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Interfacial undercooling in 
solidification of colloidal 
suspensions: analyses with 
quantitative measurements
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Interfacial undercooling in the complex solidification of colloidal suspensions is of significance and 
remains a puzzling problem. Two types of interfacial undercooling are supposed to be involved in the 
freezing of colloidal suspensions, i.e., solute constitutional supercooling (SCS) caused by additives 
in the solvent and particulate constitutional supercooling (PCS) caused by particles. However, 
quantitative identification of the interfacial undercooling in the solidification of colloidal suspensions, 
is still absent; thus, the question of which type of undercooling is dominant in this complex system 
remains unanswered. Here, we quantitatively measured the static and dynamic interface undercoolings 
of SCS and PCS in ideal and practical colloidal systems. We show that the interfacial undercooling 
primarily comes from SCS caused by the additives in the solvent, while PCS is minor. This finding implies 
that the thermodynamic effect of particles from the PCS is not the fundamental physical mechanism for 
pattern formation of cellular growth and lamellar structure in the solidification of colloidal suspensions, 
a general case of ice-templating method. Instead, the patterns in the ice-templating method can be 
controlled effectively by adjusting the additives.

The solidification of colloidal suspensions is commonly encountered in a variety of natural processes such as 
the growth of sea ice1 and frost heave2, and engineering situations such as cryobiology3, tissue engineering4, 
ice-templating bio-inspired porous materials and composites5–19, thermal energy storage20 and soil remediation21. 
In particular, ice-templating porous materials have attracted increasing attention due to the novel micro-aligned 
structures that can be easily produced for a wide range of applications5–16,18.

One of the key issues therein is the pattern formation. The formation of microstructures is closely related to 
the interfacial instability during the freezing of colloidal suspensions and the subsequent development of interfa-
cial morphologies22,23. The interfacial instability during freezing strongly depends on the interfacial undercooling, 
which has been extensively revealed by the research community in studies of solidification24,25. Accordingly, it 
is believed that the interfacial undercooling is also of significance in microscopic pattern formation of freezing 
colloidal suspensions.

Two types of interfacial undercooling have been proposed to occur in the solidification of colloidal suspen-
sions, i.e., solute constitutional supercooling (SCS) caused by additives in the solvent12,13,17, and particulate consti-
tutional supercooling (PCS) caused by particles22,23. The theory of SCS is based on the classical alloy solidification 
principle12,24,25, while the theory of PCS is derived from multi-particle thermodynamics22, a typical characteristic 
of the colloidal suspensions system. In the past decade, since its initial proposal, the PCS theory has attracted the 
extensive attention of researchers in many fields, such as porous ceramics26, polymers and composites27,28, bone 
tissue engineering29, metal–ceramic composites30, the science of soft matter31,32, geophysical science33, thermal 
energy storage34, crystal growth35, cryobiology36, etc. To date, there has been no report on the quantitative meas-
urements of interfacial undercooling during the solidification of colloidal suspensions, much less on the distinc-
tions between these two types of interfacial undercooling.
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The question of which type of undercooling is dominant in the solidification of colloidal suspensions remains 
an unsolved but important issue. First, determining the individual effects of SCS and PCS can improve the fun-
damental understanding of the physical mechanism of pattern formation during the freezing of colloidal sus-
pensions. Moreover, this determining the individual effects will further pave the way toward controlling the 
microscopic pattern formation in this complex system. For example, if the PCS is dominant, then the freezing 
pattern can be modulated via the particle size or particle shape; otherwise, it can be adjusted by changing the 
additives. Here, we quantitatively measured the static and dynamic interfacial undercoolings of SCS and PCS in 
ideal and practical colloidal systems.

