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For nearly 15 years, the biological and biomedical applications of arene ruthenium

metalla-assemblies have flourished. Today, the synthetic strategies to generate arene

ruthenium assemblies are well-established, and these compounds offer tremendous

possibilities in terms of structural diversities and chemical properties. However, the

second coordination sphere is often poorly considered, if not ignored, when designing

such arene ruthenium metalla-assemblies. These weak interactions (hydrogen bonding,

hydrophobic, ionic, electrostatic, van der Waals, π-π stacking) that take place in the

solid state or in solution are generally key interactions for the foreseen applications.

Therefore, in this review, we want to emphasize this important property of arene

ruthenium metalla-assemblies by showing examples dealing with second coordination

sphere interactions and how this can be better integrated in the design of these versatile

supramolecular metal-based entities.

Keywords: arene ruthenium, metalla-assemblies, bio-inorganic, piano-stool complexes, weak interactions,

second coordination sphere

INTRODUCTION

It is now well-known that the second coordination sphere (second shell) plays a major role in
metal-based enzymatic transformations (Dudev et al., 2003). These additional interactions that
take place in the proximity of the catalytic pocket can either stabilize the metal-substrate complex,
stabilize the electronic state of the metal, orient the ligands to enhance the reactivity, act as
proton and/or electron mediators, and so on (Ando et al., 1996; Botta, 2000; Steed, 2001; Haviv
et al., 2018). More generally, these weak interactions (coordination, ionic, hydrogen bonding,
hydrophobic, electrostatic, van der Waals, π-π stacking) are not only extremely important for
biological processes, they are also a pillar of supramolecular chemistry. They allow the formation
in the solid state of molecular networks (Hosseini, 2003), the preparation of liquid crystalline
materials (Kato et al., 2018), the construction of coordination-driven assemblies (Fujita et al., 2005),
as well as the generation of many other supramolecular systems (Wu et al., 2008; Zhou et al.,
2017).

For many years, we have been involved in the field of coordination-driven self-assembly, using
piano-stool complexes (also called half-sandwich complexes) as building blocks, and especially
arene ruthenium complexes as biological agents (Therrien and Furrer, 2014; Therrien, 2015).
The piano-stool unit provides three coordination sites at 90◦ from each other for a strategic
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FIGURE 1 | Sensing of MCI (M = Li, Na, K) in a trinuclear arene ruthenium metalla-cycle (Piotrowski et al., 2001).

FIGURE 2 | Sensing of polyanionic species in tetranuclear arene ruthenium metalla-assemblies (Vajpayee et al., 2011; Mishra et al., 2012).

FIGURE 3 | Arene ruthenium metalla-rectangle interacting with DNA (Linares

et al., 2009).

coordination of ligands on metals (Therrien, 2009), which
allows the design of 2D and 3D entities (Cook et al., 2013;
Singh et al., 2014; Therrien, 2018). These metalla-assemblies
possess different functional groups, situated either at the
periphery or at the core of the assembly. They have good

stability in solution, showing no dynamic ligand exchange under
ordinary conditions (Garci et al., 2014). They come in different
sizes, with or without a cavity, and they can be positively
charged, thus showing various properties and solubility. Among
these properties, host-guest chemistry, biological activity, DNA
interactions, recognition, ion binding, and others have been
identified. Therefore, in this perspective review, the biological
applications of arene rutheniummetalla-assemblies are discussed
from the second coordination sphere point of view, to better
emphasize the importance of weak interactions in diverse
properties. Ultimately, it can provide to those working in the
field a different angle to envision the next generation of metalla-
assemblies in biomedical fields.

SENSING

The first example of arene ruthenium metalla-assemblies used
for sensing was published in 2001 (Piotrowski et al., 2001).
The electrochemical property of a trinuclear arene ruthenium
metalla-cycle was exploited. Interestingly, upon the binding
of alkali chloride salts in the triple-oxo binding site of the
metalla-cycle (Figure 1), the oxidation potential of the trinuclear
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assembly was shifted by as much as 450mV in the presence
of LiCl, thus providing a redox-responsive signal upon guest
binding.

