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ARTICLE

Prediction of Nephropathy in Type 2 Diabetes: An 
Analysis of the ACCORD Trial Applying Machine Learning 
Techniques

Violeta Rodriguez-Romero1,2,*, Richard F. Bergstrom1,2, Brian S. Decker1,†, Gezim Lahu3, Majid Vakilynejad3 and Robert R. Bies2,4

Applying data mining and machine learning (ML) techniques to clinical data might identify predictive biomarkers for diabetic 
nephropathy (DN), a common complication of type 2 diabetes mellitus (T2DM). A retrospective analysis of the Action to 
Control Cardiovascular Risk in Diabetes (ACCORD) trial was intended to identify such factors using ML. The longitudinal data 
were stratified by time after patient enrollment to differentiate early and late predictors. Our results showed that Random 
Forest and Simple Logistic Regression methods exhibited the best performance among the evaluated algorithms. Baseline 
values for glomerular filtration rate (GFR), urinary creatinine, urinary albumin, potassium, cholesterol, low-density lipopro-
tein, and urinary albumin to creatinine ratio were identified as DN predictors. Early predictors were the baseline values of 
GFR, systolic blood pressure, as well as fasting plasma glucose (FPG) and potassium at month 4. Changes per year in GFR, 
FPG, and triglycerides were recognized as predictors of late development. In conclusion, ML-based methods successfully 
identified predictive factors for DN among patients with T2DM.

Global prevalence of diabetes mellitus has increased 
dramatically from 5.1% of the adult world’s population (20–
79 years) in 20031 to 8.8% in 2017 and is projected to be 
9.9% by 2045. Type 2 diabetes mellitus (T2DM) constitutes 
85–95% of these cases.2 The increase in the incidence of di-
abetes and associated complications are a significant threat 
to global health.

One of the most common complications of type 2 diabetes 
attributed to microvascular changes is diabetic nephropathy 
(DN), which is the main cause of end-stage renal disease 
(ESRD) and death among patients with T2DM.3–6 Clinically, 
DN is characterized by hypertension, proteinuria, and a pro-
gressive decline in glomerular filtration rate (GFR) leading 
to ESRD.3,7,8 Based on the magnitude of urinary albumin 

1Division of Clinical Pharmacology, Department of Medicine,  Indiana University School of Medicine, Indianapolis, Indiana, USA; 2Indiana Clinical and Translational 
Sciences Institute (CTSI), Indianapolis, Indiana, USA; 3Translational Research and Early Clinical, Takeda Pharmaceutical International Co., Cambridge, Massachusetts, 
USA; 4Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA. 
*Correspondence: Violeta Rodriguez-Romero (viorodri@iupui.edu)
Received: December 7, 2018; accepted: April 21, 2019. doi:10.1111/cts.12647

†Posthumous

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔   Nephropathy is one of the most common compli-
cations of type 2 diabetes mellitus (T2DM) and the 
leading cause of end-stage renal disease and death 
among these patients.
✔   Even though multiple risk factors for diabetic ne-
phropathy (DN) have been reported, machine learning 
(ML) techniques have confirmed the usefulness of current 
biomarkers and may help investigators identify novel rela-
tionships that are not readily apparent.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   What are the predictive risk factors leading to DN 
among patients with T2DM?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   Glomerular filtration rate (GFR), age, urinary albumin 
excretion, low-density lipoprotein, triglycerides, and cho-
lesterol were confirmed as risk factors for DN.
✔   ML techniques also identified creatinine phosphoki-
nase, FPG, and potassium, as well as changes in fasting 
plasma glucose (FPG) and GFR after year 1 as early and 
late biomarkers of DN, respectively.
HOW MIGHT THIS CHANGE CLINICAL PHARMA­
COLOGY OR TRANSLATIONAL SCIENCE?
✔   In an era of big data and information, additional knowl-
edge might be generated by applying ML techniques to 
identify the most suitable biomarker(s) for multifactorial 
diseases, such as DN.
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excretion rate, DN has been categorized into five stages. 
The initial stage is characterized by renal hyperfiltration 
and hypertrophy, the second stage is a long silent period 
without overt clinical signs and symptoms of nephropathy, 
microalbuminuria appears during the third stage worsening 
to macro-albuminuria in the fourth stage, the fifth stage is 
a progressively severe decline in renal function that leads 
to ESRD.7,9–11 Standard treatments include glycemic and 
hypertension control following the “Standards of Medical 
Care for Patients with Diabetes Mellitus” developed by the 
American Diabetes Association.12,13

Therefore, the best intervention is early detection and 
prevention, identifying and intervening as early as possible 
before patients at high risk develop DN would likely have 
a significant impact on clinical outcomes. To address this 
challenge, data from the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD) study were examined. The main 
objective was to identify predictive risk factors among this 
patient population that lead to DN using machine learning 
(ML) techniques.

