CASE REPORT

Fibromyalgia: Could hyperbaric oxygen therapy make the difference? Our experience

Andrea Neville Cracchiolo¹ | Daniela Maria Palma¹[©] | Fabio Genco¹ | Marco Palmeri¹ | Alessandra Teresi¹ | Leila Zummo²[©] | Carmelo Gigliuto³ | Erik Flavio Giuseppe Saporito⁴ | Angela Ferruzza⁵ | Tommaso Piccoli⁶

¹ARNAS Civico Di Cristina Benfratelli, Palermo, Italy

²ARNAS Civico Di Cristina Benfratelli, Neurologia con Stroke Unit, Palermo, Italy

³Umberto I di Siracusa Hospital, UOC Anestesia e Rianimazione Camera Iperbarica, Siracusa, Italy

⁴Cannizzaro Hospital, UOC Anestesia e Rianimazione Medicina Iperbarica, Catania, Italy

⁵A.O.O.R Villa Sofia-Cervello, Palermo, Italy

⁶Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy

Correspondence

Daniela Maria Palma, ARNAS Civico Di Cristina Benfratelli, UOC Emergenza Urgenza 118 Servizio di Medicina Iperbarica, piazza N. Leotta 2, Palermo, 90127, Italy. Email: danipalma73@yahoo.it

Key Clinical Message

Fibromyalgia is a rare disease, difficult to diagnose and to treat. We think that hyperbaric oxygen therapy could improve its signs and symptoms although more evidences have to be accumulated.

K E Y W O R D S

chronic diseases, complementary and alternative medicine, immunology, neurology

1 | INTRODUCTION

Fibromyalgia (FM) is defined as a "syndrome of central sensitization with dysfunction of the neuronal circuits involved in the perception, transmission and processing of nociceptive afferents, with pain predominantly expressed in the musculoskeletal system."¹ It is an incurable syndrome of unknown origin with signs and symptoms often similar and overlapping with those of other syndromes. This condition, unfortunately with high frequency, delays its diagnosis. The pathogenetic mechanism underlying the clinical picture is alteration of the nociceptive system.

Several hypotheses have been proposed concerning the pathogenesis of FM and the management of FM patients requires a multidisciplinary approach.

Accumulating evidence suggests that hyperbaric oxygen therapy (HBOT) is a noninvasive modality with lasting efficacy to treat FM.² HBOT is defined by the Undersea and Hyperbaric Medical Society (UHMS) as a treatment in which a patient intermittently breathes 100% oxygen while the treatment chamber is pressurized to above sea level pressure (1 atmosphere absolute, 1 ATA = 760 mmHg).³ HBOT is able to induce many interesting effects on plasma oxygen concentration. Based on Henry's Law, increased pressure will cause more gas to go into solution, and therefore, more oxygen will be transported in the plasma. As a result a lot of oxygen becomes available for the microcirculation, resulting in significant improvement of all metabolic parameters, which have also been shown in several works to influence neurological functions.⁴ We report about a case of woman affected

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2023 The Authors. *Clinical Case Reports* published by John Wiley & Sons Ltd. by FM and treated with HBOT as adjuvant, experimental, and non conventional therapy.

2 | CASE PRESENTATION

In January 2021 a 54-year-old Caucasian woman with a negative medical past history reported pain in her left arm 24h after receiving the first dose of the Pfizer SARS-COVID-19 vaccine. Localized pain in the injection zone (the triceps muscle of the left arm) was accompanied by the onset of high fever (40°C), intense headache with vomiting and abdominal pain. After 48h there was defervescence with return to normo-thermia but progressive appearance of fatigue. Subsequently patient report a relief of pain in the left arm with progressive development of constant, severe and persistent pain in occipital and back neck area, low back and legs with a marked sense of heaviness in the lower limbs. The patient also complained of progressive difficulty in walking, for which the use of Nordic walking sticks was necessary. Furthermore, she reported stiffening of the facial muscles with pain defined as intense, mental fogginess, severe short-term memory involvement, and progressive depression, symptoms that had undoubtedly caused a significant impairment in her quality of life.

