Dexamethasone, thiamine B1,
ranolazine and are the top drugs predicted to have the most HF-related
genes, with 24/25, 20/25, and 15/25 genes, respectively. On the other hand,
Simvastatin, Warfarin, and Rosuvastatin have the least number of HF-
related genes, with only 2/25, 2/25, 2/25, and 1/25 genes, respectively. It is
worth noting that all these drugs are used for treating or managing medical
conditions related to the cardiovascular system. Specifically, Rosuvastatin
and Simvastatin work by reducing cholesterol production and increasing
clearance of LDL-cholesterol from the bloodstream by inhibiting HMG-
CoA reductase, an enzyme involved in cholesterol synthesis. Regarding
genes, NOS3, ADRB1, and VEGFA have the most HF-repurposed drugs,
with 14/24, 12/24, and 11/24 drugs, respectively. Meanwhile, PTH, RAC 1,
and GRK2 are the genes with the least number of repurposed drugs, with
only 1/24 drugs for each.

EHR-based emulation and improvement by the integration with
drug-target prediction
To evaluate the efficacy of 17 repurposed drugs, we conducted a logistic
regression (Refer to Section Methods for details) across 4 cohort combi-
nations (BASELINE, ALL, HFpEF, andHFrEF) and 11 prognostic markers
(NT-proBNP, BNP, TnT, TnI, Creatinine, BUN, eGFR, Hemoglobin,
Renin, Aldosterone, CRP). The odds ratio was used to determine the
direction of efficacy when it was significantly different from 1 (e.g., p < 0.05)
in the logistic regression analysis of biomarker changes and drug intake
within the EHR-based emulation. Similarly, a normalized odds ratio was
combined with predicted novel targets to generate a probability score in our
proposedmethod, assessing the likelihood of a drug being beneficial. Please
note that, unlike our proposed method, which integrates the transformed
odds ratio with drug-target predictions for efficacy direction estimation, the
ET-based approach considers only thedirection inferred from theodds ratio
without incorporating its magnitude. Figure 4 highlights one of the overall
best-performing combinations, specifically the combination of the BNP
marker and BASELINE cohort, to represent the results of both the EHR-
based emulation and the emulation integrated with drug-target prediction.
The odds ratios and corresponding confidence intervals are reported in
Supplementary Tables 8 and 9. Our findings show that relying solely on the
EHR-based emulation does not yield satisfactory prediction for efficacy
direction. While, in some cases (e.g., BASELINE and BNP), drugs with no
beneficial effect (e.g., Aspirin) and those with beneficial effects (e.g., Pre-
dnisone) were accurately predicted. The majority—especially those with
beneficial effects—weremisclassified, resulting inhigh ratesof false positives
and negatives. However, integrating drug-target prediction significantly
improved prediction accuracy at both the individual drug and overall levels.
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For instance, in the BASELINE cohort and eGFR, the performance
improved from AUCROC= 65.71% and PRAUC= 77.14% to
AUCROC= 85.71% and PRAUC= 85.56%. For the complete set of cohort
and prognostic marker combinations, refer to Supplementary Figs. 17–20.

A direct comparison between EHR-based emulation and emulation
integrated with drug-target prediction is presented in Fig. 5. Panel (a)

highlights the best-performing cohorts for each prognostic marker, and a
paired one-tailed t-test indicates that the emulation integrated
with the drug-target prediction (average AUCROC= 83.32 ± 4.53%) sig-
nificantly outperforms the EHR-based emulation (average
AUCROC= 55.51 ± 10.18%) with a p-value of 5.045e-07. Panel (b) shows
the pairwise comparison based on prognostic markers and HF cohorts,
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where significant improvements (e.g., p-value < 0.01) are observed through
a paired one-tailed t-test. For similar combinations based on PRAUC, refer
to Supplementary Fig. 21.

In ourmodel, the statistical odds ratio is integrated with the number of
predicted targets to form a prediction score. We also evaluated a more
aggressive alternative (referred to as ignoreP), which uses odds ratios
without considering statistical significance. This may result in a higher or
lower prediction score compared to ourmethod, dependingon thedirection
of the nonsignificant effects. Comparative analyses show that our proposed
method achieved a better predictive performance than ignoreP with regard
to AUCROC and PRAUC (see Supplementary Fig. 25).