METHODS
Data collection
Data were provided by the Biologic Specimen and Data 
Repository Information Coordinating Center of the National 
Heart, Lung, and Blood Institute (NHLBI), sponsor of the 
ACCORD trial,14 and our evaluation was performed under 
a protocol approved by the Indiana University Institutional 
Review Board. The NHLBI database was analyzed evalu-
ating, classifying, and identifying the factors that seem to 
predict DN using the Waikato Environment for Knowledge 
Analysis (WEKA) workbench15 and R.16 The rationale, study 
design, inclusion/exclusion characteristics, and outcomes 
of the ACCORD trial have been previously published.17 
Briefly, ACCORD was a randomized, multicenter study 
involving 10,251 middle-aged and older patients from 77 
clinical centers in the United States and Canada with es-
tablished T2DM (mean duration 10 years) who were at risk 
for cardiovascular disease events. Recruitment occurred in 
two phases, from January to June 2001 and from February 
2003 to October 2005. Participants had clinical visits at 
least every 4 months for about 4–8 years (mean participa-
tion was 5.6 years) and was completed in December 2012. 
The ACCORD trial is registered with www.clini​caltr​ials.gov 
(NCT00000620).

Data mining
Patient-specific variables comprising metabolic, labora-
tory, clinical observations, and measures of kidney func-
tion were extracted from the NHLBI-provided ACCORD 
data set. The following attributes (or risk factors) were an-
alyzed: gender, age at randomization, randomization arm, 
cardiovascular history at baseline (cardiovascular disease 
before the initiation of the study yes/no), race, measures 
of systolic and diastolic blood pressure (BP), heart rate, 
glycosylated hemoglobin (HbA1c), lipids (total cholesterol, 
triglycerides, very low-density lipoprotein, low-density li-
poprotein (LDL), and high-density lipoprotein (HDL)), ala-
nine aminotransferase, creatinine phosphokinase (CPK), 
fasting plasma glucose (FPG), estimated GFR (eGFR), 

potassium (K), serum creatinine (SCr), urinary albumin to 
creatinine ratio (UACR), urinary albumin (UAlb), and uri-
nary creatinine (UCr).

A binary outcome for the prediction model was defined 
as either the development or absence of nephropathy. The 
classification algorithms focused on the prediction of any 
of the microvascular events related to nephropathy in the 
ACCORD trial: a doubling of baseline SCr or greater than 
a 20  mL/minute/1.73-m2 decline in eGFR, microalbumin-
uria (UACR  ≥  30  mg/g or 3.4  mg/mmol), macroalbumin-
uria (UACR ≥ 300 mg/g or 33.9 mg/mmol), or renal failure 
(initiation of dialysis or ESRD or renal transplantation, or a 
rise of SCr > 291.72 μmol/L).18 After DN diagnosis, the pa-
tient was subsequently excluded from the analysis. Using 
this approach, the classification model was able to make 
predictions based on the information previously collected.

Specifically, BP and heart rate were monitored every 
month until month 4 and every 2 months beginning at month 
6 until the end of the study; HbA1c every 4 months; lipids 
panel every 4 months for the first year of the study and then 
every 12  months; alanine aminotransferase, CPK, FPG, 
GFR, K, SCr, UACR, UAlb, and UCr at first month, month 
4, and then every 4 months. Thus, a longitudinal data set 
was created and then divided into eight different time win-
dows based on the available data from the ACCORD trial 
and the follow-up visits, beginning at patient enrollment 
into the study: 0–5.9 months, 6–11.9 months, 12 months to 
1.9 years, 2–2.9 years, 3–3.9 years, 4–4.9 years, 5–5.9 years, 
and 6 years until the end of the 7-year study (Figure S1). 
This approach allowed to identify early (up to year 2) and 
late (up to year 7) predictors of DN. Every subset of data 
included the baseline values (at patient enrollment) for the 
attributes previously mentioned as well as the available ob-
servations until the end of each specific window of time. The 
slopes for each attribute were calculated as follows: 

where

sn·x = slope at year n of the attribute x, xi = attribute at time 
ti, x0 = attribute at baseline, ti = time (months), t0 = baseline 
time

