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Network oscillations across and within brain areas are critical for
learning and performance of memory tasks. While a large amount
of work has focused on the generation of neural oscillations, their
effect on neuronal populations’ spiking activity and information
encoding is less known. Here, we use computational modeling
to demonstrate that a shift in resonance responses can interact
with oscillating input to ensure that networks of neurons prop-
erly encode new information represented in external inputs to
the weights of recurrent synaptic connections. Using a neuronal
network model, we find that due to an input current-dependent
shift in their resonance response, individual neurons in a network
will arrange their phases of firing to represent varying strengths
of their respective inputs. As networks encode information, neu-
rons fire more synchronously, and this effect limits the extent
to which further “learning” (in the form of changes in synap-
tic strength) can occur. We also demonstrate that sequential pat-
terns of neuronal firing can be accurately stored in the network;
these sequences are later reproduced without external input (in
the context of subthreshold oscillations) in both the forward and
reverse directions (as has been observed following learning in
vivo). To test whether a similar mechanism could act in vivo, we
show that periodic stimulation of hippocampal neurons coordi-
nates network activity and functional connectivity in a frequency-
dependent manner. We conclude that resonance with subthresh-
old oscillations provides a plausible network-level mechanism to
accurately encode and retrieve information without overstrength-
ening connections between neurons.

oscillations | sequence learning | spiking resonance | forward replay |
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Oscillations in local field potential (LFP) largely reflect
coherent postsynaptic potentials among neurons (1). These

rhythms are behaviorally relevant, and their features are highly
predictive of cognitive processes, and plasticity, in underlying
neural networks (1–5). Network oscillations have long been
thought to promote plasticity by precisely timing firing between
pairs of neurons [i.e., driving spike–timing-dependent plasticity
(STDP)] (6, 7). However, it is still unclear whether specific net-
work rhythms are critical for specific neural computations and, if
so, why this is the case.

Neurons display complex behavior in response to oscillatory
input. Many neuronal subtypes show enhanced membrane volt-
age responses to periodic subthreshold inputs within narrow fre-
quency bands (8–10). Critically, the frequency at which neurons
resonate can shift in response to depolarizing or hyperpolariz-
ing inputs (11–13). Thus, in addition to simply integrating inputs
to generate an action potential, neurons are biophysically suited
to perform time-dependent computations, including input filtra-
tion, based on their periodicity.

The theta (4 to 10 Hz) rhythm is a prominent oscillation pres-
ent in mammalian brain networks (3). Within the hippocampus,

theta plays a central role in the function of place cells, which
encode spatial and contextual information (14, 15). Place cells
show several interesting features associated with theta-resonant
firing. First, their firing phase varies over time, relative to hip-
pocampal theta—a phenomenon called phase precession, which
occurs as animals move through their environment (6, 16, 17).
Second, sequences of place cell activation occurring during spa-
tial exploration are replayed during subsequent theta oscilla-
tions, and surprisingly, these replay events can occur in either the
forward or reverse direction (18–21). While the idea that theta
(and other hippocampal oscillations) plays a role in hippocampal
function is widely accepted, the underlying mechanisms for phase
precession, forward replay, and reverse replay—and the link of
these features to memory formation—are still largely unknown.

Networks of neurons that display resonance shifts (i.e., the fir-
ing response to subthreshold oscillating input changes as a neu-
ron is depolarized) show enhanced pattern formation and sepa-
ration when rhythmic inputs are present (22, 23). Here we show
that resonating networks have a firing pattern that is highly bene-
ficial for both encoding and retrieving patterns of external inputs.

Significance

Networks of neurons need to reliably encode and replay pat-
terns and sequences of activity. In the brain, sequences of spa-
tially coding neurons are replayed in both the forward and
reverse direction in time with respect to their order in recent
experience. As of yet there is no network-level or biophysi-
cal mechanism known that can produce both modes of replay
within the same network. Here we propose that resonance,
a property of neurons, paired with subthreshold oscillations
in neural input facilitate network-level learning of fixed and
sequential activity patterns and lead to both forward and
reverse replay.
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Using conductance-based model neurons that display resonance
with subthreshold oscillatory input, we show that networks will
organize the firing of neurons around an oscillation in a manner
that represents an external input. When synapses are able to
evolve via a STDP rule, an input will be reliably encoded within
the synaptic weights of a network. This leads to the subsequent
reproduction of the input-induced firing pattern in the absence
of the external pattern, for both static and temporally dynamic
inputs. We also show that resonance with subthreshold oscilla-
tions provides a network-level mechanism both for theta phase
precession and for forward and reverse replay, which reliably
happens across any resonant frequency. Finally, we find that sub-
threshold periodic input induces stable, highly organized func-
tional connectivity over the theta band, in both simulated and
in vivo networks. This work demonstrates that resonance with
subthreshold oscillations organizes neuronal firing phase with
respect to network rhythms and thereby facilitates the encoding
and retrieval of information.

Results
We investigated how resonance with subthreshold oscillations
affects pattern and sequence learning, using modeled networks
of neurons that receive three types of input (Fig. 1A). First, each
neuron in the network receives a unique level of external, direct
current (DC) indicated by the color map. Second, the entire
network receives uniform oscillating input (with modifiable fre-
quency and magnitude). Third, individual neurons receive the
summed presynaptic input from other neurons in the network.