Improvement by considering interaction with HF drugs and sex
For each prognostic marker, we examined interactions between HF medi-
cations and sex, emphasizing increases and decreases in performance (e.g.,
AUCROC) as shown in Fig. 6a. CRP, Creatinine, TnI, and BUN are the top
four markers with the highest number of improved predictions when
accounting for interactions with HF medications and sex. Out of the 136
improved interactions for each prognostic marker, 100% (28) of BUN
interactions significantly improved when integrated with the drug-target
prediction (P = 2.2e-16), 100% (28) of CREATININE interactions showed
significant improvement (P = 2.2e-16), and 75% (21) of CRP interactions
showed significant improvement (P = 1.185e-05).We also observed that the
top four markers showed more stable improvements compared to other
biomarkers, as indicated by Levene’s test (F = 40.4, P = 3.0 e-9), suggesting
significantly lower variance in improvement. PRAUC-based improvements
are presented in Supplementary Fig. 22. Figure 6b displays detailed drug-
specific improvements based on the four cohorts, demonstrating predic-
tions across all four cohorts. Additional results for other prognosticmarkers
can be found in Supplementary Fig. 23.

Discussion
To bridge the gap between RCT outcomes and those inferred from EHRs,
this study introduces a novel strategy for predicting one of the keymetrics in
prioritizing repurposed drugs for clinical trials—efficacy direction6,7 (i.e.,
whether the drug is beneficial compared to the standard of care)—through
the integration of biological and clinical insights. Our research addresses the
previously unexplored accuracy of using EHRs for drug discovery in the
adaptation of ETs26,27 with regard to the estimation of the direction of
treatment effect. By evaluating 17 drugs repurposed for phase 3 HF RCTs,
we highlighted the inherent limitations of trial simulations for efficacy
direction prediction based solely on EHR data. We advocate for a more
sophisticated approach based on the integration of simulations of RCTs and
drug-target prediction for repurposing HF drugs (Fig. 2).

In the following sections, we will discuss several aspects and issues
related to this study.

The gap between real-world evidence generation in clinical settings
(e.g., EHR) and the controlled environment ofRCTsmeans that EHR-based

Fig. 1 | An overview of the proposed framework. a illustrates the general pipeline,
starting with a search for relevant clinical trial drugs on ClinicalTrials.gov and
identifying genes using the DisGeNET48 database. With a list of repurposed trial
drugs and associated genes, the proposed drug-target prediction model predicts the
probabilities of drug-gene associations. We evaluate the efficacy direction of
repurposed drugs—beneficial (positive impact) or not—by integrating drug-target
prediction with an EHR-based emulation protocol that compares exposed and
unexposed groups using HF-related clinical tests. In this framework, the odds ratio,
derived from the logistic regression coefficient, serves as a predictive component and
is combined with predicted targets through a normalization transformation.
Importantly, while the odds ratio is used to estimate efficacy direction in the ET-
based comparison method, our proposed framework normalizes the odds ratio and
integrates it with predicted drug targets to generate a probability-like score, repre-
senting the drug’s potential benefit in clinical trials (i.e., efficacy direction) compared

to the standard of care. b provides details about the developed drug-target prediction
model, which leverages drug chemical structure, protein sequences, and a knowledge
graph to generate embedding layers for each biomedical entity. The biomedical
information for the same entity is concatenated to enhance prediction accuracy. For
instance, drug-related information, highlighted in red, is incorporated from
embeddings of drug-associated networks, such as drug-target and drug-disease
bipartite networks. The cost function is optimized by minimizing the weights
between reconstructed sub-knowledge graphs and the original graphs. Predictions
are derived from the reconstructed drug-target graph. c outlines the EHR-based ET
protocol developed for the study, consisting of seven core components: 1) Treatment
Strategy, 2) Treatment Assignment, 3) Eligibility Criteria, 4) Follow-up, 5) Con-
founders, 6) Outcome, and 7) Statistical Analysis. A graphical representation of each
component is provided.

Table 1 | Statistics of theHFpatients from theMayoClinic EHR

Variables # patient Prognostic
Markers

# patient

Age ± SD 54.0 ± 31.5 NT-proBNP 5845

Ethnicity Creatinine 58,350

Non-Hispanic White 52,329 BUN 58,315

Others 6674 Hemoglobin 58,160

Baseline HF drugs Aldosterone 2941

ACEI 26,719 BNP 36,733

BB 46,081 CRP 35,360

ARB 18,276 eGFR 53,784

LD 53,565 Renin 2674

HF subtypes TnI 5989

HFpEF 24,427 TnT 37,603

HFrEF 21,134 Repurposed drugs

Confounders Albuterol 28,652

Arrhythmias (including
baseline variations, Atrial
fibrillation, Flutter)