Data were randomly allocated into separate training 
and testing data sets for each time window using the sam-
ple_frac function from the dplyr package in R.19 Sixty-six 
percent of the data was used for training the model and 
to establish the predictive parameters for the classifier, 
whereas the remaining 34% was used to test and validate 
the model’s predictive performance. This approach was 
used to provide an unbiased evaluation of the final model.

Using the Data Mining with R (DMwR) package20 and 
the Synthetic minority over-sampling technique (SMOTE) 
method,21 the eight generated time windows of the training 
data sets were balanced for the binary outcome to increase 
the power of prediction beyond a 50/50 probability.

Classification model development
Figure 1 shows a schema for the process of classification 
model development. The modeling approach compared 

(1)sn⋅x =
(
xi−x0

)
∕
(
ti− t0

)

http://www.clinicaltrials.gov
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the performance of different learning algorithms in order to 
identify the most sensitive and accurate classifier as well 
as the most informative attributes (or risk factors) that pre-
dicted the onset of DN. The learning algorithms tested were  
One Rule (1R), J48 Decision Tree (J48), Random Forest 
(RF), Simple Logistic (SL), Sequential Minimal Optimization 
(SMO), and Naïve Bayes (NB).22–24 The 1R algorithm gener-
ates one rule for each predictor in the data selecting the rule 
with the smallest total error as its “one rule.” Whereas, the 
J48 and RF are both decision tree learners that break down 
the data set into smaller subsets and develop an associated 
decision tree. The SL algorithm builds linear logistic regres-
sion models with built-in attribute selection. SMO algorithm 
is used for support vector classification and implements 
John Platt’s sequential minimal optimization algorithm for 
training a support vector classifier. Finally, NB is based on 
the standard probabilistic NB theorem with independence 
assumptions between predictors.24

A 10-fold cross-validation technique was used for pre-
dicting the error rate for each time window. Predictive per-
formance of the classifiers was evaluated by the accuracy 
of the prediction, using the receiver operating characteristic 
(ROC) curve and the sensitivity of the prediction, which cor-
responds to the true positive rate (TPR): 

where a true positive (TP) is present when the predicted and 
the actual condition are positive (present DN), and a false 

negative (FN) when the patient is classified as DN negative 
but they actually developed DN.

To identify the most important attributes (or risk factors) 
for classification, attribute selection was performed using 
the InfoGain method in Waikato Environment for Knowledge 
Analysis (WEKA),24 which evaluates the worth of an attribute 
by measuring the information gain with respect to the class 
or outcome: 

where

Class  =  Binary outcome (DN/absence of nephropathy), 
Attribute  =  Evaluated parameter (BP, GFR, HbA1c, UACR, 
etc.), also seen as risk factor.

RESULTS
Study population
Observations from 10,251 patients with T2DM were ob-
tained from the ACCORD study. Participants were middle-
aged and older patients (mean age 63  years) with mean 
diabetes duration of 10  years. Most of the population 
was men (61%) and whites (62%) with an HbA1c of 8.3% 
(67 mmol/mol). Mean baseline measurements included es-
timated GFR by the Modification of Diet in Renal Disease 
equation of 89.6  mL/min/1.73  m2, 0.9  mg/dL for SCr, 
1.59 mg/dL for UAlb, 14 mg/g for UACR, 40 mg/dL for HDL, 
and 4.4 mmol/L for K (Table 1).