The patient underwent routine blood sample tests (blood count, ESR, PCR, protein electrophoresis, AST, ALT, gamma GT), as well as more specific immuno-enzymatic tests (serum kappa and lambda chains, IgG, IgA, IgM, anti-nuclear antibodies, ENA, ANA with subclasses). Furthermore, tests were performed to rule out the presence of viral hepatitis and functional thyroid alterations (TSH, FT3, FT4, antithyroglobulin, and antithyreoperoxidase antibodies), which proved negative. Exams showed no values outside the standard range. Only a slight increase in ESR and a reduction in 25-OH-vitamin D levels was shown. The patient also performed total body CTs, spine MRI, femoral, and lumbar bone densitometry from which no structural morphological alteration was highlighted except for an initial picture of osteoporosis however compatible with the patient's postmenopausal age. The exclusion of inflammatory disease, although some rheumatic diseases could coexist, suggested a possible diagnosis of FM, and thus rheumatologists have sought its diagnostic criteria.⁵ The persistence of pain was well over 3 months (the patient reported the onset of symptoms about 18 months ago).

The following questionnaires were administered: Widespread Pain Index (WPI), Symptom Severity Scale (SSS), Revised Fibromyalgia Impact Questionnaire (FIQR), Pittsburgh Sleep Quality Index (PHQI), Generalized Anxiety Disorder Screener (GAD-7), Functional Assessment of Thus she started a multidisciplinary therapeutic course based on antalgic therapy, physiotherapy, psychological support, relaxation techniques, and healthy nutrition.

Among the various therapies, HBOT was indicated as an experimental non-conventional treatment. The patient underwent forty sessions of HBOT at 2.4 ATA (absolute atmospheres), total oxygen time 60 min per session, once a day, five times a week, performed at the multi-place chamber (Sistemi Iperbarici Integrati-Camera Iperbarica Mod 2000) of the Hyperbaric Medicine Centre of ARNAS Ospedale Civico Di Cristina Benfratelli, Palermo, Italy. Therapy started in the first week of September and ended in mid-November 2022. Throughout each session, the patient showed stable vital parameters (blood pressure, heart rate, oxygen saturation, and body temperature). Blood tests, markers of flogosis and haematochemical examinations carried out at mid term and at the end showed no change in values outside the normal range.

The patient underwent 40 sessions of HBOT. The clinical improvement achieved was evident and affected all symptom areas reported before treatment. In particular, there was a complete recovery of mobility with the avoidance of walking sticks, an increase in muscular strength evidenced by the ability to climb several flights of stairs and to walk long distances independently. The patient reported a drastic reduction in pain symptoms evident from the moment she woke up in the morning, a significant improvement in sleep quality, previously reported as light, non-restorative, and with multiple breaks. The highly debilitating sense of fatigue was reported after treatment as markedly reduced and in any case easily manageable. In addition, a significant change in cognitive abilities was reported, with disappearance of mental fogginess and recovery of short-term memory. In summary, there was a significant improvement in quality of life with the disappearance of the depression into which the patient had plunged, a condition confirmed by psychological advice at the end of the hyperbaric treatment. The scores reported by each individual test and the laboratory results recorded before and after HBOT are listed, respectively in Tables 1-3.

3 | DISCUSSION

FM is characterized by chronic pain at multiple specifical anatomical sites lasting for more than 3 months and is usually accompanied by clinical manifestations such as fatigue, muscle and joint stiffness, sleep disturbance, irritable bowel syndrome, low energy, cognitive dysfunction, and depressive symptoms.⁶ FM affects more frequently female and it is estimated that between 2% and 8% of the world's population is afflicted.⁷ The age range in which FM generally appears is between 30 and 35 years.⁸ The quality of life in people with FM is severely impaired and the risk of suicide associated with depression and global worsening of the mental state are quite common in these individuals.⁹

The hypothesis that reduced oxygen availability could be the cause of the structural and functional degeneration affecting the muscles of FM patients dates back to the first half of the 1970s.¹⁰ Several works have shown that in FM patients, there is a reduction in oxygen availability, either absolute or linked to a low tissue extraction fraction, resulting in hypoperfusion/ischemia, which in turn could play a key role in the onset of muscle pain, an element that dramatically characterizes the clinical picture of FM patients.¹¹

Subsequently, research produced in order to define the pathogenesis of FM piled up and several ideas were proposed. Environmental, psychosocial and genetic aspects have been implicated as being responsible for reduced resilience to adverse stressful events, a condition that would seem to make these individuals more vulnerable.¹² It has

TABLE 1 Widespread Pain Index (WPI), Symptom SeverityScale (SSS), Revised Fibromyalgia Impact Questionnaire (FIQR),Pittsburgh Sleep Quality Index (PHQI), Generalized AnxietyDisorder Screener (GAD-7), and Functional Assessment of ChronicIllness Therapy Fatigue (FACIT-F).