11,566 Amiodarone 15,805

Cardiac Arrest (including
history of)

726 Aspirin 41,504

Myocardial infarction
(past, prior)

4492 Cholecalciferol 12,502

Hypertension (including long-
standing)

19,955 Dexamethasone 26,010

Pulmonary hypertension 1680 Macitentan 200

Ischemic heart disease 10,298 Metformin 5142

Hypertensive heart and Renal
disease

1597 Methotrexate 642

Medications affecting heart
health

456 Mirabegron 400

Congestive heart failure,
unspecified

12,074 Prednisone 15,272

Renal Failure (including end-
stage, acute, and chronic)

7776 Ranolazine 834

Diabetes Mellitus (type 1 and
type 2)

9083 Rosuvastatin 7611

Sertraline 6060

Sildenafil 771

Simvastatin 9855

Thiamine 5370

# HF in total 59,102 Warfarin 20,501
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simulations cannot replicate RCT outcomes exactly6,18,39. Unlike existing
studies26,27,30 that aimed to improve data generation throughAImethods like
the propensity score (PS), our study sought to refine emulation through two
primary strategies: 1) incorporating biological insights via drug-target
prediction, and 2) stratification based on variable interactions (e.g., HF
medications and sex). Our approach demonstrated encouraging outcomes
in predicting efficacy direction, surpassing baseline ET methodologies.
While our experiment reported optimal results in “Improvement by con-
sidering InteractionwithHFdrugs andSex”, selecting the ideal combination
of interactions is not straightforward. Therefore, we believe that usingKG in
high-throughput drug screening could present a more viable solution.
Furthermore, utilizing a more precisely tailored stratified cohort could be
particularly advantageous for specific tasks in which the confounders and
interacting variables within RCTs are well-defined. Developing a more
sophisticated method to comprehend these variables is crucial for the
process of data generation from EHR.

While our evaluation focuses on efficacy direction rather than both
direction and magnitude, our ET implementation adheres to the same
causal analysis framework to estimate the likelihood of achieving normal
prognostic marker levels during follow-up with a repurposed drug. Unlike
conventional causal analyses focused on time-to-even—i.e., the time it takes
to reach an endpoint—Our study assesses the likelihood of achieving a
normal prognostic marker (“event”) during follow-up in patients taking a
repurposed drug. This approach alignswith our endpoint, which focuses on
changes in prognostic markers rather than mortality. Specifically, in time-
to-event analyses, time typically refers to when an event (e.g., death) occurs.
However, in our study, the timing does not necessarily capture the exact
point at which the biomarker status changes (e.g., from abnormal to nor-
mal). In clinical practice, the timing and frequency of biomarker testing are
often influenced by the patient’s clinical condition, physician decisions, and
resource availability. Therefore, rather than using a Cox or pooled logistic
regression model, which models the timing or hazard rate of an event, we
opted for a logistic regression model.

Conventionally, there are two complementary approaches to analyzing
causal effects in ET: Per-Protocol (PP) and Intention-to-Treat (ITT) ana-
lysis. PP analyzes only participants who complete the study and adhere to

the treatment protocol, while ITT includes all randomized participants,
regardless of adherence or study completion. ITT-based analyses are widely
used in EHR-based emulations and are advantageous for preserving ran-
domization and reducing bias30. However, patients and their providers may
often be more interested in the PP effect, as it provides insights into the
impact of continuous therapy adherence, which can guide treatment
decisions40. The PP approach is frequently used in noninferiority trials,
where the goal is to show that a new treatment is at least as effective as the
standard of care without necessarily proving superiority41,42. This makes PP
analyses a valuable tool for drug repurposing studies and better fits our
application scenarios for prioritizing drugs for real clinical trials. While we
prioritized PP-based emulation, we are also interested in ITT analysis.
Therefore, we present a comparison of PP-based and ITT-based emulation
in Supplementary Fig. 24, demonstrating a moderate level of consistency in
predictions between PPand ITT using EHR-based emulation. Additionally,
we observe a significant level of agreement in the predicted efficacy direction
when incorporatingDrug-Target Prediction into ET emulation. To address
the biases inherent in naïve PP analyses43, we employed IPW to adjust for
adherence using baseline covariates. However, we did not include time-
varying covariates43 (e.g., prognostic biomarkers) due to challenges specific
to EHR data, such as irregular timing and frequency of biomarker mea-
surements influenced by patient-specific factors and resource availability.
Splitting follow-up periods into fixed intervals would generate substantial
missing data, necessitating imputation and introducing potential bias. By
excluding time-varying covariates, we reduced imputation bias and
improved data completeness and precision but acknowledged a trade-off:
sacrificing some causal validity by not adjusting for post-baseline time-
varying confounders. This decision reflects a balance between achieving
reliable and stable estimates and maintaining accuracy in causal inference.
During our implementation of ET, we also encountered challenges in
defining adherence. Unlike RCTs, where adherence can be closely mon-
itored, EHR data relies on indirect measures like prescription records and
drug orders. In our analysis, adherence was defined based on these records
during follow-up: patients were classified as adherent (compliers) if drug
orders or prescriptions extended to or beyond the end of follow-up, and as