(2)TPR=TP∕(TP+FN)

(3)InfoGain(Class, Attribute)=H(Class)−H(Class|Attribute)

Figure 1  Model development. Development of the classification model: 1. Feature selection. All the available attributes were analyzed. 
The Action to Control Cardiovascular Risk in Diabetes (ACCORD) data set was divided into eight different time windows. 2. Data 
enhancement. The slopes for each attribute were calculated for each time window in order to account for the change per year. 3. Data 
splitting. Each subset of data was randomly allocated into separate training and testing data sets using the sample_frac function. 
4. Data balancing. Training subsets were balanced for the binary outcome (presence or absence of nephropathy) using the SMOTE 
method. 5. Model training. Different classifiers were evaluated following a 10-fold cross-validation. 6. Model validation. The learning 
algorithms were tested using the testing subsets. 7. Model selection. Evaluation of receiver operating characteristics (ROCs) and true 
positive rates (TPRs) to identify the most sensitive and accurate classifier. 8. Attribute selection. Identification of the most predictive 
attributes using the InfoGain method. Notes: Dash lines represent the result from each step of the process. Bold lines represent the 
final outcome of the model development. Italic font represents the implemented method. 1R, One Rule; ALT, alanine aminotransferase; 
BP, blood pressure; CPK, creatinine phosphokinase; CVD, cardiovascular disease; FPG, fasting plasma glucose; GFR, glomerular 
filtration rate; HbA1c, glycosylated hemoglobin; J48, J48 Decision Tree; K, potassium; NB, Naïve Bayes; RF, Random Forest; SCr, 
serum creatinine; SL, Simple Logistic; SMO, Sequential Minimal Optimization; UAlb, urinary albumin; UACR, urinary albumin to 
creatinine ratio; UCr, urinary creatinine. For more details, please refer to the text.

ACCORD Dataset
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Balanced training set
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Prediction 
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Each data subset included all the information from 
the specific window; baseline values; and all the 
observations before the specific window of time
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were tested: 1R, J48, RF, SL, SMO, NB
(48 algorithms total)

8 subsets with a 
balanced outcome

7
8

Nephropathy 
Predictors

1 algorithm per time 
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Gender; age at randomization; randomization arm; CVD history at
baseline; race; measures of systolic and diastolic BP; heart rate; HbA1c; 
lipids; ALT; CPK; FPG; GFR; K; SCr; UACR; UAlb; and UCr
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Data mining
There were 6,777 patients (66%) with T2DM who devel-
oped nephropathy throughout the study (Figure  2). After 
the stratification of the data into eight time windows, 2,050 
patients (25%) developed DN during the first 5.9 months, 
whereas 8,184 (75%) did not exhibit DN; in the time win-
dow of 6–11.9 months, data reflecting DN occurred in 1,350 
patients (20%; from the previous 8,184) and 6,834 (80%) 
continued without DN. After the first year, the analysis was 
performed in bands of 1-year for a total of 7 years. In the 
last time window, 64 of 3,521 patients developed DN and 
the remaining 3,457 had not yet exhibited DN based on 
the a priori classification of DN. After balancing the binary 
outcome, a more even distribution of DN was obtained for 
each time window (Table S1).

Figure  3 shows that the most prevalent factor reflect-
ing the development of DN was the decline in GFR. After 
6 months, 2,039 patients had either doubled their baseline 
SCr or had a decrease in GFR (Figure 3a). Micro-albuminuria 
and macro-albuminuria were not indicators of DN until after 

the first year of the ACCORD study (Figure  3b,c). There 
were 102 cases of renal failure (Figure 3d).

A decrease in GFR or doubled baseline SCr was present 
in >56% of the population with nephropathy. Although there 
were not cases of micro-albuminuria or macro-albuminuria 
during the first year of the study, these complications of 
diabetes were more prevalent and persistent from the third 
to the seventh year (9–11% and 25–31%, respectively). 
For the 25% of the patients who developed DN within the 
second year, there was an increase in filtration in the first 
year of the study; in this subgroup, 52% developed either 
micro-albuminuria or macro-albuminuria. Ultimately, there 
were 431 patients who developed micro-albuminuria and 
143 patients who developed macro-albuminuria by the end 
of year 2. Renal failure occurred in <3% of the patients who 
developed DN. Only 10 of 2,050 patients developed renal 
failure in the presence of a GFR decline, whereas most of the 
remaining cases of renal failure had a decline in GFR before 
year 4 (Figure 3d).