Fig. 1. Input-dependent resonance shift allows for selectively activating
subsets of neurons. (A) Model neurons receive three types of input. Exter-
nal input is DC, which varies in magnitude with neuron identity, repre-
sented by the color mapped arrow. All neurons receive an identical oscil-
lating input, represented by the sine wave. Additionally neurons receive the
synaptic inputs from neighboring neurons according to network connectiv-
ity and synaptic weights. (B) The input-dependent resonance shift manifests
as a broadening of the resonance curve with increasing excitation of the
neurons. (C) Broadening of the resonance curve also occurs for changes in
synaptic weights, which provides for selective activation of subsets of neu-
rons based on synaptic coupling. Dashed lines show the frequencies corre-
sponding to the raster plots in D–F, which show the divergent activation for
frequencies between 12 and 16 Hz. Error bars, ±SEM.

The weights of individual synapses evolve via STDP across the
learning phase of simulations.

Input-Dependent Resonance Shift Allows for Selective Activation of
Subsets of Neurons. The neurons in the model display input-
dependent resonance shifts (Fig. 1B). A neuron will respond to
a wider range of oscillation frequencies if it receives a larger DC
input. There are two main regimes apparent in the resonance
profile: (i) a 1:1 regime where the neuron fires one spike per
cycle at low frequencies and (ii) a 1:2 regime where the neuron
fires every other cycle at high input frequencies. For an oscilla-
tion of 0 Hz (i.e., in the absence of any oscillation), an additional
DC current is added to the DC input so that neurons receive
the same total input magnitude as when an oscillation is present.
This case does not lead to neuronal spiking.

The broadening of the resonance response occurs within net-
works as well (Fig. 1C). To show this, we formed three clusters
within a network with varying intracluster coupling (0.2, 1.0, and
1.4 mS/cm2), while keeping intercluster coupling constant. This
leads to groups with high (green), moderate (light blue), and
low (dark blue) synaptic input. The raster plots in Fig. 1 D–F
show network activity at 12, 14, and 16 Hz and demonstrate how
increasing the frequency of the oscillation provides for selective
activation of clusters with stronger coupling.

Networks Learn Patterns of External Input and Reproduce the
Reverse. To investigate the basis of learning through synaptic
plasticity in this model, we had networks encode a pattern of
external input (a set of DC inputs with varied magnitude across
the network) to connections (Fig. 2). We monitored the phase
at which neurons fired relative to the oscillations, as a func-
tion of their input magnitude. The simulations were split into
five phases: before the input pattern (red in Fig. 2B), during
patterned input (yellow), after pattern learning has saturated
(green), and two subsequent replay periods (replay periods 1
and 2; with and without prior patterned DC input). During
the period before the input pattern and the replay periods, all
neurons received the same moderate DC input and STDP was
disabled. The first replay period shows the effect of learning
the input pattern, and the second shows the effect of playing
the stored pattern back (i.e., no input pattern is present) with
active STDP.

The raster plots in Fig. 2A show the evolution of firing phase
across each period of the simulation. The color indicates the
magnitude of input current a neuron receives, and neurons are
sorted by this value, with highly activated neurons having a higher
input rank. Before any input, neurons fire randomly over a nar-
row band of phases (Fig. 2A, Far Left). The input pattern leads
to organized firing with highly activated neurons firing at ear-
lier phases (Fig. 2A, Inner Left),with the neurons receiving larger
current firing earlier on the oscillatory cycle and neurons that
receive smaller DC input following, with the range of firing
phases being determined by the spread of activating input (Fig.
S1). This variable phase locking is a well-known phenomenon
observed during synchronization of weakly forced oscillators
where there is a small detuning of mutual frequencies of the drive
and the oscillator (for example, see ref. 24). The neurons in reso-
nance behave as oscillators, and their specific frequency depends
on the properties (height and width) of their resonance curve,
the shape of which is in turn contingent on the magnitude of DC
input (Fig. 1B).

As the pattern is learned, the overall phase shifts, but neu-
rons return to firing at a uniform phase, independent of their
DC input (Fig. 2A, Center). This convergence is due to the uni-
versal learning rule, which mimics STDP (25), where the synapse
is being strengthened (or weakened) when the presynaptic neu-
ron fires within a narrow window before (or after) the postsy-
naptic neuron. As long as the neuronal pair fires in an ordered
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Fig. 2. Resonating networks learn by mapping input patterns to synaptic
weights. (A) Raster plots show the relationship between the phase of firing
and the external input to the neuron. Black lines show the trace of the oscillat-
ing input, and the color of the rasters shows the DC input to the given neuron.
Neurons are sorted by their input rank. Subpanels in A correspond to before
DC input distribution is applied (pre-), with DC input distribution (input),
after learning has saturated (post-), after learning/no DC distribution (replay
1), and after a second period of learning with no DC distribution (replay 2).
(B) The relationship between firing phase and DC input varies between neg-
atively, positively, and not correlated for different epochs of the simula-
tion. Data are averaged over 10 cycles of the oscillation. Error bars =±SEM.
(C) Transitioning from the input pattern-depending firing phases to syn-
chronous firing is gradual. Lines trace the firing phase of 12 neurons with vary-
ing input magnitudes across time. The horizontal bars above indicate when
the external input and learning are present (white, input but no learning;
black, learning and input; gray, no input and no learning).