Fig. 2 | The flow of the data generation for the study.A detailed data processing flow is presented to show the corresponding data size and the number of patients resulting
from each processing step.
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non-adherent (noncompliers) otherwise. While this measure captures
ongoing treatment activity, it does not ensure that patients consistently take
their prescribed medications. To address this limitation, we incorporated
the frequency of medication orders as a proxy for ongoing drug use, cap-
turing how regularly HF-related drugs are prescribed during the follow-up.
Recognizing the limitations of accurately capturing adherence with EHR
data, we believe the frequency of medication orders serves as a practical
indicator of whether patients are likely to maintain therapy over time and
their level of access to medical facilities. This variable was incorporated into
our model to help mitigate the adherence and variations in medical access.

HF is a prominent health concern affected by a range of factors,
including genetics, environmental influences, and various chronic and acute
conditions44–47. The drugs we evaluated from phase 3 trials were specifically
chosen for their potential to address the underlying causes of HF and to
alleviate symptoms, targeting different HF categories such as HFpEF,
HFrEF, or HF in general. These trials often employed a variety of selection
criteria, taking into account the study’s goals, potential risks, and con-
founding factors. In our research, we utilized demographic information,HF
medications, HF subtypes and confounding variables to estimate the like-
lihood of achieving normal prognostic marker levels when taking a

repurposed drug through simulation. Additionally, we incorporated base-
line values of prognostic markers into our logistic regression model to
account for patients’ historical or current abnormal marker levels. This
approach aimed to adjust for pre-existing differences without excluding
individuals with abnormal baseline values, as such exclusions could have
introduced selection bias and reduced statistical power. Patients with
abnormal baseline values often represent a population with more severe
conditions or unique treatment trajectories. Excluding these individuals
could skew the analysis, potentially overestimating or underestimating the
true effect of the repurposed drug. By including baseline abnormal values,
we adopt a balanced approach that retains the full spectrum of patient
representation in the dataset while appropriately adjusting for differences
between exposed and unexposed groups. However, we recognize the lim-
itations of relying solely on baseline values, failing to capture the dynamic
nature of prognostic markers over time. Unfortunately, the challenges in
generating reliable time-varying data points remain due to the irregular
timing and frequency of biomarker measurements in EHR data. Future
work should explore the application of advanced modeling techniques to
extract and utilize time-varying data points while balancing trade-offs
amongdata completeness, reducedbias,more accurate causal inference, and

Fig. 3 | Evaluation of the proposed drug-target predictionmodel using the BETA
framework and predictions for 17 repurposed RCTdrugs. a illustrates themodel’s
overall performance across all seven tests within the BETA framework, demon-
strating that the proposed method significantly outperforms all baseline methods.
b showcases the prediction results for 17 repurposed RCT drugs based on the

proposed model. The AUC-ROC and PR-AUC curves are provided to demonstrate
the model’s predictive performance. Note: * indicates statistically significant
improvement tested with a paired one-tailed t-test, where * represents P-value <
0.05, ** for P-value < 0.01, *** for P-value < 0.001, and **** for P-value < 0.0001.
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generalizability. These refinements could enhance the precision and relia-
bility of causal inference in the context of observational data and better
emulate the conditions of randomized controlled trials.