Classification model performance
The ROC curve is used to evaluate the balance between the 
benefit (TP) and cost (false positive). An ROC value > 0.7 re-
flects good predictive performance by the classifier, whereas 
a value below 0.50 indicates that the algorithm is not able to 
distinguish between true and false outcomes.24,25 All of the 
evaluated learning algorithms during the training phase cor-
rectly classified 80% of the instances of DN on average co-
efficient of variation (CV) = 7.39) and had ROC values > 0.70 
(M = 0.84; CV = 6.05; Figure 4, Table S2). The 1R algorithm 
had stable performance across the different time windows 
(with TPRs between 0.76 and 0.86; and ROCs > 0.7). Overall, 
NB correctly classified 77% of the instances of DN with an 
ROC of 0.83. RF and SL exhibited > 72% and 76% of cor-
rectly classified instances, respectively, and ROC values 
close to 1 and above 0.811, respectively.

Likewise, RF correctly classified  >84% (M  =  0.91; 
CV = 5.99) of the instances with ROC values > 0.60 (M = 0.73; 
CV = 18.82; Figure 5, Table S3) during the validation phase, 
except on the 1–1.9-year period, where the sensitivity fell to 
69%. The NB approach correctly classified between 64% 
and 93% of the instances through the different windows 
of time and exhibited the lowest accuracy (ROCs between 
0.50 and 0.78). The SL algorithm showed more consistency 
during the validation phase. Eighty-two percent of the in-
stances of DN were correctly classified with ROC values 
above 0.8 for the first two and last window of time, and be-
tween 0.6 and 0.8 for the rest of the time periods.

J48, RF, SL, and SMO exhibited a great performance 
during the first windows of time, correctly classifying DN 
in >82% of instances in both the training and validation sub-
sets. SL was the only algorithm that showed good accuracy 
(ROC > 0.7) for the 2–2.9-year period (Figure 5, Table S4, 
S1 - S8).

Risk markers
Table 2 shows the top attributes that were identified as the 
best predictors of DN using the Random Forest Method. The 
listing of attributes is rank-ordered from greatest to least, 
top to bottom, by the degree of importance or influence for 

Table 1  Patient baseline characteristics from the ACCORD trial 
(n = 10,251)

Variable Mean (SD) or Median [IQR]

Age, year 62.8 (6.6)

Male 6,299 (61.4%)

Race

Black 1,953 (19%)

White 6,393 (62%)

Hispanic 737 (7%)

Other 1,168 (11%)

History of CV event, n 3,609 (35.2%)

GHb, % {mmol/mol} 8.3 (1.01) {67}

Blood pressure, mmHg

Systolic 136.2 (16.5)

Diastolic 74.7 (10.2)

eGFR, mL/minute/1.73 m2 89.6 [75.4–105.1]

SCr, mg/dL 0.9 [0.8–1.0]

UCr, mg/dL 114.7 [79.4–158.5]

UAlb, mg/dL 1.59 [0.7–4.96]

Cholesterol, mg/dL 182.9

LDL 104.9 (33.9)

HDL 41.9 (11.6)

Triglycerides, mg/dL 155.5 [106–229]

LDL 101 [81–125]

HDL 40 [34–48]

FPG, mg/dL 167 [138–204]

ALT, mg/dL 24 [18–32]

CPK, mg/dL 105 [72–164]

K, mmol/L 4.4 [4.2–4.7]

UACR, mg/g 14 [7–47]

ACCORD, Action to Control Cardiovascular Risk in Diabetes; ALT, alanine 
aminotransferase; CPK, creatinine phosphokinase; CV, cardiovascular; 
FPG, fasting plasma glucose; eGFR, estimated glomerular filtration rate; 
GHb, glycosylated hemoglobin; HDL, high-density lipoprotein; IQR, inter-
quartile range; K, potassium; LDL, low-density lipoprotein; SCr, serum cre-
atinine; UACR, urinary albumin to creatinine ratio; UAlb, urinary albumin; 
UCr, urinary creatinine.
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each time window. K, UCr, albumin, cholesterol, LDL, and 
UACR at baseline were the most consistent classifiers for 
all time windows. Age, baseline values for GFR, CPK, tri-
glycerides, and FPG, and values at month 4 for GFR and 
FPG were consistently predictive. For the first 5.9 months, 
GFR at baseline (GFR00) had the highest predictive influence 

followed by UCr, age, UAlb, CPK, triglycerides, FPG, and K 
at baseline. After the first year, the slopes of the indicator at-
tributes gained importance for the predictions. In particular, 
the slope of change in the first year for GFR (s1.GFR) was 
an important predictor of DN in years 2–6. During the first 
2 years of the study, LDL and systolic BP at baseline, and K 

Figure 2  Incidence of nephropathy among the Action to Control Cardiovascular Risk in Diabetes (ACCORD) population. Blue bars 
represent the number of patients who did not develop nephropathy while the pink bars are the number of patients who developed 
nephropathy within the specified time window on the x-axis.