Test	Pre-HBOT	Post-HBOT
WPI	18	6
SSS	10	3
FIQR	96	13
PHQI	17	2
GAD-7	14	3
FACIT-F	12	42

TABLE 2 Laboratory test before and after t	herapy.
---	---------

been hypothesized that environmental factors such as adverse events occurring early in lifetime, psychosocial stress, trauma, and medical diseases (as Lyme disease, Epstein Barr Virus infection, viral hepatitis, Q fever) can trigger the development of FM.¹³

Another work involves thalamic mast cells that seem to play a role in the onset of inflammation and pain through the release of pro-inflammatory mediators (interleukin, TNF-alpha) and the stimulation of thalamic nociceptor neurons by direct and indirect pathways.¹⁴ Trauma and infection often precede the onset of FM, suggesting a potential role for immune-mediated pathways. Another fascinating theory being evaluated suggests changes in the serum levels of certain neurotransmitters (serine and glutamate) linked in turn to altered gut-brain cross talk.¹⁵ Several works have shown that a reduced level of biogenic amine, an impaired regulation of the hypothalamuspituitary axis combined with an increased concentration of excitatory neuro-molecules (in particular Substance P) may play a central role in the onset of the clinical pattern.^{16,17}

To date, the dysfunction of the neurocircuits involved in the perception, transmission and processing of nociceptive afferents is considered a key element in the onset of FM symptoms, and indeed several works have shown that impairments in the neurotransmission system are able to affect pain perception, fatigue, sleep disturbances, anxiety symptoms, and depression. FM patients show high levels of norepinephrine and glutamate, low levels of serotonin, and dopamine.^{18,19} As noted above Substance P reaches three times higher levels in the cerebral spinal fluid of FM patients than in the healthy population.²⁰

The extreme variety of symptoms and associated comorbidities make the diagnosis of FM problematic. It is pretty frequent to observe the association between FM and other diseases such as osteoarthritis, rheumatoid arthritis, and lupus. Many physicians are unfamiliar with the diagnostic criteria, have no clinical experience with these patients, and are unaware of potential treatment options.

TEST	WBC	RBC	HGB	Ly	MCV	PLT	ESR	PCR	AST	ALT	γ-GT	Alb	Vit D
Pre-HBOT	10.800	4.41	13.4	2.5	82	279	31	0.21	16	15	33	5.6	9.2
Post-HBOT	7.900	4.86	14.2	2.3	85	290	18	0.17	17	18	30	5.7	9.6

TABLE 3 Laboratory test before and after therapy.

Test	IgG	IgA	IgM	к chain	λ chain	κ/λ	ENA screen	ANA IFI Hep 2	AbTR	FT3	FT4
Pre-HBOT	1340	290	108	20.6	15.3	1.34	NEG	NEG	1.20	11	4
Post-HBOT	1290	270	136	19.6	16.2	1.25	NEG	NEG	1.18	12	4.2

These factors, as described by Choy et al., lead to a diagnosis that often takes more than 2 years and involves an average of 3.7 physicians per patient.²¹ It is clear that early diagnosis of FM is essential in order to avoid aggravation of initial symptoms and the development of vicious circles such as pain with immobility and/or pain with mood disorders, conditions that can further complicate the management of these patients. The diagnostic criteria for FM have evolved progressively from the seminal work of the American College of Rheumatology (ACR)²² to the critical review published by the same author in 2016⁵ which is currently considered the reference point for the diagnosis of FM. Briefly, the diagnosis is based on the finding of the following clinical symptoms:

- 1. Widespread Pain Index (WPI)≥7 and Symptom Severity Scale (SSS) ≥5 or WPI of 4–6 and SSS ≥9.
- 2. Generalized pain, present in at least four of the five topographically defined areas.
- 3. Symptoms must have been generally present for at least 3 months.