The drug-target prediction process is essential for evaluating the
potential of repurposing drugs for new therapeutic uses. In prioritizing
genes that might be targeted by drugs, our proposed method utilizes
GDA scores48—derived from various scientific sources including the
volume of supporting literature—as criteria for gene selection, treating
all genes as equally in the prediction of drug-target relationships. Yet,
the relevance of specific genes should be assessed based on their role in
biological processes, such as those involved in pharmacokinetics and

pharmacodynamics, to tailor treatments more closely to individual
needs. For instance, previous research has indicated that genes like
AGT and HIF1A are notably linked to an increased risk of HFpEF in
individuals with chronic kidney disease49 and those suffering from
obesity and metabolic syndrome50, respectively. Although the sig-
nificance is based on the prediction of the potential novel drug-target
associations, it may be beneficial to evaluate these genes more com-
prehensively as they are discovered to play a more critical role in drug
development (e.g., AGT plays a central role in the regulation of blood
pressure51, and HIF1A has been implicated in the development of
cardiac hypertrophy and fibrosis at a low oxygen level52).

Fig. 4 | Evaluation of EHR emulation with and without the integration of drug-
target prediction. a displays all analyses conducted using the BASELINE cohort across
11prognostic outcomemeasures (NT-proBNP,BNP,TnT,TnI,Creatinine, BUN, eGFR,
Hemoglobin, Renin, Aldosterone, CRP). Two subplots are included: (i) EHR-based
emulation and (ii) EHR emulation with integrated drug-target prediction. Detailed
predictions for each of the 17 RCT drugs are shown, along with the overall AUC-ROC
and PR-AUC for all drugs. Additionally, b presents analyses based on BNP, the best-
performing prognostic outcomemeasure, across 4HFpatient cohorts (BASELINE,ALL,

HFpEF, HFrEF), with two subplots: (i) EHR-based emulation and (ii) EHR emulation
with integrated drug-target prediction. Please note, for (i) EHR-based emulation, while
the odds ratio derived from the logistic regression coefficient can be used to estimate both
the magnitude and direction of treatment effects, we focus solely on estimating the
direction to alignwith the objectives of this study. Similarly, (ii) For EHR emulationwith
integrated drug-target prediction, our model predicts the likelihood of a drug being
beneficial compared to the standard of care.
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Our study was conducted solely based onMC data, but there are more
sophisticated approaches that can be explored by leveraging multiple EHR
sources. There are two potential directions to consider. Firstly, utilizing
integrated EHR databases, such as All of Us53, could offer a feasible solution
to analyze a large patient cohort. However, this approach may introduce
potential bias as the factors used to pull the cohortmay vary across different
participatinghospitals. Secondly, sharingmodels, like federated learning54,55,
could be employed, where separate models are built with a selected set of
hospitalswithin an existing researchnetwork, such as PCORnet56.However,
this approach may require additional effort in data processing and could
face common challenges, such as the competitive nature of maintaining

advantages among participating sites57,58. Furthermore, although a more
advanced ad-hoc linearmodel could be utilized to select the combination of
the cohort andpotentially achieve better predictionperformance,wedidnot
include it in the results section due to concerns about overfitting and lack of
generalizability.

The focus of our study was to assess whether a drug is likely to be
beneficial—evaluating the direction of efficacy rather than estimating
treatment effects. Treatment effects encompass both magnitude and
direction. Given the diversity of clinical trial endpoints, estimating treat-
ment effects across a large number of drugs poses challenges in feasibility
and rigor. This process requires access to complete published analyses and

Fig. 5 | Comparison of AUCROC between the EHR-based emulation and the ET
integratedwithdrug-target prediction. adisplays thecomparison for eachprognostic
outcomemeasure, with a focus on the best-performingHF cohort, where the EHR-based
emulation is highlighted in red, and the ET integrated with drug-target prediction is
highlighted in blue. b shows the comparison based on (i) outcomemeasures and (ii) HF

cohorts, respectively. As shown in (b), a significant improvementwas observed in the ET
integrated with drug-target prediction. Note: * indicates statistically significant
improvement tested with a paired one-tailed t-test, where * represents P-value < 0.05, **
for P-value < 0.01, *** for P-value < 0.001, and **** for P-value < 0.0001.
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the availability of corresponding clinical endpoints in EHRs. However,
certain endpoints or outcomes are often missing from routine clinical
records. For example, exercise-based measurements and functional
assessments (e.g., Change in 20 Watt Exercise Pulmonary Vascular

Resistance in NCT02885636) are typically recorded only in clinical trials
and not in standard EHRs. Replacing them with surrogate or proxy end-
points (e.g., alternative HF prognostic markers) or excluding such studies
introduces challenges in the interpretation and justification of causal effects,

Fig. 6 | Results of incorporating interactions betweenHFdrugs and gender in the
proposed method (ET integrated with Drug-Target Prediction) for the top four
prognostic markers that yielded the highest number of improved predictions.
a Illustrates the performance of predictions based on various interaction combi-
nations for the top four prognostic markers: (i) CRP, (ii) Creatinine, (iii) TnI, and