sequence, the corresponding synapse gets systematically poten-
tiated or (weakened), leading to increased synaptic input to the
neuron having lower DC input. When synaptic input offsets the
difference in DC input between the two neurons, the neurons fire
simultaneously, resulting in the termination of synaptic potentia-
tion (depression). For this process to be effective, the time length
of the EPSP has to be on the order of 1/f , where f is the oscilla-
tion frequency. For theta frequencies, this constitute a time con-
stant of 100 to 300 ms, roughly corresponding to an activation
time constant of NMDA receptors (26). However, if the reactiva-
tion happens at higher resonant frequencies, as shown in the next
section, this activation time constant can be significantly smaller.

When learning is suspended and the external input pattern
is removed and all neurons receive the same intermediate DC
input, the network shows the reverse pattern of activation (Fig.
2A, Inner Right), as now the relative patterns of cellular input are
dominated by synaptic currents. After a second period of learn-
ing (but with a uniform external input), the network returns to
firing at a uniform phase, effectively erasing the stored pattern
(Fig. 2A, Far Right). The above relationships are summarized in
Fig. 2B as we plot relative phase of neuronal spiking as a func-
tion of their DC input magnitude for each phase described above
(red, before input pattern; gold, input pattern; green, after learn-
ing saturates; blue, replay of stored pattern; violet, replay after
erasure). Fig. 2C depicts the time course of the evolution of firing
phase for 11 neurons having different DC input values. The bars
below indicate the timeline when input and learning are present

(white, input but no learning; black, learning and input; gray, no
input and no learning).

The precise firing phase versus input relationship is dependent
on total input to neurons being subthreshold; superthreshold
input disrupts this relationship and impedes subsequent learning
(Fig. S2). On the other hand, the sign of the current in oscillatory
drive does not affect the observed results. Namely, if an oscilla-
tion is purely hyperpolarizing, the same pattern of phase orga-
nization is observed (Fig. S3). The critical components to this
learning and replay mechanism are resonance at the single neu-
ron level and the presence of a subthreshold oscillation (Table
S1). The LFP is a complex oscillation with a waveform that super-
imposes multiple frequencies. For example, sharp-wave ripples
are composed of a high-frequency ripple riding on top of a lower
frequency sharp wave (27). We tested the robustness of this input
learning mechanism to a complicated waveform combining 6 Hz
and 120 Hz oscillations (Fig. S4A). The input versus phase rela-
tionship and pattern reversal after learning were both repro-
duced with this waveform.

Stored Patterns Can Be Replayed for Any Resonant Frequency. To
demonstrate the generality of the pattern storage and replay
mechanism, we introduce a second conductance-based neuronal
model based on classic Hodgkin–Huxley (HH) dynamics (28).
This model neuron displays spiking resonance in response to sub-
threshold oscillating input in the gamma band between 40 and 90
Hz (Fig. S5), which is well above the resonance band of the pre-
vious model. For ease, the neuronal models will be referred to
as Ks for the neuron that resonates in the theta band and HH
for the gamma-resonating neuron. In Fig. 3 we show that pat-
terns stored during resonance at one frequency (theta band in

Fig. 3. Replay of stored pattern occurs independent of neuronal model and
frequency band. (A) Input-induced pattern of firing phase for a network
of Ks neurons driven with a 6 Hz oscillation. (B) Reversal of pattern during
replay after learning for a network of Ks neurons driven by a 6 Hz oscillation.
(C) Reversed pattern replayed by a network of HH neurons at 60 Hz. All
raster plots include spike from 10 cycles of the oscillation, and the color of
a neuron’s raster indicates the magnitude of DC input it gets in a pattern.
(D) Firing phase versus DC input relations for the three above cases (red→
Ks neuron before learning, green→ Ks neuron replay, blue→ HH neuron
replay). Error bars = ±SEM.
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our case) will be replayed at a higher frequency (gamma band)
in a similar reverse firing order. Here, synaptic weights (and cor-
responding adjacency matrix) taken from a network of Ks neu-
rons after a pattern was learned are used to connect a network
of HH neurons (after adjustment for differences in excitability;
see Fig. S6). HH networks replay a pattern on a similar phase
range as a Ks network, though with higher variability for late fir-
ing neurons. This result further indicates that the described res-
onance mechanism is very robust to frequency modulation that
may occur, for example, during cycles between active behavior
and rest.

