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A B S T R A C T

It has long been known that pooling samples may be used to reduce the total number of tests required in
order to identify each infected individual in a population. Pooling is most advantageous in populations with
low infection (positivity) rates, but is expected to remain better than non-pooled testing in populations with
infection rates up to 30%. For populations with infection rates lower than 10%, additional testing efficiency
may be realized by performing a second round of pooling to test all the samples in the positive first-round
pools. The present predictions are validated by recent COVID-19 (SARS-CoV-2) pooled testing and detection
sensitivity measurements performed using non-optimal pool sizes, and quantify the additional improvement
in testing efficiency that could have been obtained using optimal pooling. Although large pools are most
advantageous for testing populations with very low infection rates, they are predicted to become highly non-
optimal with increasing infection rate, while pool sizes smaller than 10 remain near-optimal over a broader
range of infection rates.
1. Background

The advantages of pooled testing in applications ranging from dis-
ease screening to manufacturing quality assurance have long been
appreciated (Dorfman, 1943). Efficiently and practically containing vi-
ral outbreaks requires minimizing the total number of tests required to
uniquely identify every positive individual. This may be achieved using
pooled testing, given a sufficiently sensitive diagnostic test with an
acceptably low false-negative detection probability. When applicable,
pooled testing a large number 𝑁 of individuals can be achieved with
significantly fewer than 𝑁 tests, by initially screening pools containing
a mixture of samples from 𝑛 individuals, followed by further testing of
only the positive pools to uniquely identify each infected individual.
The latter tests may either be carried out by separately testing all
individuals in the positive first-round pools or by using a second round
of pooling to more efficiently identify each infected individuals in
the positive first-round pools. The present results provide optimal first
and second round pool size predictions for populations with infection
probabilities of 0.001 ≤ 𝑝 < 0.3 (corresponding to positivity rates
between 0.1% and 30%), as well as the range of infection probabilities
over which a given fixed pool size remains near-optimal.

The primary aim of this work is to provide practical guidance to
SARS-CoV-2 (COVID-19) testing centers regarding the efficient imple-
mentation of pooled testing. Specifically, the present predictions (which
are most conveniently summarized in Table 1) may be used to guide the
selection of an optimal pool size for a population with a given estimated
positivity rate and estimate the corresponding maximum number of

tests that will be required to identify every infected individual (ex-
presses as a percentage of the total number of tested individuals). Those
readers that are primarily interested in clinical applications of the
present results (rather than the associated mathematical derivations)
may skip the Methods Section and focus primarily on Table 1 which
contains the optimal first and second round pool size and testing
percentage predictions.

The present predictions are obtained assuming that the population
of interest has a uniform infection rate, which may be detected with
perfect accuracy and specificity. In spite of these idealizations, the
practical utility of the predictions are quantitatively validated by recent
SARS-CoV-2 pooled testing data (Lohse et al., 2020; Yelin et al., 2020;
de Salazar et al., 2020; Hogan et al., 2020; Ben-Ami et al., 2020; Bullard
et al., 2020). The results indicate that pooled testing can significantly
reduce the number of the SARS-CoV-2 tests required to identify each
positive individual, even in populations with infection rates above 10%,
although pooled testing is most advantageous in populations with lower
infection rates. The field testing validation studies also confirm that the
present predictions provide conservative testing efficiency estimates, as
non-uniform clustering of infections is predicted to lead to an increase
in testing efficiency, above that predicted assuming a uniform infection
rate.

The optimal pool size, 𝑛, for a population with a given infection
probability 𝑝 was first obtained by Dorfman (1943) (and has since
spawned numerous generalizations) (Aldridge et al., 2019; Brault et al.,
2020; Ben-Ami et al., 2020). Here Dorfman’s results are extended to
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yield practically useful predictions of the range of infection rates over
which a given fixed pool size remains nearly optimal, as well as the
significant additional efficiency that may be obtainable from using
a second round of pooling for populations with 0.001 ≤ 𝑝 < 0.1
(0.1% ≤ 𝑝% < 10%). For a populations with a very low infection
rate of 0.1%, the predicted 1st round optimal pool size is 32. The
practicality of using pools this large has recently been demonstrated
by showing that a standard RT-qPCR test for SARS-CoV-2 may be used
to detect a single positive individual in pools as large as 32, with
90% accuracy (corresponding to a false negative rate of 10%) (Yelin
et al., 2020), which is consistent with results reported in a recent
article in Lancet (Lohse et al., 2020). However, it is also important to
note that tests performed using such large pools are only predicted to
be beneficial for populations with a very low (and narrow) range of
infection rates, and become highly non-optimal for populations with
infection rates exceeding 1%. Thus, for example, for infection rate
near or exceeding 10%, optimal pooling efficiency requires using pools
smaller than 5.