In this letter, interfacial undercoolings were quantitatively measured based on a novel experimental method. 
The contributions of SCS and PCS were confirmed for the first time. A detailed description of the experimental 
apparatus and gauging method is given in ref. 37. A sketch of this method is shown in Fig. S1 (Supplementary 
Information). In the method, the interfacial undercooling is visualized through the discrepancy of solid/liquid 
interfacial positions in two adjacent Hele-Shaw cells of the colloidal suspension and its compared counterpart in 
a uniform thermal gradient apparatus. The thermal gradient plays a key role on measuring interfacial undercool-
ings and positions. In order to reduce radiative and convective perturbations, the thermal blocks were covered 
with heat-insulating shield and the gap between hot and cold copper blocks was covered with double-glazed win-
dows, which had both excellent thermal insulation and optical microscopic observation. More importantly, these 
two Hele-Shaw cells (the composition of their walls is glass, with a cross-section of 2 mm ×​ 0.1 mm) were placed 
tightly on a sufficiently large plane glass plate (with a cross-section of 30 mm ×​ 0.2 mm) in order to obtain a fixed 
linear thermal gradient. The thermal gradient in Hele-Shaw cells is determined by heat conduction of the plane 
glass plate so as to minimize the effect of the difference in the thermal conductivities of particles, liquid water and 
ice on the measurements of interfacial undercoolings. The validity of the measurements is verified based on tests 
with different thermal gradients. The SCS and PCS can be well distinguished by designing different compared 
counterparts. After quantitatively measuring the SCS and PCS in different systems of colloidal suspensions, we 
analyzed the results based on theoretical predictions. In the quantitative measurements, ideal systems of polysty-
rene microsphere (PS) suspensions were first considered. After discovering the minor contribution of PCS, we 
also measured the interfacial undercooling in practical systems of α​-alumina suspensions with both static and 
dynamic interface to further confirm the contributions of SCS and PCS.

The first system we chose is PS suspensions (Bangs Lab, USA). The nominal solvent of PS suspensions is 
deionized water. The density of PS particles is almost the same as that of water. The mean diameter of the particles 
is d =​ 1.73 μ​m with a poly-dispersity smaller than 5%, and the initial volume fraction of particles is φ​0 =​ 33%. The 
PS suspensions system is stable only with weak sedimentation, i.e., it is an ideal system to investigate the freezing 
of colloidal suspensions. Although the solvent of deionized water is marked on the nominal label of PS suspen-
sions, we believe that there are still very small quantities of residual solutes from the synthesis of PS particles, even 
after great efforts of purification in these commercial PS suspensions. The residual solutes will also cause SCS dur-
ing the freezing of PS suspensions. Therefore, in the measurement, first, we verified this type of SCS by comparing 
deionized water with the supernatant from the PS suspensions by centrifugation. Furthermore, we compared each 
PS suspension with its supernatant to confirm the individual contribution of PCS. The combination of SCS and 
PCS accounts for the whole interfacial undercooling during the solidification of colloidal suspensions.

Figure 1(a) shows the measurement of SCS through the interface position comparison between the deionized 
water (left cell of Fig. 1(a)) and the supernatant (right cell of Fig. 1(a)) within a microscopic image. The upper end 
of the cell is the heating zone, while the lower end of the cell is the cooling zone, which builds a linear thermal 
gradient G =​ 7.23 K/cm. The pulling speed V is 0. In Fig. 1(a), the position of solid/liquid interface in the cell of 
deionized water is much higher than that of the supernatant, which indicates that the freezing point of the deion-
ized water is much higher than that of the supernatant. The discrepancy of the solid/liquid interface positions 
between the deionized water and the supernatant is 171 μ​m, corresponding a SCS of 0.123 K with G =​ 7.23 K/cm.

Comparison of the interfacial position between the colloidal suspension and its supernatant is shown in 
Fig. 1(b), which exhibits the measurement of PCS. The interfacial position of the supernatant is almost identical 
to that of its suspension, which means that the freezing point of the supernatant is almost the same as that of its 
suspensions. Therefore, the PCS is almost undetectable and should be smaller than 0.01 K if it exists in this PS 
colloidal suspensions system (the precision of the experimental method has been demonstrated to be 0.01 K37).