Pattern Learning Saturates Naturally in Resonating Networks. The
results described above indicate that neuronal firing phases
rapidly converge during learning and that this process mini-
mizes the firing phase difference between neurons. This behav-
ior should result in two interesting phenomena: (i) synaptic
strengths will stop changing when the phases converge, and
(ii) input differences between neurons will map onto their synap-
tic weights. To test these effects, we presented an input DC pat-
tern to network for a long time period and tracked the time
course of synaptic change. If the learning rate (the magnitude of
synaptic change corresponding to ∆t = 0) allows, both the maxi-
mum (Fig. 4A) and mean (Fig. 4B) synaptic weight will saturate
before the end of the simulation. Regardless of learning rate,
there is a large increase in synaptic change followed by a grad-
ual decline to no change in synapse strength (Fig. 4C). The time
of peak synaptic change is delayed for slower learning rates. Note
that the input pattern is the same for all conditions in Fig. 4 A–C).
Both the final mean synapse strength (Fig. 4D black) and time it
takes to saturate (Fig. 4D red) depend on the range of currents in
the external pattern. The time to saturation is the time it takes for
the mean change in synaptic strength to fall permanently below
5× 10−6 mS/(cm2s).

Fig. 4. Learning saturates naturally after input pattern is completely
mapped to synapses. Saturation of learning reliably occurs given that the
learning rate is high enough for the given time. Both maximum (A) and
mean (B) synaptic weight saturate. Line color indicates network learning
rate. (C) The majority of synaptic change occurs early during the learn-
ing period and then gradually decreases to zeros. (D) Final mean synapse
strength and time until learning saturates depends on the spread of the
input distribution. Error bars = ±SEM.

Fig. 5. Input pattern maps to both synaptic inputs and outputs. After
learning, input strength (black) is anticorrelated with input magnitude of
a neuron in the pattern, and output strength (red) is correlated. Error
bars = ±SEM.

Saturation of learning occurs when the input pattern is fully
mapped to the synaptic weights in the network, a phenomenon
quantified in Fig. 5. The mapping of the input pattern is reversed
in the synaptic weights. Highly activated neurons, which fire at
an earlier phase, strengthen outward connections (black trace)
while weakening inputs (red trace). Neurons given lower exter-
nal inputs do the opposite, strengthening inputs and weakening
outputs. This leads to the external input pattern and the synaptic
input pattern being complimentary, leading to all neurons receiv-
ing the same net input.

Overall, neurons with the lowest DC current within the input
pattern strengthen inputs more than the rest of the network,
while highly activated neurons do the opposite. The new pat-
tern of synaptic connectivity is complementary to the input
pattern, which leads to all neurons firing at the same phase.
Synchronous firing terminates learning, because as spike–time
differences between neurons approach zero, there is no net
synaptic change (simplified in our model as zero synaptic change
for ∆t < 1.5 ms). When the external input is removed, the com-
plementary synaptic input distribution lead to a reversal in firing
order from the input pattern (see Fig. 2A in previous section).

Resonance with Subthreshold Oscillations Facilitates Sequence Learn-
ing and Replay. Next we investigated whether we can use the
observed resonance shifts to store sequential neuronal activa-
tion to model the phenomenon of sequential replay following
experience (14). Sequences were generated by delivering a slowly
varying current to sequentially activate subsets of neurons (Fig.
6A, solid lines), with each group resonating with the oscillat-
ing current in turn. This current is to model the preferential
activation of subpopulations of place cells as an animal tra-
verses a series of spatial locations. The asymmetry in its shape
is to model the forward approach of the animal to a given loca-
tion. It also provides temporal input relationships between neu-
rons, to strengthen connections between neurons activated in a
prior location and those activated in the current location. During
the course of sequence presentation, groups of neurons display
dynamic phase relationships (Fig. 6 B and C), where neurons that
are highly activated fire earlier. For a single group, during the ris-
ing phase of activation, the firing phase will move earlier for each
cycle of the oscillation (i.e., firing phase precession is observed).
Between groups, those that are at peak activation will fire at ear-
lier phases than less activated groups. These phenomena result
from the relationship between activation and firing phase (Fig.
6D) and the result of the input-dependent resonance shift (Fig.
1A). The activation sequences were presented to the network 10
times, during which synapses were allowed to evolve using the
same STDP-based learning rule as before.
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Fig. 6. Sequential activation of network subgroups leads to phase preces-
sion through time. (A) Networks were sequentially activated by a slowly
varying depolarizing current delivered to subsets of neurons (solid lines;
color indicates group). Spiking activity of each group is represented by the
raster plots of different colors. Neurons are sorted on the y axis based on
their lattice location, such that neurons closer on the y axis are more likely
to be connected. (B and C) At the transition between the activation of two
groups, phase order changes so that the neurons receiving the highest acti-
vation always fire at an earlier phase, leading to a phase precession through
time. This is shown (B) in relation to the activation of the groups and (C)
with reference to the oscillation. (D) The activation versus phase relationship
shows that neurons fire earlier and with less variability with more depolar-
izing input. Error bars = ±SEM.

After this learning phase, the sequence can be reproduced
in both the forward (Fig. 7B) and reverse directions (Fig. 7A).
Both types of replay occur under different dynamical conditions.
Reverse replay occurs when the whole network is depolarized
to resonate with the oscillating input, but all neurons are acti-
vated to the same extent (i.e., each neuron receives the same DC
input). This is due to the fact that neuronal groups in the end of
the sequence receive larger overall input than groups activated
at the beginning due to asymmetry in connection strengths. This
results in an earlier phase of activation when the network res-
onates with the oscillatory current. In contrast, forward sequen-
tial replay occurs when the network is driven by external noise,
in the absence of an oscillation. The neurons that fire early in the
sequence subsequently depolarize neurons at the adjacent loca-
tion, making them more prone to fire. Summary data are shown
in Fig. 7C for reverse replay firing phase among the five groups.
During reverse replay, groups activated earlier in the sequence
reliably fire at a later phase of the oscillation (red trace). With-
out any learning (i.e., without STDP), groups generally fire at
the same phase of the oscillation (black trace). During forward
replay, the feed-forwardness of the intergroup connections dom-
inate. The original firing order of the groups is reproduced, and
early groups fire before late groups (Fig. 7D, red trace).