Figure 3  Incidence of the different nephropathies in patients with type 2 diabetes from Action to Control Cardiovascular Risk in 
Diabetes (ACCORD) study across time windows. (a) Decline in estimated glomerular filtration rate (eGFR); (b) macroalbuminuria; (c) 
microalbuminuria; and (d) renal failure.
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and FPG at month 4 played a significant role for the predic-
tions. By the end of the study, final slopes contributed more 
for the predictions than actual values of the attributes, such 
as UACR, UAlb, and GFR. Additional slopes of particular 
importance throughout the study include FPG, triglycerides, 
UCr, LDL, and systolic and diastolic BP.

DISCUSSION

The purpose of the research was to identify predictive risk 
factors of DN utilizing data from an existing public trial da-
tabase from patients with T2DM. ML techniques have be-
come essential tools in the biomarker discovery process.26 
Six ML methods were applied to evaluate the factors affect-
ing the progression of diabetes leading to DN.

Study population
ACCORD is a data-rich study that provided the opportunity 
to examine the clinical factors that lead to DN, a major and 

life threatening complication of diabetes. Classifier models 
were used to assess commonly available clinical data as 
predictors of a binary outcome, and the development or 
absence of DN. The large number of patients with T2DM 
who developed DN within the first year may be explained 
by the design of the ACCORD study, which was intended 
to investigate whether intensive vs. standard therapies that 
normalize a patient’s HbA1c would have an impact on the 
incidence of cardiovascular events.27 Presence of DN in 
the first 6  months may only represent transient changes 
in kidney perfusion or function.7 Yet, given the fact that 
none of these patients developed micro-albuminuria by 
that time, they are likely predominantly in stage 2 of DN, 
where hyperfiltration is observed.28 Micro-albuminuria ac-
companied by a large decrease in GFR has been reported 
as a signal of the incipient stage of DN and as a precursor 
of macro-albuminuria in T2DM.29 Therefore, patients who 
develop micro-albuminuria and macro-albuminuria are at 
higher risk of stage 3 or stage 4 DN by year 3.

Figure  4  Sensitivity and accuracy (receiver operating characteristic (ROC) areas) for the training data sets at the established 
time windows using different algorithms in Waikato Environment for Knowledge Analysis (WEKA). Black circles = one rule; black 
squares = J48; black triangles = random forest; black diamonds = simple logistic; white triangles = sequential minimal optimization 
(SMO); white diamonds = Naïve Bayes. TPR, true positive rate.
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Data mining and model performance
Different approaches have been explored in order to iden-
tify new biomarkers for DN.30,31 Here, a binary classifier 
for the prediction of the development or absence of DN 
was built implementing ML methods. Classification trees, 
such as 1R, J48, and RF, are the most widely used due to 
their simplicity, speed of classifying, and intuitive graph-
ical representation.26 RF has been successfully used to 
identify predictors involved in interactions.22 Overall, RF 
exhibited the best performance among the tested meth-
ods. Another advantage of RF is that it provides an im-
proved understanding of the importance of a parameter to 
both the model and the disease.32 Although the NB model 
has been widely used because of its simplicity and ro-
bustness,33 it was associated with the lowest predictive 
performance.

As reported by Basu et al.,34 application of ML methods 
with cross-validation approaches may aid in detecting clini-
cally important factors that contribute to a specific outcome. 
Therefore, the 10-fold cross-validation method24 and a 

testing set were used to guard against overfitting and model 
bias, supporting the findings described here.

Model predictors
Assessing the impact of each attribute in these classifi-
cation models could lead to increased clinical insight re-
garding DN as the analysis provides a robust framework for 
testing biomarkers that are predictive of DN in a population 
of patients with T2DM.