Consequently, in Fig. 1, the interfacial undercooling of colloidal suspensions mainly comes from SCS. To fur-
ther confirm this conclusion, the interfacial undercoolings of PS suspensions systems with particles of different 
diameters and different volume fractions were measured. All the results are similar to that in Fig. 1. The compar-
isons of interface positions are shown in Fig. S2 (Supplementary Information), and the interfacial undercoolings 
of SCS and PCS are shown in Table 1. Surprisingly, all the results indicate that the PCS makes minor contribution 
to the interfacial undercooling of PS colloidal suspensions. However, a 5K PCS was reported in ref. 23 under 
d =​ 1 μ​m and φ​0 =​ 50%, which were similar to our test conditions, d =​ 1.73 μ​m and φ​0 =​ 33%. These two testing 
results (5 K and less than 0.01 K) are obviously divergent.

These unexpected results deserve further analysis in considering the PCS theory22,23,38,39. Recently, PCS theory 
was first proposed and applied to address some puzzling phenomena with numerous unexplained features in 
freezing colloidal suspensions40,41. In PCS theory, the particle-controlled interfacial undercooling is described as
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depressed melting point. ρ​w is the density of water. Lf is the latent heat, and φ​ is the volume fraction of particles. 
kB is the Boltzmann constant and = π ( )v d

p
4
3 2

3
 is the volume of a particle. The maximum volume fraction of 

particles is φ​p = 0.64, 0 ≤​ φ​ ≤​ 0.64. a1, a2, a3 and a4 are fitting parameters of П. In this theory, the PCS comes from 
the depressed equilibrium melting point caused by the osmotic pressure of concentrated particles ahead of the 
freezing interface, which includes consolidated physical foundations38. However, the determination of the dimen-
sionless compressibility factor in osmotic pressure is casual in refs 23 and 39. The variation of Z(φ​) with different 
φ​ has been well investigated42,43. Originally, the fitting parameters from refs 22,38,43 and 44 are

= . = . = . = − . .a a a a2 4375, 3 75, 2 375, and 14 15521 2 3 4

However, the fitting parameters used in refs 23 and 39 were
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in order to give way to the experimental results of filtration pressure of drilling fluid filtercakes23. Subsequently, 
experimental depressions of the freezing point were used to confirm these huge fitting parameters. However, the 
experimental data of depressed freezing points cannot be used to confirm the predicted PCS. First, the colloi-
dal suspensions contained a large number of ions which can dramatically depress the freezing point of water45. 
Second, the bentonite used was a mixture of a variety of particles with different sizes, while П greatly depends on 
the particle radius, with an inverse proportion to the third power of the particle radius and thus PCS is inversely 
proportional to the third power of the particle radius.

Figure 1.  The static interfacial positions in two side-by-side Hele-Shaw cells of the deionized water and the 
supernatant from PS colloidal suspensions of d =​ 1.73 μ​m, φ​0 =​ 33% (a); and two side-by-side Hele-Shaw cells of 
the colloidal suspensions and its supernatant (b) in a uniform thermal gradient of G =​ 7.23 K/cm. The distances 
between the static interfacial positions reveal the static interfacial undercoolings. The pulling speed is V =​ 0. The 
scale bar is 200 μ​m.

PS colloidal suspensions

d (μ​m) 1 1.73

φ​0 20% 20% 33%

Measured SCS (10−2 K) 12.1 ±​ 0.5 12.3 ±​ 0.4 12.3 ±​ 0.4

Measured PCS (10−2 K) 0 ±​ 0.18 0 ±​ 1.87 0 ±​ 0.16

PCS theoretical 
predictions (10−2 K)

A 3.06 ×​ 10−7 5.91 ×​ 10−8 1.69 ×​ 10−8

B 17.2 3.34 19.5

Table 1.  Static undercoolings from measurements and predictions. Prediction A is from refs 22 and 38, 
while prediction B comes from refs 23 and 39. For PS colloidal suspensions of different d and φ​0.
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By using the original fitting parameter for Z(φ​), the theoretical PCS in the PS systems investigated here is 
approximately 10−9 K, shown as prediction A in Table 1, which is too small to be detected. Both these theoretical 
results and the present measurements demonstrated that the PCS is minor compared with the SCS.