(iv) BUN. Red nodes indicate an improvement in AUCROC, while blue nodes
represent a decrease inAUCROCperformance. The size of each node corresponds to
the AUCROC score. b Provides a detailed view of the improved predictions for 17
drugs across the four prognostic markers.
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as well as the generalizability of the methods. In this study, we focused on a
feasible objective—predicting efficacy direction. Our framework can serve
as a high-throughput drug screening tool, helping to prioritize promising
drug candidates for further clinical investigation. Importantly, our method
does not replace clinical trials, as it is not designed to simulate clinical trials
for exact treatment effect estimation. We recognize an interesting future
direction- investigating whether incorporating biological insights (e.g.,
predicting novel drug targets or pathways) could enhance treatment effect
estimation. Additionally, while our initial case study based on 17 drugs
demonstrates promising predictive performance, drawing definitive con-
clusions about the method’s effectiveness at this stage would be premature.
Therefore, it is essential to evaluate whether the proposed method can
achieve similarly promising results across a broader range of diseases. This
assessment will refine themethod’s effectiveness and support its application
in drug repurposing for precision medicine in clinical settings.

Methods
Repurposing drugs for HF in phase 3 RCTs
We conducted a search on ClinicalTrials.gov using the keywords “heart
failure” and filtered by “completed” status and “phase 3” phase in order to
acquiredrugs undergone thephase3RCTs.Outof the total 266 clinical trials
gathered, two experts, Drs. Chen andDai, conducted reviews of each trial to
assess whether it was specifically designed for HF and evaluated the
repurposed efficacy. Their evaluations were based on the trial’s results or
related articles associated with the clinical trial number. The reviews pro-
vided by both experts were subsequently merged for comparative analysis,
and only those trials exhibiting consistent determinations were ultimately
included.After this review,we narrowed down the list to 80 clinical trials for
53 drugs. Subsequently, an additional filtering process was conducted to
exclude drugs thatwere not present in the BETAbenchmark. This led to the
identification of a list comprising 17 drugs. Out of the drugs we examined, 7
were determined to have beneficial impacts on HF, while the other
10 showed no beneficial effects. For a comprehensive list of repurposed
drugs, please refer to Supplementary Table 2.

Retrieve of the potentially druggable genes
Using the publicly available knowledgebase, DisGeNET48, we conducted a
search for genes associated with HF. DisGeNET is a comprehensive data-
base that contains genes and variants linked to human diseases, sourced
from GWAS catalogs, scientific literature, and animal models. By entering
the search term “heart failure” (UMLSCUI: C0018801) into the DisGeNET
platform, we obtained a list of 1499 results. We filtered them based on the
GDA48 score, which is a confidence score calculated by the number and type
of sources (level of curation, organisms). We identified 25 genes related to
HF that were also present in the BETA benchmark. For more information
on these genes, please refer to Supplementary Table 3.

Drug-target prediction
Given a heterogeneous network GðV ; EÞ, a set of vertices V (i.e., biomedical
entities), and a set of edges E (i.e., known associations), whereV aremultiple
types of vertices (e.g., drugs or targets) and E are multiple types of edges that
connect the vertices (e.g., drug-target associations), our objective is to predict
the potential new associations among V . Specifically, we have four types of
vertices, which are drugs D, targets T , diseases Ds, and side effects S, where
D 2 V;T 2 V;Ds 2 V; S 2 V . For each drug d, a chemical structure of
such a drug is given as strd . For each target t, a protein sequence of such a
target is givenas seqt .When there is a linkingedge existing in theG, thepair of
vertices is defined as u; vð Þju 2 V ^ v 2 V ^ ðd; tÞ 2 E� �

, while there is
an unknown linking edge, the pair of vertices is defined as
u; vð Þju 2 V ^ v 2 V ^ ðd; tÞ =2E� �

. Therefore, theproblemofdrug-target
prediction can be defined as, given a pair of a drug d and a target t, predicting
whether the pair d; tð Þjd 2 V ^ t 2 V