GFR at baseline (GFR00; Table 2) was the most import-
ant attribute leading to DN, followed by UCr and UAlb at 
baseline. Likewise, weighted models incorporating albumin-
uria were shown to have a statistically significant associa-
tion with development of ESRD using baseline patient data 
from patients with T2DM.35 Moreover, macro-albuminuria 
has been associated with developing a decline in renal 
function.36 Although DN was defined as the presence of 
any microvascular event related to nephropathy, the num-
ber of patients who either doubled their baseline SCr or ex-
perienced a decrease in GFR was greater than the number 

Figure  5  Sensitivity and accuracy (receiver operating characteristic (ROC) areas) for the testing data sets at the established 
time windows using different algorithms in Waikato Environment for Knowledge Analysis (WEKA). Black circles = one rule; black 
squares = J48; black triangles = random forest; black diamonds = simple logistic; white triangles = sequential minimal optimization 
(SMO); white diamonds = Naïve Bayes. TPR, true positive rate.
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of patients exhibiting renal failure, micro-albuminuria, and 
macro-albuminuria combined (Figure 1).

The importance of cholesterol control in T2DM was also 
important throughout the study (Table  2). Although not 
many studies have reported HDL as a risk factor to develop 
DN, these findings seem to be in agreement with previous 
reports suggesting dyslipidemia as a potential risk marker 
for diabetic kidney disease.6,37 Other investigations have 
reported a cross-sectional relationship between the lipid-
subtype “fingerprint” and advanced kidney disease.38 In our 
models, HDL at baseline gained importance for the predic-
tion of DN in the fifth through seventh years. The inclusion 
of time varying attributes in the analysis may be advanta-
geous to predict the outcome. Interestingly, the slopes of 
change after years 1, 2, and 3 of the study (s1., s2., and 
s3.Trig in Table 2) became important predictors beginning 
at year 2, suggesting that the lipid control over time is ex-
tremely important in patients with T2DM, especially in those 
with cardiovascular risks who have shown a correlation with 
dyslipidemia under such conditions.6

Previously, systolic BP was associated with a decline in 
GFR.6,35,39 Likewise, our predictive model suggested that 
baseline systolic BP (mean systolic BP 136.2 mmHg) exhib-
ited importance as a predictor of DN at the beginning of the 
study as well as in year 5. By year 6, the slopes of change 
after years 1 and 3 for diastolic and systolic BP, respectively, 
gained more importance than the baseline values. In agree-
ment with previous studies,6,35,39 differences between the 
beginning and the end of the study for UACR, UAlb, and 

GFR were significant in predicting late DN (i.e., later in the 
ACCORD study).

This study confirms the established risk factors of DN and 
draws attention to an enhanced importance of lipid, glu-
cose, proteinuria, and K control among patients with T2DM. 
Moreover, our analysis exemplifies the use of ML techniques 
in predictive medicine, which might benefit from such learn-
ing approaches.

The classified models and analysis presented have im-
portant limitations. Even though four different microvascular 
observations were analyzed, DN was defined as a binary 
outcome (present or absent). The analysis excluded data 
for patients once they were classified as having developed 
DN, which omits the assessment of cases where the patient 
reverts to a classification of absent DN. This approach did 
not permit an assessment of the progression of DN symp-
toms, which was perhaps especially impactful for patients 
excluded after DN development in the early time periods. 
Further modeling and exploration of the progression of the 
DN data might allow an enhanced assessment of continually 
worsening disease complications.

The ACCORD data set did not include more novel bio-
markers of DN; it only contains routinely measured clinical 
factors, such as eGFR, SCr, HbA1c, etc. Testing of other pre-
dictive biomarkers, such as tumor necrosis factor-α, trans-
forming growth factor-β, vascular endothelial growth factor, 
or interleukin-1β, that may be more closely related to mech-
anisms of DN pathogenesis7 was not possible. However, 
studies focusing on the pathophysiologic mechanism of 

Table 2  Predictive risk factors through the established time windows

Time windowa

0–
5.9 months

6–
11.9 months 1–1.9 years 2–2.9 years 3–3.9 years 4–4.9 years 5–5.9 years 6–7 years