In PCS theory, the PCS is inversely proportional to the third power of the particle radius. Moreover, because 
the α​−​alumina suspensions are quite commonly used in the preparing of ice-templating porous ceramics, the 
interfacial undercoolings in the freezing of α​−​alumina colloidal suspensions were further measured. The α​−​alu-
mina powder with a mean diameter d =​ 50 nm and a density of 3.97 g cm−3 are used (Wanjing New Material, 
Hangzhou, China, ≥​99.95% purity, monodispersity). The alumina suspensions were prepared by using HCl 
(hydrogen chloride) and deionized water as the solvent following ref. 46. Initial volume fractions were φ​0 =​ 2.72%, 
3.63%, 9.74% and 20.12% (wt% =​ 10, 13, 30 and 50) in four different systems, respectively. These measurements 
were also made under the conditions of thermal gradient G =​ 7.23 K/cm and pulling speed V =​ 0. The SCS and 
PCS from the measurements are shown in Fig. 2. The interface position comparisons of the static SCS and PCS 
for alumina suspensions are shown in Fig. S3 (Supplementary Information). The measured PCS is still extremely 
small (blue triangular points in Fig. 2), i.e., it makes minor contribution to the total interfacial undercoolings 
compared with the SCS, as shown in the inset of Fig. 2. We further designed different thermal gradients to test 
the PCS in an identical system so as to confirm that the coincidence of interface positions indicates the coinci-
dence of interface temperatures, although the difference in thermal conductivities of alumina suspension and its 
supernatant may affect the local thermal gradient and the interfacial position. The measured PCS under different 
thermal gradients keeps the same, as shown in Fig. S4 (Supplementary Information). The theoretical prediction of 
PCS is approximately 10−6 K (prediction A in Fig. 2 and Table 2), which is still undetectable in the present setup, 
but, consistent with our experimental data. Only in the extreme case, e.g., the particles of d =​ 1 nm and φ​ ≈​ φ​p 
were used, the PCS could be comparable to SCS. However, in most cases, the PCS’s contribution to the interfacial 
undercooling is minor compared with the SCS from the solvent in the solidification of colloidal suspensions.

In the above measurements, the static interfacial undercoolings were clarified. The dynamic interfacial under-
cooling during the freezing of colloidal suspensions, another important aspect related to the pattern formation, 
has never been reported before. Our experimental apparatus can also be used to quantitatively identify the 
dynamic interfacial undercooling37. Here, we measured the dynamic interfacial undercooling in the alumina 
suspensions of d =​ 50 nm, φ​0 =​ 3.63% to further reveal the contribution of SCS and PCS. The comparison of the 
colloidal suspension to its supernatant can reveal the dynamic PCS, and the comparison of deionized water to the 
supernatant can reveal the dynamic SCS.

Figure 2.  Measured PCS compared with the theoretical PCS. Prediction A of PCS is from refs 22 and 38, 
while prediction B of PCS comes from refs 23 and 39. The inset is the measured value of SCS and PCS for 
alumina suspensions with d =​ 50 nm under G =​ 7.23 K/cm and V =​ 0.

alumina suspensions

d (μ​m) 0.05

φ​0 2.72% 3.63% 9.74% 20.12%

Measured SCS (10−2 K) 4.01 ±​ 0.42 4.02 ±​ 0.42 4.03 ±​ 0.42 4.02 ±​ 0.42

Measured PCS (10−2 K) 0 ±​ 0.2 0.18 ±​ 0.22 0.91 ±​ 0.85 0 ±​ 0.90

PCS theoretical 
predictions (10−2 K)