The anatomo-topographical areas considered are defined as right and left upper area, right and left lower area and axial area. Some authors recently stated that patients should be screened for WPI and that those with positive WPI should be further screened for the presence of the main symptoms of FM in accordance with the 2016 criteria of the ACR.²³

Unfortunately, to date there is no generally accepted and effective cure, the treatment is multidisciplinary and, consequently, the different pieces of the therapeutic puzzle employed focus on controlling and managing the pain symptoms. Therapy is based on the combined use of different categories of drugs (antidepressants, anticonvulsants, muscle relaxants, analgesics, hypnotics, antipsychotics, cannabis, and cannabinoids) along with non-pharmacological therapies such as fitness, psychotherapy, spa therapy, tai chi, qigong, yoga, mindfulness, hypnosis, acupuncture, thermal, and electrical energy. In fact, their combined use has been shown to alleviate pain with variable and timelimited efficacy.

HBOT is a procedure in which patients breathe 100% oxygen inside a pressurized multiplace hyperbaric chamber at a level above sea level. The Undersea and UHMS has determined that HBOT can only be defined as such if the pressure achieved in the hyperbaric chamber is 1.4 ATA or higher.²⁴ In clinical setting, applied pressures usually range from 2 to 3 ATA. Under hyperbaric conditions, in patients with healthy lungs and normal arterial flow, alveolar partial pressure of oxygen (PaO₂) is acutely elevated in proportion to atmospheric pressure, and at 2

ATA, PaO_2 and tissue oxygen pressure increase to 1500 and 200 mmHg, respectively.

HBOT is based on several physiological principles relating to the response of gases to pressure and, more precisely, the response of oxygen to pressure. Indeed, the concentration of dissolved oxygen in the plasma can be strongly influenced by HBOT. In line with Henry's law, an increase in pressure causes more gas to go into solution and hence more oxygen to be carried into the plasma. The rise in partial pressure increases the driving force of diffusion and thus increases the diffusion range, as defined by Fick's law. Furthermore, it is the oxygen dissolved in the plasma that is more bioavailable to the tissue. At 3 ATA, HBOT increases the level of oxygen dissolved in plasma from 0.3 to 6 mL/dL assuring the amount of oxygen needed for metabolism independently of the amount chemically bound to hemoglobin.

Although to date there aren't official guidelines supporting the use of HBOT in the treatment of FM patients, the first report on its use in FM is from 2004.²⁵ Since then, a large number of papers have been conducted to validate the effectiveness of HBOT as a treatment option in FM sufferers, and to clarify the molecular mechanisms by which HBOT is able to produce positive effects.

HBOT represents a noninvasive potential therapeutic option, as it is able to reduce the oxidative stress occurring in hypoxic tissues. Indeed, numerous data show an alteration in the pro- and anti-oxidative balance in FM patients characterized by a reduced function of super oxide dismutase (SOD), nicotinamide adenine dinucleotide phosphate oxidase (NADPH) and catalase (CAT) data that correlate well with the severity of pain and fatigue assessed by FIQR.²⁶ HBOT is able to deactivate caspase 3 and caspase 9 and increases the expression of the Bcl-2 gene, which consequently increases regulated apoptosis. This finding suggests that the increased oxygen availability produced by HBOT reduces mitochondrial apoptosis and preserves mitochondrial function.²⁷ Furthermore, in animal models HBOT is able to reduce lipo-peroxidation and pro-oxidative processes.²⁸ Research in animal models has revealed that muscle tissue ischemia is a severe activator of unmyelinated muscle nociceptors, which can facilitate central sensitization.²⁹ Reduced oxygen availability in the muscle tissue of FM patients influences structural and functional changes, which in turn play a role in the sensitization of central and peripheral pain receptors, with altered central pain perception and processing. This finding also supports the therapeutic role that HBOT may play in these patients.³⁰ Moreover, HBOT has anti-inflammatory action, promotes neuroplasticity, optimizes mitochondrial functioning and stimulates nitric oxide, actions

4 of 8

that may reduce hyperalgesia, and facilitate the release of endogenous opioids.³¹ Furthermore, Guggino et al.³² reported how the immune system may play a role in the pathogenesis of FM and outlined the therapeutic impact of HBOT by describing changes in the production of proinflammatory cytokines (IL-1RA, IL-6, IL-8) by CD4 T-cell subpopulations. These results support the idea that HBOT is an effective, safe, and rapid means of treating the various symptoms of FM.