Sequential learning leads to connections being strengthened
in the same direction of the sequence (feedforward) and weak-
ens connections in the reverse (feedback). Mean synaptic weights
between groups show strengthened connections in the direc-
tion of the sequence and weakened connections in reverse (Fig.
7E). This is quantified for the entire network by the direc-
tion index, which is (

∑G−1
i=0 wi,i+1 −wi+1,i)/(

∑G−1
i=0 wi,i+1 +

wi+1,i), where wi,i+1 is the mean synaptic weight of connections
between groups (Fig. 7F). Critically, the feed-forwardness of
the connections varies between groups and increases with every
sequence presentation.

Functional Network Structure Emerges in the Theta Band. We next
sought to compare the behavior of simulated networks with
experimentally observed pattern formation in the in vivo net-
works. Information representation and subsequent encoding
using STDP-type learning rules require stable spike–time rela-
tionships. In our model, resonance with periodic input leads to
stable spike–timing phase relationships. To quantify this effect,
we measure functional network connectivity and stability of the
observed functional relationships using metrics that were devel-
oped and validated in our laboratory (29) and compare it to
results of the same analysis on experimental data.

In networks driven by oscillatory input (a 0.3 µA/cm2 ampli-
tude sine wave with a 0.3 µA/cm2 DC offset) and background

Fig. 7. Learned sequences can be replayed in both the forward and reverse
directions. After a sequence is learned, (A) reverse replay occurs when a net-
work is driven by an oscillation and (B) forward when the network is driven
by noise. Raster plots follow the same organization as Fig. 6. (C and D) The
firing relationships between groups is stable across cycles and different from
groups without learning. (E) Synaptic connections between groups encode
the sequence direction between groups, while weakening the reverse direc-
tion. (F) The directionality of intergroup connections emerges gradually
after repeated sequence presentations, with increasing variations between
groups. Error bars = ±SEM.
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Fig. 8. Resonating networks have organized functional structure over a
narrow frequency band. Theta band resonance leads to a highly orga-
nized functional network structure. In simulated networks, spike–LFP coher-
ence (A), mean AMD z score (B), and functional network stability (C)
all dramatically increase between 4 and 10 Hz. This effect is robust to
noise, which is indicated by line color. (D) In vivo optogenetic stimula-
tion of hippocampal PV+ neurons lead to similar increases in spike–LFP
coherence and functional network stability at these frequencies. Error
bars = ±SEM.

noise, oscillatory input leads to highly organized functional net-
work structure between 4 and 10 Hz (Fig. 8). We quantified
functional connectivity in three ways: spike–LFP coherence,
mean average minimum difference (AMD) z score, and func-
tional network stability (29). Spike–LFP coherence, which rep-
resents the reliability of the time of spikes within the LFP
oscillation across the entire network, shows a noise-dependent
resonance effect for stimulation between 3 and 13 Hz (Fig.
8A). AMD z score and functional network stability are related
measures that are based on the pairwise relationships between
spike times of neurons across the network. The average sig-
nificance (z score) of AMD measures between neurons shows
a narrow resonance effect between 4 and 10 Hz, with a peak
effect at 6 Hz, which depends on the level of background noise
(Fig. 8B). Functional network stability, which captures how
similar AMD z scores are across time and reports the sta-
bility of spike–time relationships across pairs of neurons, dis-
plays a similarly narrow resonance effect between 4 and 10
Hz but maintains a near maximal value throughout this band
(Fig. 8C). We compare these results to the ones obtained when
we optogenetically stimulated in vivo hippocampal networks
(30). Rhythmic stimulation of parvalbumin-expressing (PV+)
interneurons in PV::ChR2 transgenic mice was used to ensure
that principle cells within the network were received subthresh-
old periodic inhibitory stimulation. Rhythmic optogenetic stim-
ulation of PV+ interneurons leads to significant increases in
both spike–LFP coherence and functional network stability for
frequencies between 4 and 10 Hz among the principle cells
within the network (Fig. 8D). This suggests that in vivo CA1
hippocampal network stably organizes its firing activity within
resonant frequency band of principal cells, while such orga-
nization is not observed when oscillatory drive is outside of
this range.

Discussion
We demonstrated in a biophysical model that shifting resonances
facilitate learning of static and sequential patterns in neural net-
works. Our model combines subthreshold activation of neurons
by stable and oscillating currents, which leads to firing in a nar-
row frequency band. The firing rate resonance of our model
neurons displays an input-dependent broadening that allows for
selective activation of subsets of neurons within a network. The
resonance effect also leads to detailed mapping of a firing phase
versus input relationship beneficial for the encoding of patterns
into synaptic weights and for the autonomous termination of
learning. The resonant effect at the single neuron level leads to
the emergence of highly organized spike–time relationships at
the theta band, which we have also shown in in vivo experiments.