� �
is an existent association (referred

to as positive) or nonexistent association (referred to as negative).
We have developed a novel hybrid model for drug-target prediction

with the incorporationof two encodingnetworks (asdepicted inFig. 1b), the

D-network that learns the biological features from drug chemical structure
and protein sequence, the N-network that learns the topological features
from a set of bipartite knowledge graphs. Specifically, for theD-network, we
get the latent vectors (i.e., embeddings) generated from the encoder
RdrugðstrdÞ for the drug’s chemical structure. Similarly, the latent vectors for
protein sequences are obtained from the encoder RtargetðseqtÞ. In practice,
we adopted the encoder layers fromDeepPurpose36. For the N-network, we
get the embedding of a node v from the t-th layer as
f tðvÞ ¼P

eðv;v0 Þ2Ef
t�1ðv0Þ, f t�1 v0ð Þ embeddings of the neighborhood v0. In

practice, f t vð Þ is implemented based on NeoDTI35. We further updated the
embedding as f t νð Þ  Concatðf t�1 νð Þ;RÞ, where R is an embedding
learned from D-network. Specifically, R ¼ Rdrug when ν is a drug and
R ¼ Rtarget when ν is a target. The output of the designed network is C
which corresponds to the set of bipartite graphs. The loss function is
C¼λ1C1 þ λ2Cq . . .þ λkCk, where λ1 þ λ2 þ . . .þ λk ¼ 1. Ck the
objective function for the subgraph k, which is calculated:
Ck ¼

P
eðu;vÞ 2E jjs eð Þ � f uð ÞQNT f vð Þjj2, where s eð Þ is the weight of an

edge e and s eð Þ ¼ 1 if there is a link between the nodes u and v. f uð Þ is the
embedding of node u, Q and N are the edge projection function. For a
detailed description of the proposed model, please refer to Supplementary
Note 1. For the evaluation of drug-target prediction, please refer to Section
‘Evaluation of the Drug-Target Prediction Model Using the BETA Bench-
mark and Prediction of 17 RCT Drugs’.

Prediction of efficacy direction based on ET and drug-target
prediction
Since our objective is to approximate RCT conditions and evaluate the
efficacydirectionof adrug,we focuson twokey steps: 1)Estimating the odds
ratio—derived from the logistic regression coefficient—to quantify the
association between initiating a repurposed drug and the likelihood of
achieving a normal prognostic marker during follow-up in emulation, and
2) Incorporating a normalization transformation of the odds ratio along
with predicted novel targets to predict the prediction of efficacy direction.
Specifically, ET addresses the question: What is the odds ratio associated
with taking a repurposed drug and the probability of achieving a normal
prognosticmarker?To answer this,we conducted an emulationbasedonPP
and intention-to-treat ITT analyses for each of the 17 repurposed RCT
drugs, following an adaptation of the trial emulation framework29–32. The
analysis was stratified based on patients who strictly adhered (for PP) or did
not adhere (ITT) to the RCT protocol41,42. The EHRdata ofMCHFpatients
used in this study were obtained with appropriate approval from the MC’s
InstitutionalReviewBoard (IRB), underapproval referencenumber IRB:23-
009802. The need for informed consent was waived by the IRB as the study
has no direct interaction with participants.

The ET follows the protocol detailed in Supplementary Note 2, which
outlines key aspects such as eligibility criteria, treatment strategies, treat-
ment assignment, follow-up periods, confounders, outcomes, and statistical
analysis. Specifically, eligibility was predefined for general HF patients who
had received standard-of-care treatmentwithHFmedications prior tobeing
or not being administered the targeted repurposed drugs. HF patients were
identified using ICD-9 and ICD-10 codes (see Supplementary Table 4), and
four medications recommended by the AHA/ACC/HFSA guidelines47—
ACEI, BB, ARB, and LD—were considered as baseline HF medications for
the unexposed cohort (see Supplementary Table 5).

Patients were divided into two groups:
• The treatment group (exposed), consisted of patients who received

continuous HF medications along with targeted repurposed drugs
during the follow-up period.

• The standard-of-care group (unexposed), consisted of patients who
received continuous HF medications but did not receive any targeted
repurposed drugs during follow-up.

Time zero was defined as the point when the eligibility criteria were
met, and treatment was assigned by healthcare providers. Follow-up started
at time zero, with the standard-of-care group receiving any standard HF
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drugs and the treatment group receiving a targeted repurposed drug. We
predefined different minimum follow-up durations for each drug, based on
the original RCTs for the 17 drugs studied (see Supplementary Table 6 for
follow-up details).