Criticism of this treatment is related to the overproduction of oxygen free radicals that could be responsible for an exaggerated pro-oxidative response. In our clinical experience, the oxidative stress produced by weighted use according to HBOT guidelines did not lead to adverse effects. A possible explanation could be the so-called "hyperoxic-hypoxic paradox."³³ Let us try to elucidate its meaning concisely. Cellular respiration is a complex biochemical process based at the mitochondrial level and involving the complete oxidation of a glucose molecule with formation of CO₂, H₂O and production of adenosine triphosphate (ATP) molecules. Hypoxia results in reduced production of ATP. It is also one of the most strong inducers of gene expression capable of influencing changes in metabolic structure, regenerative processes, including angiogenesis, as well as mobilization migration and differentiation of stem cells.³⁴ Variations in oxygen levels in hyperoxic-hypoxic sense are detected by chemoreceptors and are able to induce metabolic changes by molecular mechanisms. Of more interest is that at the cellular level, is fluctuations in free oxygen that are recognized and interpreted as a reduction in oxygen availability rather than absolute oxygen values. In patients undergoing HBOT there is a fluctuation in oxygen concentration, which in hyperbarism rises from 21% to 100% and then returns to basal levels at the end of treatment. The adaptive response to repeated hyperoxia leads to an up regulation in scavengers production with a concomitant increase in ROS production. The return to physiological oxygenation levels (ambient air) is characterized by a low ROS/Scavengers ratio and this is related to the different half-lives that ROS and Scavengers have (the former having a half-life that is about half that of the latter). This up regulation of scavengers could play a protective role by counterbalancing the overproduction of oxygen free radicals. Thus, repeated exposure to hyperoxia mimics at the molecular level the hypoxic scenario by triggering the transcriptional cascade underlying the molecular effects induced by HBOT. However, to date HBOT has produced positive effects in several clinical trials, with an overall increase in neurological functions affected by FM.35,36

Interestingly, several studies, mainly case reports, have been conducted to highlight HBOT's therapeutic potential in various autoimmune diseases such as scleroderma,³⁷ systemic lupus erythematosus,^{33,38} rheumatoid arthritis,³⁹ as well as in the therapeutic management of migraine of various kinds,⁴⁰ but the results have often been conflicting.

Before starting HBOT, patients must undergo a careful medical examination conducted by a physician with specific and certified expertise in hyperbaric medicine, in order to highlight the presence of conditions that constitute an absolute contraindication to treatment, such as undrained pneumothorax, PaO_2/FiO_2 ratio ≤ 200 on arterial blood gas analysis, status epilepticus, claustrophobia, and psychiatric problems. In addition, all conditions that may constitute a relative contraindication must be carefully assessed, such as cardiovascular problems (altered cardiac kinetics, pulmonary hypertension, reduced ejection fraction, rhythm, and conduction abnormalities, marked bradycardia), concomitant intake of drugs (especially chemotherapy) that may produce side effects linked to exposure to high oxygen concentrations, pulmonological, ocular, and ENT problems. The presence of breast, joint, eye, ear, and pace-maker implants must also be excluded. If they are present and it is not possible to remove them pre-treatment, hyperbaric environment exposure compatibility certificates must be taken from the manufacturers.⁴¹

Increased inspired oxygen concentration exposes, especially at working pressures above 2.9 ATA, to toxic effects that may involve the central nervous system (CNS) acutely and the lung by chronic exposure.

CNS toxicity is extremely risky as brain tissue is extremely susceptible to the oxidative stress produced by HBOT. Toxicity is related to direct cytotoxic effects of oxygen and nitrogen free radicals (ROS and RNS, respectively) on sensitive brain regions, neuronal responses in which increased sympathetic flow induces pulmonary hypertension (so-called brain-lung cross talk), and vascular responses related to excessive amounts of O₂ causing hyperoxic vasodilation. The clinical manifestations of O₂ toxicity in the CNS include a range of non-specific symptoms such as nausea, dizziness, abnormal sensations, headache, disorientation, dizziness, blurred vision, tunnel vision, tinnitus as well as more specific symptoms that vary in severity from localized muscle contractions to generalized seizures known as Paul Bert's syndrome).^{42,43}

The toxic effects that oxygen can produce in the lung were first highlighted by Lorrain Smith in 1889.⁴⁴ During HBOT, the lung is exposed more than any other organ to high oxygen concentrations. At O_2 pressures greater than 40 kPa, pulmonary toxicity will develop with extended durations of exposure. Clinically, three phases are distinguished first asymptomatic phase with a 2% reduction in vital capacity, second phase characterized by changes in the first airways manifested by tracheo-bronchitis symptoms with retro-sternal burning, dry, hacking cough and