The input-dependent broadening of the resonance curve in
firing rate (Fig. 1) allows for selective activation of subsets of
neurons within a network with increasing input frequency as has
been demonstrated in other computational models, indicating
this is a general property of neural networks with resonance (23).
This provides a mechanism for networks to change representa-
tions by shifting the pattern of input strengths or, alternatively,
by modulation of the oscillatory input frequency. Such a mecha-
nism would operate similarly for both externally generated (i.e.,
sensory input) and internal (i.e., stored representations within
synapses) inputs.

The mechanism we describe here can simultaneously promote
both forward and reverse replay of recently learned sequences in
neural networks, consistent with prior reports of replayed pat-
terns in both directions, across even short intervals of in vivo
recording (31). The reverse firing phase relationship and learning
saturation seen in our external pattern simulations together pro-
vide a plausible mechanism for the generation of reverse replay
events in vivo (Fig. 9). This mechanism relies on the fact that neu-
rons with high input fire at early phases of oscillatory drive when
in resonance. Before any synaptic change occurs, the firing phase
is governed by the distribution of the external inputs the neurons
receive. As learning progresses, neurons with the lowest exter-
nal input strengthen their synaptic inputs more than the rest of
the population, while highly activated neurons do the opposite,
as shown in Fig. 5. The emerging pattern of synaptic connectivity

Fig. 9. The model proposes a mechanism for the generation of reverse
replay. Reverse replay due to how an input pattern imposes a phase pro-
cession of neuron firing due with respect to the oscillation. As the net-
work learns the pattern, inputs to weakly excited neurons are strengthened
while those to highly excited neurons are weakened. When the pattern is
removed, inputs from synaptic connections dominate, and the reverse map-
ping of synaptic weights leads to reverse reactivation.
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is complementary to the input pattern, which leads to all neurons
firing at the same phase (i.e., in synchrony). Synchronous firing
leads to no net synaptic change and thus terminates learning.
As the complementary input pattern is now represented within
synaptic weights, in the absence of external input, neurons fire in
the reverse order.

The mechanism for the replay of the reversed pattern is not
dependent on the encoding frequency. Fig. 3 shows that a pat-
tern can be encoded in one frequency band (6 Hz) and replayed
at another (60 Hz), provided the neurons within the network can
resonate at both frequencies. Such a mechanism could explain
why sequential place cell activation during exploration (usually
in the context of theta oscillations) can lead to subsequent replay
events occurring in the context of higher frequency oscillations,
such as a sharp-wave ripples (19). Here we use separate mod-
els to generate spiking responses to inputs of varying frequen-
cies, but a neuron with resonances in both bands would behave
in a similar manner. The importance of this frequency general-
ity is that the encoding and replay of patterns in neural firing
often occur when different frequencies are dominating the LFP.
For example, sequences of place cell activation, and any synaptic
encoding, occur when theta is the most dominant frequency band
in the LFP, but instances of replay occur during sharp-wave rip-
ples where gamma (40 to 100 Hz) is most prominent (14, 19).

Learning through STDP requires either saturation or com-
pensatory plasticity mechanisms to counteract the inherent pos-
itive feedback effects on firing rate, leading to network instabil-
ity. Previous implementations of STDP have used boundaries on
synaptic weights, dynamic asymmetries between potentiation and
depression, or renormalization of synaptic weights to preserve
firing rates (reviewed in ref. 32). Our model proposes an alterna-
tive mode for preventing instability (Fig. 4). As the input pattern
is encoded into synaptic weights and the firing phase distribution
becomes more uniform, changes in synaptic weights decrease
and stop due to features of the STDP curve around ∆t = 0, which
is a reasonable fit to experimental data (25). While many plastic-
ity mechanisms exist both at the cellular and network level, the
current mechanism provides an elegant solution to the question
of when neural networks terminate learning of input patterns.

We have shown experimentally that predictions of our model
agree with observed, network-wide pattern formation in hip-
pocampal networks when channelrhodopsin-expressing PV+
interneurons are rhythmically stimulated (30). Within the hip-
pocampus, functional network structure emerges and stabilizes
during stimulation in the theta band (4 to 10 Hz) but not outside
of it. Using several methods of measuring functional connectivity
within networks, we found a robust resonance effect in the for-
mation of stable network structure (Fig. 8). This effect is due to
the organizing of the firing of the network around the phase of
the oscillatory input. The fact that this effect is reproducible in
various neuronal models (22) and also in vivo suggests that it may
be a general feature of activity organized in neural networks, to
optimize encoding of input patterns.