In practice, these predictions may be used by initially choosing
a pool size that is optimal for the estimated infection probability in
the population of interest, and subsequently adjusting the pool size
to better match the actual infection probability. Although pooling
incurs delays associated with repeated measurements, those delays
are offset by the fact that fewer measurements are required to test a
given population. These predictions are expected to be most useful in
facilitating large scale screening and continuous testing of populations
with low infection probabilities to provide early warning of SARS-
CoV-2 resurgence, and thus enhance both public safety and economic
productivity.

2. Methods

The binomial distribution yields the following expression for the
probability that there will be 𝑘 infected individuals in a pool of sized
𝑛, drawn from a population with an infection probability of 𝑝 (Wilcox
et al., 2013)

𝑃 (𝑘) =
𝑛!𝑝𝑘(1 − 𝑝)𝑛−𝑘

𝑘!(𝑛 − 𝑘)!
(1)

When 𝑘 = 0 this reduces to the following expression for the fraction of
pools that are expected to contain no infected individuals, in keeping
with Dorfman’s original predictions (Dorfman, 1943)

𝑃 (0) = (1 − 𝑝)𝑛 (2)

This yields the following expression for the total number of tests 𝑁𝑡𝑒𝑠𝑡𝑠
required in order to identify every positive individual in a population
of size 𝑁 , when using a pool size of 𝑛.

𝑁𝑡𝑒𝑠𝑡𝑠 =
𝑁
𝑛

+𝑁
[

1 − (1 − 𝑝)𝑛
]

(3)

Thus, the predicted average percentage of tests that must be performed
in order to identify every infected individual in a population of size 𝑁
s 𝑇% = 100 × (𝑁𝑡𝑒𝑠𝑡𝑠∕𝑁). In other words, 𝑇% represents the average
umber of tests required to identify each infected individual in a
opulation of size 100, or equivalently 𝑇%×1000 is the number of tests

required to do so in a population of 100,000.

𝑇% = 100
[1
𝑛
+ 1 − (1 − 𝑝)𝑛

]

(4)

The optimal value of 𝑛 is that which minimizes 𝑇%, and thus may be
obtained by finding the roots of the following expression for the partial
derivative of 𝑇% with respect to 𝑛, for a given value of 𝑝.

− 1
100

( 𝜕𝑇%
𝜕𝑛

)

𝑝
= 1

𝑛2
+ (1 − 𝑝)𝑛 ln(1 − 𝑝) = 0 (5)

The above expression may be solved numerically using Newton’s
method. Alternatively, the optimal pool size may also be obtained
2

iteratively, using an initial guess for the pool size 𝑛0, inserted into the
right-hand-side of the following expression, to obtain a better estimate
of 𝑛 (where the ‘‘Round" operation rounds the result to the nearest
positive integer).

𝑛 ≈ Round
{

[

ln
(

1
1 − 𝑝

)

(1 − 𝑝)𝑛0
]−1∕2

}

(6)

If 𝑛0 is not very similar to 𝑛, then one may set 𝑛0 = 𝑛 and repeat
the process to obtain a better estimate of 𝑛. This iterative procedure
typically converges within a few cycles (whose convergence can be
most accurately quantified by removing the Round operation from the
right-hand-side of Eq. (6)). Note that the optimal pool size may also be
approximated using 𝑛 ≈ Round(1 + 1∕

√

𝑝) (Finucan, 1964)
The infected individuals in the positive first-round pools may in

some cases be more efficiently determined using a second round of
pooled testing. The average infection probability 𝑝2 in all the positive
first round pools is higher than that in the original population because
all the non-infected individuals in the negative first round pools have
been removed from the population of second round test samples. Thus,
the optimal second round pool size 𝑛2, pertaining to an infection
probability of 𝑝2, may be obtained as follows (using Eqs. (5) or (6)).