A 1.93 ×​ 10−4 6.98 ×​ 10−4 7.45 ×​ 10−4 2.24 ×​ 10−3

B 260 1640 12830 127701

Table 2.  Static undercoolings from measurements and predictions. Prediction A is from refs 22 and 38, 
while prediction B comes from refs 23 and 39. For alumina suspensions of different φ​0.
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Figure 3 shows the steady dynamic interface positions of the supernatant, deionized water and colloidal sus-
pension under V =​ 8.217 μ​m/s and G =​ 7.23 K/cm. The steady state of dynamic PCS was verified as shown in 
Movie S1 (Supplementary Information). The comparison between the interfacial positions of the supernatant 
and deionized water indicates a dynamic SCS of 0.09K, as shown in Fig. 3(a). However, Fig. 3(b) shows that the 
dynamic PCS is undetectable, although the particles have accumulated in front of the advancing freezing interface 
and formed an obvious concentrated layer. Similar to the static case, the dynamic PCS is also minor compared 
with the obvious dynamic SCS. Therefore, the concentrated particle layer seems unable to cause an obvious PCS.

Even with different pulling speeds, the results regarding dynamic PCS are similar to that shown in Fig. 3 
(shown in Supplementary Information, Fig. S5). The concentrated layer of particles in front of the freezing 
interface scarcely causes dynamic PCS under different pulling speeds. In contrast, the dynamic SCS varies 
with the pulling speed. To reveal the dynamic SCS, the interfacial position comparisons are shown in Fig. S6 
(Supplementary Information). Fig. 4 shows the variation in the dynamic SCS with different pulling speeds. The 
increase in the dynamic SCS with decreased pulling speed is consistent with the classical alloy solidification 
principle47. This result indicates that, in the dynamic case, the SCS still plays a dominant role compared with the 
minor dynamic PCS for cases of different pulling speeds.

Based on the above systematic measurements, the PCS is minor in both static and dynamic cases; in con-
trast, the effect of SCS caused by additives in the solvent is dominant. Accordingly, the thermodynamic effect of 

Figure 3.  The steady-state interfacial positions in two side-by-side Hele-Shaw cells of the deionized water and 
the supernatant from alumina suspensions of d =​ 50nm, φ​0 =​ 3.63% (a); and two side-by-side Hele-Shaw cells of 
the alumina suspensions and its supernatant (b) in a uniform thermal gradient of G =​ 7.23 K/cm. The distances 
between the steady-state interfacial positions reveal the dynamic interfacial undercoolings. The pulling speed is 
V =​ 8.217 μ​m/s. The scale bar is 200 μ​m.

Figure 4.  Measured dynamic SCS and PCS for alumina suspensions with d =​ 50 nm, φ​0 =​ 3.63% under 
different pulling speeds; G =​ 7.23 K/cm. 
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particles from the PCS is not the fundamental physical mechanism for cellular growth and lamellar structure that 
are associated with the solidification of colloidal suspensions48 which inevitably contains a large number of sol-
utes, especially in the ice-templating method. Nevertheless, when the effect of solutes is absent, some other effects 
such as the force interactions between particles and freezing interface perhaps should be considered to reveal the 
pattern of intermittent lenses48. The present experimental results clearly demonstrate that the effects of additives 
are dominant in the ice-templating process12,13,17,48.

Conclusions
We considered the puzzling phenomenon of interfacial undercoolings in the solidification of colloidal sus-
pensions via quantitative measurements of solute constitutional supercooling (SCS) and particulate consti-
tutional supercooling (PCS). Based on systematic quantitative experimental measurements of both static and 
dynamic cases within different systems of colloidal suspensions, we found that the interfacial undercooling 
mainly comes from SCS caused by the additives in the solvent, while the PCS is minor. The results imply that 
the thermodynamic effect of particles from the PCS is not the fundamental physical mechanism for pattern 
formation of cellular growth and lamellar structure that are associated with the solidification of colloidal sus-
pensions. These fundamental findings can greatly enhance our understanding of the physics of freezing colloidal 
suspensions in the ice-templating method, a general method to produce novel and advanced biomaterials as 
well as multifunctional-materials, and pave the way toward controlling pattern formation in freezing colloidal 
suspensions48.
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