The input-dependent organization of network activity facili-
tated by resonance provides a network-level substrate for se-
quential learning (Figs. 6 and 7). When subsets of neurons have
overlapping activation curves, the relationship between input
and firing phase creates spike–time differences that are opti-
mized for encoding the sequence order. One requirement for
this result is that the activation of neurons needs to be skewed
in time—in other words, repolarization occurs more rapidly than
depolarization (Fig. 6A). This ensures that connections strength-
ened by a balanced STDP regime are feedforward with respect to
the sequence order, while feedback connections are weakened.
Within the context of hippocampal place cell sequences, there is
some evidence for this required skewness in activation (7, 33),
though in an experience-dependent manner (34). Replay is the
most direct readout of sequential learning. In the hippocampus,

replay of place cell sequences occurs both in the forward and
reverse direction (7, 18, 19, 21). These replay modes are repre-
sented in different proportions across behavioral states, with for-
ward replay being more prevalent during sleep (21, 35). In our
model, forward replay occurs when a network is driven by noise
(i.e., randomly activated), and reverse occurs when the network
is reactivated by oscillating input (Fig. 7 C–F).

Hippocampal place cells show a theta phase precession in their
firing, as an animal approaches a location, neurons that code for
a nearby place will fire in the troughs of the theta oscillation while
those that code for a far place fire near the peak (6). This phe-
nomenon has also been shown in the entorhinal cortex (16) and
in the ventral striatum (17). In our model, neurons in resonance
with an oscillating rhythm show a similar firing versus phase rela-
tionship.

Beyond the context of place cells, our model demonstrates
how a network can translate information between the two main
modes of neural coding rate (36) and phase (37–40) coding. Both
rate coding, where stimuli are represented by the firing rate of
neurons, and phase coding, where information is represented in
the time differences between spikes, are observed in nervous sys-
tems. Rate coding is simple and reliable, however it is limited in
its capacity for dynamic pattern separation (41). Our results pro-
vide a mechanism for the translation between these two coding
schemes and allow for networks to switch through neuromod-
ulation (23). Whether the mechanism described here mediates
information encoding in the brain remains an open question.
However, our present data suggest that such a mechanism has
explanatory value for many of the observed in vivo phenomena
surrounding learning.

Materials and Methods
Neuronal Network Model. We use a network model that is composed of
N = 300 (or N = 1000 for the data in Figs. 6 and 7) excitatory neurons. Neu-
ronal dynamics were based on a conductance-based model (Ks model) and
governed by the current balance equation:

cm
dVi

dt
=− gNam∞(V)h(V)(V − ENa)− gKdirn(V)(V − EK) [1]

− gKss(V)(V − EK)− Isyni − Iexti

The gating variables h, n, and s were of the form dx/dt = (x∞(V)− x)/τx(V).
The slow potassium conductance, whose maximum value is gKs, is largely
responsible for the resonance displayed by this neuron model, and its value
was set to 1.5 mS/cm2. Additional details of the neuronal dynamics can be
found in ref. 42. Ks model neurons display a depolarization-dependent spik-
ing resonance to subthreshold inputs in the 4 to 20 Hz range.

Additionally, we used a second conductance-based neuronal model using
the HH (28) model and parameters that resonated between 40 and 90 Hz to
produce the data in Fig. 3. Membrane potential dynamics were governed by
the current balance equation:

cm
dVi

dt
=− gNam(V)h(V)(V − ENa)− gKn(V)(V − EK) [2]

−−Isyni − Iexti

The gating variables m, h, and n evolved according to dx/dt =αx(V)(1−
x)− βx(V)x, where αx , βx , and other parameters are taken from ref. 28.

For both neuronal models, Iexti was split into two components. The first is
Iosc = Aosccos(2πfosct) (except for Fig. S3), which is identical for each neuron
in the network. Cosine was chosen so when fosc was set to zero (i.e., no
oscillation), all neurons would receive the same peak current as DC. The
second component was either IDCi

, which is unique for each neuron, or in
the case of data in Figs. 6 and 7 Iact,g, which is a slowly varying activation
current defined by the modified Gaussian function:

Iact,g(t) =
2e
−(t−µg )2

2σ2

√
2πσ2

(
1 + e

−1.702λ(t−µg )
σ

) . [3]

where g is the group to which a neuron is assigned (one of five groups), µg is
the time of maximum activation of that group, σ= 4000 ms is the width of
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the activation function, and λ= 8.0 is the skewness parameter. This leads to
an activation time course that slowly grows to 227 nA/cm2 and then rapidly
decays to zero (Fig. 6A).

Synaptic input was modeled as a double exponential conductance pulse
with the dynamics:

gsyn,i(t) = Msyn

N∑
j

σi,j

(
exp
(−(̂tj − τD)

τS

)
− exp

(−(̂tj − τD)

τF

))
. [4]

The decay constants, τS and τF , were set to 250.0 and 0.3 ms respectively.
The synaptic delay constant, τD, was set to 0.08 ms and t̂j = t− tj , where tj

is the time of the last spike of the presynaptic neuron j. Msyn is a synaptic
multiple used to account for differences in the input resistance of the two
neuronal models; it is set to 1.0 for the Ks model and 10.0 for the data in
Fig. 3. The behavior of the HH model is robust to a range of Msyn values (Fig.
S6). Total synaptic current to a neuron was defined as Isyn,i = gsyn,i(Vi − Esyn),
where Esyn is 0 mV. Networks had a ring lattice structure and a connectivity
rate of 6%. The connectivity scheme was small world and achieved through
the Watts–Strogatz method with a rewiring probability of 0.2 (43).