𝑝2 =
𝑝

1 − (1 − 𝑝)𝑛
(7)

𝑛2 = 𝑛(𝑝2) (8)

The above results imply that employing two rounds of pooled testing is
only advantageous for a population with a positivity rate less than 10%
(𝑝 ≤ 0.1), as the predicted value of 𝑝2 exceeds 0.3 at higher infection
rates. The following equation predicts the total number of tests required
to identify every infected individual when using two rounds of optimal
pooling.

𝑇%(optimal 2 round total) = 100
𝑛

+
[

1 − (1 − 𝑝)𝑛
]

𝑇%(𝑝2, 𝑛2) (9)

Note that 100∕𝑛 is the number of pools that were tested in the first
round (expressed as a percent of total number of tested individuals 𝑁),
and 1 − (1 − 𝑝)𝑛 is the fraction of positive first round pools, and thus
[1 − (1 − 𝑝)𝑛] 𝑇%(𝑝2, 𝑛2) is the number of tests required to identify all the
positive individuals in those pools, where 𝑇%(𝑝2, 𝑛2) is obtained using
Eq. (4) (with 𝑝 = 𝑝2 and 𝑛 = 𝑛2).

More generally, Eqs. (4) and (9) may also be used to obtain pre-
dictions pertaining the efficiency of non-optimally pooled tests, for a
population with a given average infection probability 𝑝, and any chosen
values of 𝑛 and 𝑛2.

3. Results

Table 1 contains optimal pooled testing predictions pertaining to
populations with uniform positivity rates ranging from 0.1% to 30%.
The 3rd column contains the predicted optimal first-round pool size
𝑛 (obtained using Eqs. (5) or (6)), and the 4th column contains the
resulting first round testing percentage 𝑇% predictions (corresponding
to averages over large test populations). The last two columns in
Table 1 pertain to predictions obtained when using a second round of
pooling to test all the positive first-round pools. For example, testing
100,000 individuals in a population with a positivity rate of 1% is
predicted to require only 20,000 tests when using one round of optimal
pooling, and the total number of tests may be further reduced to 15,000
when using a second round of optimal pooling. Moreover, the field test
validation studies described in the Discussion and Results Section imply
that these predictions represent upper bound estimates, as a population
with a non-uniform infection rate is expected require even fewer tests
that the above predictions.

Fig. 1 contains more detailed predictions pertaining to the aver-
age number of infected individuals in pools of optimal size, when

the overall infection probability ranges from 1% to 30%. Note that
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Table 1
Optimally pooled testing predictions.
Infection
probability (p)

Positivity
rate (p%)

Pool size
1st round (n)

Tests needed
1 round (𝑇%)

Pool size
2nd round (n2)

Tests needed
2 rounds (𝑇%)

0.001 0.1 32 6 6 4
0.002 0.2 23 9 5 6
0.003 0.3 19 11 5 8
0.004 0.4 16 12 5 9
0.005 0.5 15 14 4 10
0.006 0.6 13 15 4 12
0.007 0.7 12 16 4 13
0.008 0.8 12 18 4 13
0.009 0.9 11 19 4 15
0.01 1 11 20 4 15
0.02 2 8 27 3 23
0.03 3 6 33 3 30
0.04 4 6 38 3 34
0.05 5 5 43 3 39
0.06 6 5 47 3 43
0.07 7 4 50 3 49
0.08 8 4 53 3 52
0.09 9 4 56 3 55
0.1 10 4 59 3 59
0.15 15 3 72
0.2 20 3 82
0.25 25 3 91
0.3 30 3 99
Fig. 1. Predicted number of infected individuals in optimally sized pools obtained from populations with average infection rates ranging from 1% to 30%.
t (and below) an infection probability of 1%, essentially all of the
ositive pools are predicted to contain only one infected individual.
t higher infection probabilities a non-negligible number of positive
ools are predicted to contain more than one infected individual, but
evertheless most positive pools are predicted to contain only one
nfected individual. For example, even in a population with an infection
robability of 30%, about 34% of the pools of size 3 are predicted
o contain no infected individuals, while 45% contain one, and only
1% contain more than one infected individual. However, at this high
ate of infection pool testing is no longer advantageous, relative to
xhaustively testing every single individual, as indicated by the 4th
olumn in Table 1, which indicates that an average of 99 tests would
ave to be performed when optimally pool testing a population of 100
ndividuals that has an infection rate of 30%.