Risk factor 
(ranked 
by highest 
to lowest 
importance)b

GFR00c,e GFR00c,e UAlb00d GFR00c,e UCr00d UAlb00d s1.dBP K00d

UCr00d UCr00d GFR00c,e Trig00c Agec FPG00c UACR00d UAlb86

GFR04c UAlb00d UCr00d s2.GFR CPK00c UCr00d LDL24 fs.UAlb

Agec GFR04c s1.GFR UAlb00d Trig00c Trig00c sBP16 fs.UACR

UAlb00d Agec Trig00c UCr00d FPG00c Chol00d HbA1c00 fs.GFR

CPK00c Trig00c FPG00c s1.GFRf GFR04c LDL00d HDL00f s3.vLDL

Trig00c CPK00c CPK00c FPG00c K00d K04 s1.LDL Trig00

FPG00c GFR08 Agec Chol00d GFR00c UACR00d K00d s3.Trig

K00d FPG00c GFR04c CPK00c s2.Trig s3.GFR Chol00d s1.FPG

Arm K00d K00d UCr24 Trig12 K08 s3.sBP HDL24

LDL00d K08 LDL00d K12 Chol00d GFR04c s1.GFRf HDL00f

Chol00d Chol00d Chol00d Agec s3.GFR GFR36 Agec Chol00d

sBP00e FPG08c GFR12 s1.FPG FPG04c GFR00c FPG08 LDL00d

FPG04c,e LDL00d FPG04c,e s2.UCr FPG08c s2.GFR GFR00c UAlb00d

K04e UACR00d s1.FPG FPG08c s1.GFRf HbA1c08 UAlb00d FPG00c

vLDL FPG04c,e s1.Trig LDL00d LDL00d sBP00 UCr00d UCr00d

UACR00d K04e UACR00d K00d UACR00d K00d GFR04c GFR04c

dBP00 sBP00e FPG08c UACR00d UAlb00d Agec LDL00d UACR00d

ALT, alanine aminotransferase; dBP, diastolic blood pressure; Chol, cholesterol; CPK, creatinine phosphokinase; FPG, fasting plasma glucose; fs, final slope 
(from baseline to the end of the study); GFR, glomerular filtration rate; HbA1c, glycosylated hemoglobin; HR, heart rate; HDL, high-density lipoprotein; K, 
potassium; LDL, low-density lipoprotein; s, slope of change; sBP, systolic blood pressure; SCr, serum creatinine; UACR, urinary albumin to creatinine ratio; 
UAlb, urinary albumin; UCr, urinary creatinine; VLDL, very low-density lipoprotein.
Numbers following a risk factor indicate the number of months from baseline (00), whereas numbers preceding the risk factor and accompanied by a slope(s) 
denote the year of change. Thus, GFR04 corresponds to the GFR measurement at month 4; s1.GFR corresponds to the change in GFR from baseline to year 1.
aTime after the diagnosis of diabetes. bDisplayed in order of importance (from top to bottom). cRisk factors that fed the classifiers in at least 4 windows of 
time. dThose that were consistent throughout the study. eThose that were important for the first <3 years. fThose that gained importance after year 2.
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diabetic kidney disease have been performed showing that 
tumor necrosis factor receptor-1, tumor necrosis factor re-
ceptor-2, and plasma kidney injury molecule-1 are associ-
ated with higher risk of eGFR decline in persons with T2DM 
with early and advanced diabetic kidney disease.40

It is also important to note that only internal validation was 
performed in this analysis. Therefore, these results apply 
to the population that met inclusion criteria for ACCORD. 
Additional exploration and analyses on healthcare medical 
records databases is being planned to assess the generaliz-
ability of our findings.

In summary, this study illustrates the usefulness of ML 
techniques in identifying biomarkers that lead to the devel-
opment of DN in T2DM from the ACCORD patient popula-
tion. Among the tested methods, Random Forest and Simple 
Logistic Regression exhibited the best performance and 
showed that GFR, UCr, UAlb, UACR, K, cholesterol, and LDL 
at baseline as well as the changes per year in GFR, FPG, and 
triglycerides for the first 1–3 years are the key identifiable pre-
dictors for DN.

The use of these predictive models within the construct 
of healthcare medical record databases has the poten-
tial to provide clinical meaningful tools for patient-factor 
risk assessment. Future studies into the prediction of DN 
should aim to optimize outcome measures where the iden-
tification between the different stages of the disease might 
be seen. For example, analyses stratifying the baseline 
GFR and/or urinary albumin excretion, as well as evaluat-
ing periods of hyperfiltration or increasing GFR may prove 
to be useful.

Supporting Information. Supplementary information accompa-
nies this paper on the Clinical and Translational Science website (www.
cts-journal.com).
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