WILEY_Clinical Case Reports

CRACCHIOLO ET AL.

difficulty in taking deep inhalations, and Phase III characterized by acute respiratory failure, pulmonary edema, decreased lung volumes, and severe pulmonary damage (ARDS), which may evolve through continued exposure into pulmonary interstitial fibrosis with diffuse hemorrhagic and atelectasis areas. Pulmonary O₂ toxicity is most commonly reflected by decreased vital capacity, decreased compliance, and reduced diffusing capacity.⁴⁵ The side effects described are a real and serious problem in underwater medicine but rare events in hyperbaric medicine, provided that safety rules are respected, consisting of 3–5 min air-breathing intervals during each HBOT session to ensure adequate oxygen wash-out to avoid acute toxicity, and 30-day washout periods in patients who are to undergo multiple courses of HBOT to avoid chronic exposure.

It is evident that the results of a case report have limitations related to the individual experience reported, which clearly cannot be considered reproducible with absolute reliability on large populations. Similarly, the follow-up data of these patients are in most works extended up to 6 months and this can also be a limitation when judging the duration of the beneficial effects produced by HBOT. Furthermore, the various works produced on the subject did not use the same protocols but differed in the duration of exposure time and working pressures used, which may constitute a further bias. In this perspective, one must consider the enormous difficulty with which researchers manage to produce clinical trials that enroll large populations of patients, and this is unfortunately linked to several factors such as the lack of knowledge that many doctors have about the indications for HBOT, the low level of information that they have about the powerful role that HBOT may plays as adjuvant in the treatment of this kind of patients, the scarce territorial spread of hyperbaric chambers, and the difficulties linked to managing the economic costs that hyperbaric treatment requires, especially for a pathology such as FM that is not supported by any guidelines to date. As the conclusion of the hyperbaric treatment, the patient has been following the multi-structured therapy proposed by the rheumatology and report that she is feeling well, no longer reporting the alterations in the psycho-neuro-sensory and functional spheres that had severely impaired her quality of life before HBOT.

4 | CONCLUSION

We report on our experience with the use of HBOT in the treatment of a patient suffering from FM. FM is a very invalidating disease often afflicting young people. The impaired quality of life of these patients has serious repercussions on public economy. HBOT is a safe therapy to experiment with FM because it could improve the quality of life of these patients and reduce its economic impact on society. Further studies are needed to improve our understanding of the mechanisms underlying the effects of HBOT and clarify its role in the treatment of these chronic disorders. Hyperbaric medicine represents a horizon that still offers great scientific exploration. Probably improving communication between the different hyperbaric centers could be the first step toward the creation of a truly functional hyperbaric network capable of improving care for our patients.

AUTHOR CONTRIBUTIONS

Andrea Neville Cracchiolo: Conceptualization; data curation; formal analysis; investigation; methodology; project administration; resources; validation; writing – original draft. Daniela Maria Palma: Conceptualization; data curation; formal analysis; supervision; writing – review and editing. Fabio Genco: Conceptualization. Marco Palmeri: Visualization. Alessandra Teresi: Software. LEILA ZUMMO: Supervision. Carmelo Gigliuto: Writing – review and editing. Erik Flavio Giuseppe Saporito: Software. Angela Ferruzza: Resources. Tommaso Piccoli: Conceptualization; formal analysis; methodology; project administration.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT

Data available on request due to privacy/ethical restrictions

CONSENT

Written informed consent was obtained from the patient to publish this report in accordance with the journal's patient consent policy.

ORCID

Daniela Maria Palma Dhttps://orcid. org/0000-0003-4910-8082 Leila Zummo Dhttps://orcid.org/0000-0003-0320-4570

REFERENCES

- 1. Talotta R, Atzeni F, Bazzichi L, et al. Algo-dysfunctional syndromes: a critical digest of the recent literature. *Clin Exp Rheumatol.* 2015;33(1 Suppl 88):S102-S108.
- 2. Chen X, You J, Ma H, Zhou M, Huang C. Efficacy and safety of hyperbaric oxygen therapy for fibromyalgia: a systematic review and meta-analysis. *BMJ Open.* 2023;13(1):e062322.
- 3. Hampson NB, ed. *Hyperbaric Oxygen Therapy: 1999 Committee Report.* Undersea and Hyperbaric Medical Society; 1999.
- 4. Hadanny A, Efrati S. Oxygen-a limiting factor for brain recovery. *Crit Care*. 2015;19:307.