Figs. 2 and 3 contain graphical predictions pertaining to tests per-
ormed using either one or two rounds of optimal pooling, respectively.
ig. 2 shows the resulting optimal first round pool size 𝑛 (a) and

testing percentage T% (b) predictions. The inset panels in each figure
contain an expanded view of the predictions pertaining to populations
with infection rates less than 1% (𝑝 ≤ 0.01), and the solid curves are
3

optimal pooled testing predictions. The optimal pool size values shown
in Table 1 are obtained by rounding the graphical results to the nearest
positive integer. The dotted curves in Fig. 2b show the testing efficiency
predictions obtained when using various non-optimal pool sizes 𝑛0.
These predictions indicate that pool sizes of 5, 6, and 7 are expected to
produce nearly optimal testing efficiency in populations with average
infection rates of 2%–12%, 1%–8%, and 0.7%–6%, respectively (as
determined by requiring that T% remain within 3% of its optimal
value). The dotted curves in the inset panel in Fig. 2b illustrate the fact
that large pool sizes are only expected to be optimal over a very narrow
range of infection probabilities, and to rapidly become significantly
non-optimal with increasing infection probability.

Fig. 3, as well as the last two columns in Table 1, contain predic-
tions pertaining to the application of two rounds of optimal pooling,
performed on the same population of test samples. Specifically, the 5th
column in Table 1 contains the optimal second round pool size and the
last column contains the predicted average number of tests required to
determine all the infected individuals in a population of size 100 when
using two rounds of optimal pooling. The second round of optimal
pooling is performed by limiting the second round tests to individuals
in the positive first round pools.

The solid curves in Fig. 3 are optimal second round pool testing pre-

dictions. Fig. 3a shows the predicted optimal pool size, 𝑛2, that should
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Fig. 2. Optimal pool size a and testing percentage b predictions obtained when applying a single round of pooled testing. The dashed lines in b represent the testing percentages
obtained using three different non-optimal pool sizes.
Fig. 3. Predicted optimal pool sizes a and testing percentages b obtained when applying two rounds of pooled testing. The dashed and solid curves in b compare the predicted
testing efficiencies obtainable using one or two rounds of optimized pool testing, respectively.
be used in order to efficiently re-test all the samples from the positive
first round pools. The dashed and solid curves in Fig. 3b, as well as the
4th and 6th columns in Table 1, compare the first and second round
optimal testing efficiency predictions. Note that using a second round
of pooling is only predicted to be advantageous for populations with
positivity rates above 10%, and using two rounds of pooling becomes
increasing advantageous as the positivity rate decreases. For example,
for a population of 100,000 with a positivity rate of 0.1%, the predicted
number of tests decreases from 6000 to 4000 when using one or two
rounds of optimal pooling, respectively.

4. Discussion and summary

The primary results of this study are contained in Table 1, which
identifies the optimal first and second round pool sizes for a populations
with a given positivity rate (𝑝%). The key advantage of pooled testing
is the reduced cost (and supplies) required to test a given population.
Although pooled testing necessarily introduced time delays associated
with repeated testing cycles, it is expected that these delays will be
offset by the decreased turn-around time associated with the reduction
in the total number of tests required when implementing optimal
pooling.

Although the present theoretical prediction have not yet been fully
clinically validated, the accuracy of the predictions may nevertheless be
critically tested using comparisons with recently reported SARS-CoV-2
pooled test data obtained using non-optimal pool sizes. For example, as
recently reported in Lancet (Lohse et al., 2020), two rounds of pooled
tests for SARS-CoV-2 were performed on 1191 samples with an average
infection rate of 1.93%, using 1st and 2nd round pool sizes of 30 and
4

10, respectively. A total of 267 tests were required in order to identify
each of the 23 infected individuals in that population, corresponding
to 𝑇% = 100× (267∕1191) = 22.4%, which is quite close to the predicted
value of 𝑇% = 23.7% (corresponding to 282 tests) obtained using
Eq. (9) assuming the same infection rate and pool sizes. Moreover, the
present predictions imply that about 15 fewer tests would have been
required if more nearly optimal 1st and 2nd round pool sizes of 8 and
3, respectively, had been used to test the same population.