Patients were stratified based on their HF clinical subtype, either
HFrEF or HFpEF. In addition to these static subtypes, we also incorporated
a dynamically stratified group called the BASELINE group, which was
defined according to the eligibility criteria specified in the RCTs (see Sup-
plementary Table 2 for details on the BASELINE cohort for each drug).
Beyond age, sex, and ethnicity, we included 11 comorbidities and 4 HF
medications as baseline confounders. Thesewere definedbydomain experts
(Drs. Li, Dai, Chen, and Bielinski) tominimize bias in this study. To further
minimize potential bias, we introduced two additional confounders: 1)
Length of HF medication consumption, reflecting the duration patients
receivedHFmedication prior to each prognosticmarkermeasurement, and
2) Frequency of medication orders reflects varying levels of adherence to
treatment and access to HF-related services. Longer durations of HF
medication use may result in greater improvements in biomarkers, while
differences in adherence and access to HF-related resources can also affect
prognostic marker outcomes. Including these two variables enables a more
precise evaluation of the repurposed drugs’ impact on biomarker changes.

We assessed 11 clinical tests commonly used as HF prognostic
markers44,47,59,60, including BNP, NT-proBNP, TnT, TnI, Renin, Aldoster-
one, eGFR, CRP, BUN, Creatinine, and Hemoglobin. The clinical results
were categorized as either normal or abnormal, based on standard clinical
ranges (see Supplementary Table 7 for biomarker categories60 and ranges).
In order tomitigate bias, we incorporatedbaseline prognosticmarker values
at time zero and accounted for the elapsed time—defined as the interval
from time zero to the latest biomarker measurement—into our model.
Please note that, as the timing and frequency of biomarker testing often
depend on the patient’s clinical condition, physician decisions, and resource
availability, including this elapsed time as confounders helps account for the
variability in measurement schedules and clinical decision-making. For
detailed cohort information, please refer to Table 1.

Given that the advanced method to compute the PS did not yield
improved results in balancing variables27, we adopted the traditional logistic
regression-based PSmatchingmodel to balance the confounders before the
analysis. Specifically, the PS is generated based on the logistic regression in
the prediction of the drugs, which is further used to generate the pair-wised
exposed/unexposed groups for analysis61. Additionally, to address
adherence-related biases, we employed IPW to weight patients based on
their adherence levels, categorized as either completing or not completing
follow-ups. Specifically, IPW was implemented using baseline covariates,
without incorporating time-varying variables (e.g., prognosticmarkers) due
to the substantial missing data generated when splitting follow-up periods
into fixed time intervals. Further discussion on this limitation is provided in
the Discussion section. We employed a logistic regression model, adjusted
for relevant confounders, to quantify the probability of achieving a normal
prognostic marker in exposed versus unexposed groups. The odds ratio,
derived from the logistic regression coefficient, represents the association
between initiating the repurposed drug and the likelihood of achieving a
normal prognostic marker.

To further predict the efficacy direction, we incorporated a normalized
transformation of the odds ratio and combined it with predicted novel
targets using the following equation: score ¼ Normð 1

1þe�coefficent �#targetÞ,
where#target is the number of positive targets predicted andNorm �ð Þ is a
normalized function. In our proposed model, only statistically significant
odds ratios (e.g., p < 0.05) are used to compute the prediction score, while
nonsignificant ones are treated as having a neutral effect to avoid over-
interpretation of uncertain emulation results. In contrast, the ignoreP
approach incorporates all odds ratios regardless of statistical significance.
This can impact the final prediction score even when the emulated effect is
not statistically significant. It is important to distinguish between the role of
emulation and our study objective: In the emulation process, the odds ratio
—derived from the logistic regression coefficient—serves as an estimate of

the association between taking a repurposed drug and the likelihood of
achieving a normal prognostic marker, capturing both its direction and
magnitude. However, for efficacy direction prediction, we transform the
odds ratio and integrate it with drug-target predictions to generate a nor-
malized probability-like score. This score does not quantify the magnitude
of treatment efficacy but instead represents the likelihood that the drug
exhibits beneficial efficacy compared to the standard of care.

To calculate AUCROC and PRAUC, we compared the normalized
prediction scores from the proposed model against the labeled drugs (i.e., a
beneficial effect or not).

Data availability
The biomedical knowledge graph, BETA, is available at https://github.com/
bioIKEA/IKEA_BETA_Benchmark. In accordance with the Mayo Clinic’s
data-sharing policy to protect human subjects, we are unable to share
patient-level EHR data directly. For any requests to access this EHR data,
please contact the corresponding author, N.Z.

Code availability
The used code is publicly available at https://github.com/bioIKEA/BETA_
Trial_Prediction.
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