Later, the possibility of using arene ruthenium metalla-
assemblies for sensing biologically relevant substrates was
explored by Chi and Stang (Vajpayee et al., 2011; Mishra
et al., 2012). The cavity of arene ruthenium metalla-rectangles
(Figure 2) has shown interactions with polyanionic compounds
(oxalate, citrate, tartrate). The presence of multiple amido and
pyridine groups within the core of the metalla-rectangles was
crucial for the recognition process to take place. Moreover, the
amido groups gave some structural flexibility to the systems, thus
providing binding adaptability to optimize the interactions with
anions. In these systems, the size of the cavity and the capacity
to form several hydrogen-bonds with anions are crucial elements
for the sensing process to take place.

These are simple examples in which the nature of the
functional groups incorporated in the building blocks of

FIGURE 4 | Arene ruthenium metalla-cubes interacting with G-quadruplexes (Barry et al., 2009).

FIGURE 5 | Arene ruthenium metalla-rectangle interacting with EGF protein (Mishra et al., 2014).

the arene ruthenium metalla-assemblies has provided valuable
second sphere coordination interactions to develop metalla-
assembled sensors.

DNA INTERACTIONS

The good water solubility and the presence of positive charges
on most arene ruthenium metalla-assemblies are both
advantageous properties for interactions with biomolecules.
The first study dealing with arene ruthenium metalla-
assemblies and DNA interactions was published in 2009
(Figure 3). The tetracationic bowl-shaped rectangle showed
good interaction with calf-thymus DNA (Linares et al., 2009).
Binding assays have suggested that the interactions take place
in the major groove of the duplex DNA strand. Conformational
changes in the DNA strand are probably due to electrostatic
interactions between the cationic metalla-rectangle and the
negatively charged surface of DNA as well as the good match
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between the size of the rectangle and the size of the major
groove.

Following this initial study, several other arene ruthenium
metalla-assemblies were tested as duplex DNA binders (Linares
et al., 2010; Paul et al., 2015; Gupta et al., 2016, 2017).
However, in the human genome, DNA sequences can fold
into other thermodynamically stable structures such as hairpins
and quadruplexes. These kinds of secondary structures are
interesting targets for therapeutic applications (Zhao et al., 2010).

FIGURE 6 | Complex –in-a-complex arene ruthenium metalla-prism (Therrien

et al., 2008).

FIGURE 7 | BODIPY-based tetranuclear arene ruthenium metalla-assemblies as potential PDT agent (Gupta et al., 2017).

Consequently, arene ruthenium metalla-assemblies have been
used, for example, as quadruplex DNA stabilizers (Barry et al.,
2009).

A G-quadruplex is composed of guanine tetrads intercalated
by cations, and it possesses a planar aromatic surface
(Balasubramanian and Neidle, 2009). Therefore, cationic
molecules with π-stacking affinity can potentially interact with
G-quadruplexes. This possibility of interaction and stabilization
was confirmed from the porphyrin-based arene ruthenium
metalla-cubes (Figure 4), which showed good stabilization of
telomeric and c-myc DNA quadruplexes. In such systems, we
can assume that a combination of electrostatic and π-stacking
(hydrophobic) interactions generates second coordination
sphere interactions.

PROTEIN INTERACTIONS

Like DNA, proteins can positively interact with cationic
compounds, and accordingly with positively charged
arene ruthenium metalla-assemblies. Different proteins
interacting with such metalla-assemblies have been
identified. Interestingly, these studies have shown that
metalla-assemblies of different shapes, sizes, structures
and numbers of charges are able to interact with
proteins, confirming that interaction with biomolecules
is a common feature of arene ruthenium metalla-
assemblies (Dubey et al., 2015; Elumalai et al., 2016,
2017).