As another example, an early SARS-CoV-2 pool testing study used a
pool size of 10 to test 2888 samples obtained from a population with
an average infection rate of 0.07% (Hogan et al., 2020). These pooled
tests correctly identified the two infected individuals in this population
using a total of 312 tests, or T% = 10.8%, which compares very well
with T%=10.7% predicted using Eq. (4). Yet another validation of the
present predictions is obtained from recent test of 2160 samples from a
population with an infection rate of 0.23% using a pool size of 8 (Ben-
Ami et al., 2020), in which SARS-CoV-2 five infected individuals were
identified using at total of 311 tests, or T% = 14.4%, which compares
very favorably with T% = 14.3% predicted using Eq. (4). In both of
the above examples the present predictions imply that a substantial
additional gain in pooled testing efficiency could have been obtained
by using a more nearly optimal pooling strategy. Specifically, if the first
population (Hogan et al., 2020) were tested using optimal 1st and 2nd
round pool sizes of 38 and 7, respectively, the required number of tests
is predicted to decrease 𝑇% to 3% (from ∼11%), and in the second
population (Ben-Ami et al., 2020) the use of optimal 1st and 2nd round
pool sizes of 21 and 5, respectively, is predicted to decrease 𝑇% to 7%
(from ∼ 14%).

Even more interestingly, another SARS-CoV-2 study reported pooled
testing results for 2519 samples performed using a pool size of 𝑛 = 10

or 11 (de Salazar et al., 2020). A total of 1243 tests were required to
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identify every one of the 241 positive individuals in this population
with an average infection rate of 𝑝 = 241∕2519 = 0.096 (9.6%) (de
Salazar et al., 2020). In this case Eq. (4) predicts that a somewhat
larger number of 2519 × 𝑇%(0.096, 10)∕100 = 1853 tests should have
been required to identify every infected sample. The fact that only 1243
rather than 1853 tests were required suggests that a significant number
of the positive samples were clustered together in the 99 positive pools,
rather than more uniformly distributed over the predicted number of
approximately 160 positive pools. Thus, any non-uniformity in the
positivity rate (in a population with a given average positivity rate) is
expected to decrease the required number of tests below the predictions
shown in Table 1.

In a population with an infection rate of 0.1% the predicted optimal
pool size is 32, which is consistent with recently reported SARS-CoV-
2 testing sensitivities achievable using a standard RT-qPCR test (Yelin
et al., 2020; Lohse et al., 2020). In practice, an upper bound to the
pool size is dictated by the cycle threshold (𝐶𝑡) pertaining to samples
in the population of interest and the particular RT-qPCR test equipment
and protocols (Lohse et al., 2020; Bullard et al., 2020; Ben-Ami et al.,
2020). Importantly, a recent clinical study concluded that infective
SARS-CoV samples tend to have 𝐶𝑡 < 24 (Bullard et al., 2020), while
nother study indicated that even when diluted in pools of size 30 the
𝑡 of all SARS-CoV-2 positive pools remained below 30 Lohse et al.

2020). Thus, again suggesting that pools as large 30 may be used
o successfully detect all individuals with significant SARS-CoV-2 viral
oads and infectivity. More generally, once a maximum pool size is
stablished, then that maximum pool size should be used instead of any
arger optimal pool size appearing in Table 1. Moreover, when using a
on-optimal first-round pool size, then the optimal second round pool
ize should be re-calculated using Eqs. (7) and (8). However, when the
ptimal pool size listed in Table 1 is less than or equal to the maximum
ool size, then pooled testing efficiency is expected to improve when
sing the smaller pool sizes listed in Table 1.

Although it is often assumed that pooled testing is only useful for
opulations with infection rates below about 5%, the present results
ndicate that even when the infection rate is 10%, pooling can be
sed to decrease the number of required tests by approximately 40%
relative to individual testing), and a single round of pooled testing
emains advantageous for positivity rates up to 30%, as long as the
ssociated pool size is sufficiently small. Moreover, any variability of
nfection rates within a population with a given average infection rate
s expected to improve, rather than degrade, the efficiency of pooled
esting, as clustering of positive samples in fewer positive pools will
ecease the number of pools that need to be individually tested.
5
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