Synapses evolved according to an additive STDP rule, where the weight
change of a synapse between a presynaptic neuron i and a postsynaptic
neuron j is defined by:

∆σi,j =

 ALe
−|∆t|
τSTDP , ∆t> τ̂STDP

−ALe
−|∆t|
τSTDP , ∆t<−τ̂STDP.

[5]

Here ∆t = t̂j − t̂i , where t̂ is the time of the last spike fired by a given neu-
ron. τSTDP is the time constant of the effect of a spike decays and is set to
10 ms. τ̂STDP is a symmetrical region around ∆t = 0 for which there is no
synaptic change and is set to 1.5 ms. AL was the learning rate and was set
to 20 nS for all simulations except in Fig. 4. Synapses were bounded in the
region ∈ [0,∞) and initialized at 0.2 nS.

All numerical simulations were performed at a time step of 0.05 ms for
the Ks model and 0.01 ms for the HH model using a fourth-order Runge–
Kutta algorithm. All summary data take data from five realizations of the
model, except for data in Fig. 3D, which showed average±SEM firing phase
over 10 periods in one simulation.

Stimulation and Recording of Hippocampal Networks. All procedures were
approved by the University of Michigan Institutional Animal Care and Use
Committee. Pvalb-IRES-CRE mice ((B6;129P2-Pvalbtm1(cre)Arbr/J; Jackson)
were crossed to B6;129S-Gt(ROSA)26Sortm32(CAG-OP4*H134R/EYFP)Hze/J
mice (Jackson) to generate PV::ChR2 mice, which expressed channel-
rhodopsin (ChR2) in PV-expressing (PV+) interneurons. By rhythmically acti-
vating these neurons in the hippocampus with 473 nm light, principle cells
within the network were received subthreshold periodic inhibitory stimu-
lation. For all recordings, PV::ChR2 mice ages 2 to 5 mo (n = 4) were anes-
thetized with isoflurane and chlorprothixene (1 mg/kg intraperitoneal injec-
tion). Mice were head-fixed, and a 1 mm × 1 mm matrix multielectrode
[250 µm electrode spacing; Frederick Haer Co. (FHC)] was slowly advanced
into CA1 until stable recordings (with consistent spike waveforms continu-

ously present for at least 30 min before baseline recording) were obtained.
An optical fiber was placed adjacent to the recording array for delivery
of 473 nm laser light (CrystaLaser). Power output at the fiber tip was esti-
mated at 3 to 10 mW for all experiments. CA1 neurons were recorded over a
15-min baseline period, after which PV+ interneurons were stimulated over
multiple successive 15-min periods with a range of frequencies (2 to 18 Hz,
40 ms pulses). The various stimulation frequencies were presented in a ran-
dom interleaved manner, during which neuronal activity continued to be
recorded. Only those neurons recorded throughout the entire experiment
were included in analyses of optogenetically induced spike-field coherence
and network stability changes. For in vivo data, 80 and 68 neurons, respec-
tively, met inclusion criteria for coherence and stability analysis. This dataset
also appeared in ref. 30.

Functional Network Structure. Functional network structure was calculated
for both simulated and recorded networks in a similar manner. The first
measure was spike wave coherence, which was calculated as the range of
the spike-triggered average of the LFP over a window of±50 ms normalized
by the peak amplitude of the LFP. In simulated networks, the LFP was the
sum of all synaptic currents. This value ranges between 0, when spikes occur
randomly in the LFP oscillation, and 1, when spikes always occur at the same
time. In simulated networks, the LFP was the sum of synaptic currents.

The second measure of functional network structure was the stability
of functional connections through time (30, 44). The basis of functional
connectivity was the average temporal proximity of spikes between neu-
rons and given by AMDij = 1

N

∑
∆ti

kk for the i-th to j-th neurons. Here
∆ti

k is the time difference between the k-th spike fired by neuron j and
the nearest spike fired by neuron i. To determine whether neurons i and
j are functionally connected, AMDij is compared with the null value given
the firing rate of neuron j and random firing of neuron i by the Z score

FCij =
√

Ni
µj−AMDij

σj
. The null distribution of MD is dependent on the inter-

spike intervals (ISIs) of neuron j. For an ISI of length L, the first two
moments of MD are µL =<MDL>= L/4 and < (MDL)2

>= L2/12. We will
find an ISI of length L within a spike train of length T with a probabil-
ity of pL = L/T . Thus, of all of the intervals in the spike train of neuron j,

the expected value is µj =<MDj>=
∑

L pLµ
L = 1

T

∑
L

L2
4 . The expected SD is

σ2
j =<(MDj)

2 >−<MDj>
2, where < (MDj)

2>= 1
T

∑
L

L3
12 . To measure the

stability of inferred functional connections, spiking data were separated
into nonoverlapping time windows for which FCij values were aggregated
into matrices FCt . Between adjacent time windows, cosine similarity, defined

by Ct,t+1 =
<FCt ,FCt+1>√

<FCt ,FCt>×<FCt+1,FCt+1>
, was used to quantify the change in

functional network structure as a value between 0 (randomized) and 1 (no
change). The stability of the functional network was quantified as the aver-
age similarity between adjacent time windows. Time windows were 2 s for
simulated data and 1 min for recorded data.
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