Clinical Case Reports

7 of 8

- 5. Wolfe F, Clauw DJ, Fitzcharles MA, et al. Revisions to the 2010/2011 fibromyalgia diagnostic criteria. *Semin Arthritis Rheum*. 2016;46(2016):319-329.
- 6. Alciati A, Nucera V, Masala IF, et al. One year in review 2021: fibromyalgia. *Clin Exp Reumathol*. 2021;39(Suppl 130):3-12.
- 7. Siracusa R, Di Paola R, Cuzzocrea S, Impellizzeri D. Fibromyalgia: pathogenesis, mechanisms, diagnosis and treatment options update. *Int J Mol Sci.* 2021;22(8):3891.
- 8. Wolfe F, Ross K, Anderson J, Russell IJ, Hebert L. The prevalence and characteristics of fibromyalgia in the general population. *Arthritis Rheum*. 1995;38:19-28.
- Calandre EP, Navajas-Rojas MA, Ballesteros J, GarciaCarrillo J, Garcia-Leiva JM, Rico-Villademoros F. Suicidal ideation in patients with fibromyalgia: a cross-sectional study. *Pain Pract.* 2015;15:168-174.
- Fassbender HG, Wegner K. Morphologie und Pathogenese des Weichteilrheumatismus. [Morphology and pathogenesis of soft-tissue rheumatism]. Z Rheumaforsch. 1973;32:355-374.
- Katz DL, Greene L, Ali A, Faridi Z. The pain of fibromyalgia syndrome is due to muscle hypoperfusion induced by regional vasomotor dysregulation. *Med Hypotheses*. 2007;69(3):517-525.
- Casale R, Sarzi-Puttini P, Botto R, et al. Fibromyalgia and the concept of resilience. *Clin Exp Rheumatol.* 2019;37(Suppl. 116):S105-S113.
- Meeus M, Nijs J. Central sensitization: a biopsychosocial explanation for chronic widespread pain in patients with fibromyalgia and chronic fatigue syndrome. *Clin Rheumatol.* 2007;26:465-473.
- Theoharides TC, Tsilioni I, Bawazeer M. Mast cells, neuroinfammation and pain in fbromyalgia syndrome. *Front Cell Neurosci.* 2019;13:353.
- Clos-Garcia M, Andrés-Marin N, Fernández-Eulate G, et al. Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fbromyalgia. *EBioMedicine*. 2019;46:499-511.
- Harris RE, Sundgren PC, Craig AD, et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. *Arthritis Rheum*. 2009;60(10):3146-3152.
- Foester BR, Petrou M, Edden RA, et al. Reduced insular gamma-aminobutyric acid in fibromyalgia. *Arthritis Rheum*. 2012;64(2):579-583.
- Wood PB, Schweinhardt P, Jaeger E, et al. Fibromyalgia patients show an abnormal dopamine response to pain. *Eur J Neurosci*. 2007;25(12):3576-3582.
- Sarchielli P, Di Filippo M, Nardi K, Calabresi P. Sensitization, glutamate, and the link between migraine and fibromyalgia. *Curr Pain Headache Rep.* 2007;11(5):343-351.
- 20. Russell IJ, Orr MD, Littman B, et al. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. *Arthritis Rheum*. 1994;37(11):1593-1601.
- 21. Choy E, Perrot S, Leon T, et al. A patient survey of the impact of fibromyalgia and the journey to diagnosis. *BMC Health Serv Res.* 2010;10:102.
- 22. Wolfe F, Smythe HA, Yunus MB, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. *Arthritis Rheum*. 1990;33:160-172.
- Hauser W, Sarzi-Puttini P, Fitzcharles M-A. Fibromyalgia syndrome: under-, over-and misdiagnosis. *Clin Exp Rheumatol*. 2019;37(Suppl. 119):S90-S97.

- 24. Undersea and Hyperbaric Medical Society. Indications for hyperbaric oxygen therapy. https://www.uhms.org/resources/ hbo-indications.html
- 25. Yildiz S, Kiralp MZ, Akin A, et al. A new treatment modality for fibromyalgia syndrome: hyperbaric oxygen therapy. *J Int Med Res.* 2004;32(3):263-267.
- Rus A, Robles-Fernandez I, Martinez-Gonzalez LJ, Carmona R, Alvarez-Cubero MJ. Influence of oxidative stressrelated genes on susceptibility to fibromyalgia. *Nurs Res.* 2021;70(1):44-50.
- 27. Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. *Brain Res.* 2008;1221:126-133.
- Matsunami T, Sato Y, Sato T, Yukawa M. Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure. *Physiol Res.* 2010;59(1):97-104.
- 29. Mense S, Stahnke M. Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. *J Physiol.* 1983;342(1):383-397.
- Park JH, Phothimat P, Oates CT, Hernanz-Schulman M, Olsen NJ. Use of P-31 magnetic resonance spectroscopy to detect metabolic abnormalities in muscles of patients with fibromyalgia. *Arthritis Rheum*. 1998;41(3):406-413.
- El-Shewy KM, Kunbaz A, Gad MM, et al. Hyperbaric oxygen and aerobic exercise in the long-term treatment of fibromyalgia: a narrative review. *Biomed Pharmacother*. 2019;109:629-638.
- 32. Guggino G, Schinocca C, Lo Pizzo M, et al. T helper 1 response is correlated with widespread pain, fatigue, sleeping disorders and the quality of life in patients with fibromyalgia and is modulated by hyperbaric oxygen therapy. *Clin Exp Rheumatol*. 2019;37(Suppl. 116):S81-S89.
- Hadanny A, Efrati S. The hyperoxic-hypoxic paradox. Biomolecules. 2020;10(6):958.
- 34. Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. *Plast Reconstr Surg.* 2011;Suppl 1(Suppl 1):131S-141S.
- 35. Curtis K, Katz J, Djaiani C, et al. Evaluation of a hyperbaric oxygen therapy intervention in individuals with fibromyalgia. *Pain Med.* 2021;22(6):1324-1332.
- 36. Efrati S, Golan H, Bechor Y, et al. Hyperbaric oxygen therapy can diminish fibromyalgia syndrome–prospective clinical trial. *PloS One.* 2015;10(5):e0127012.
- Ahijón-Lana M, Baragaño-Ordóñez E, Veiga-Cabello R, de la Cruz-Tapidor C, Carreira PE. Treatment of Raynaud phenomenon and ischemic ulcers associated to systemic sclerosis with hyperbaric oxygen. *Reumatol Clin (Engl Ed)*. 2022;18(4):246-248.
- Olivieri AN, Mellos A, Duilio C, Di Meglio M, Mauro A, Perrone L. Refractory vasculitic ulcer of the toe in adolescent suffering from systemic lupus erythematosus treated successfully with hyperbaric oxygen therapy. *Ital J Pediatr.* 2010;36:72.
- Sit MT, Schmidt TW, Edmonds LD, et al. The effects of hyperbaric oxygen on rheumatoid arthritis: a pilot study. *J Clin Rheumatol.* 2021;27(8):e462-e468.
- 40. Matera DV, Smith B, Lam B. Revisiting the expanded use of hyperbaric oxygen therapy for treatment of resistant migraines. *Med Gas Res.* 2019;9(4):238-240.
- LINEA Guida SIMSI Ossigenoterapia Iperbarica (OTI): Controindicazioni Ed Effetti Collaterali: Technical Report October 2018. SIMSI. DOI: 10.13140/RG.2.2.23057.28009

WILEY_Clinical Case Reports

- 42. Stadie W, Riggs B, Haugaard N. Oxygen poisoning: III. The effect of high oxygen pressures upon the metabolism of brain. *J Biol Chem.* 1945;160:191-208.
- 43. Le Péchon J-C. From 1878 to 2006–working in hyperbaric conditions during tunnelling. *J Soc Biol.* 2006;200(3):265-272.
- 44. Lorrain SJ. The influence of pathological conditions on active absorption of oxygen by the lungs. *J Physiol*. 1897;22(4):307-318.
- 45. Suzuki S. Probable lung injury by long-term exposure to oxygen close to 50 kilopascals. *Undersea Hyperb Med.* 1994;21:235-243.

How to cite this article: Cracchiolo AN, Palma DM, Genco F, et al. Fibromyalgia: Could hyperbaric oxygen therapy make the difference? Our experience. *Clin Case Rep.* 2023;11:e7812. doi:10.1002/ccr3.7812