Indeed, an arene ruthenium metalla-rectangle with bis-
amido pyridine containing linkers (Figure 5) shows strong
interaction with enhanced green fluorescence protein (EGFP)
(Mishra et al., 2014). Similarly, an arene ruthenium metalla-
prism can disrupt the folded structures of albumin, transferrin,
cytochrome-c, and other proteins (Paul et al., 2018), showing
a great diversity of protein interactions. These examples
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FIGURE 8 | Anthracene-based tetranuclear arene ruthenium

metalla-assemblies for o2 interactions (Gaschard et al., 2018).

suggest that the interactions between metalla-assemblies and
proteins are mainly electrostatic. Therefore, to optimize the
metalla-assembly protein interactions, and to gain a degree
of selectivity for a specific protein, one cannot rely purely
on electrostatic, hydrophobic, size-dependent or hydrogen-
bond interactions. Only the multiplicity of second coordination
sphere interactions can generate selective protein binders, which
increases the complexity of designing arene ruthenium metalla-
assemblies.

DECOMPLEXATION UPON INTERACTIONS

The first biological application of arene ruthenium metalla-
assemblies was confirmed by the complex-in-a-complex system
(Figure 6), in which a water-soluble arene ruthenium metalla-
prism was used to transport the platinum acetylacetonate
complex to cells (Therrien et al., 2008). Later, it was demonstrated
that, after internalization, the guest complex was released,
most likely upon disassembly of the cage compound (Mattsson
et al., 2010). Furthermore, the metalla-prism can interact with
biomolecules such as arginine, cysteine, glutathione, lysine,
histidine (Paul et al., 2012a,b), and biomolecules possessing
coordinating functional groups, thus being able to initiate the
breakage of the cage compound. This suggests that despite
being relatively robust to ligand exchange processes (Garci et al.,
2014), second coordination sphere interactions can be used to
disassemble arene ruthenium metalla-assemblies.

OXYGEN INTERACTIONS

In traditional photodynamic therapy (PDT), a photosensitizer
interacts with oxygen to produce reactive oxygen species (ROS),
and these ROS trigger cell death upon light activation (Patrice
et al., 2003). Therefore, to evaluate the potential of using arene
ruthenium metalla-assemblies as PDT agents, several metalla-
assemblies coupled to photosensitizers were prepared and tested
(Schmitt et al., 2009). The arene ruthenium units can modulate
the solubility of the photosensitizers (Schmitt et al., 2008)
as well as modify its photochemical behavior. Moreover, the

cavity of arene ruthenium cages can transport and protect the
photosensitizer (Schmitt et al., 2012).

Nevertheless, other types of molecules can interact with
oxygen to generate ROS. This is the case of BODIPY, an
interesting fluorescent dye with a high-quantum yield that can
promote the production of ROS. Therefore, BODIPY-based
linkers have been recently inserted in arene ruthenium metalla-
rectangles (Figure 7), and the cytotoxicity of the compounds on
various cancer cell lines was confirmed (Gupta et al., 2017). The
fluorescence associated with the BODIPY units was exploited to
localize the metalla-rectangle in the cytoplasm of cancer cells.
However, the possibility of using such metalla-rectangles as PDT
agents remains to be explored.

Anthracene is another molecule that can react with oxygen
(Aubry et al., 2003). Anthracene forms in the presence of
oxygen and light activation, an endoperoxide intermediate.
The endoperoxide formation is reversible, and oxygen can
be released in a different environment. Therefore, knowing
that arene ruthenium metalla-assemblies can be internalized to
cells and can be coupled to photosensitizers, we have recently
synthesized an anthracene-based metalla-rectangle (Figure 8)
(Gaschard et al., 2018). Despite an unsuccessful endoperoxide
formation on the metalla-rectangle, the ultimate goal of this
project was to transport oxygen and a photosensitizer to cells for
an optimization of PDT treatments in hypoxic cancers.

CONCLUSION

As pointed out in this article, the second coordination sphere
plays a major role in most biological and biomedical applications
involving arene ruthenium metalla-assemblies. Therefore, the
introduction of functional groups that can generate weak
interactions with biomolecules on either the arene, the building
blocks or the guest molecules is essential for the development
of biologically active arene ruthenium metalla-assemblies. In the
future, designing metalla-assemblies with second coordination
sphere interactions in mind will be challenging, but it could
provide the next generation of arene ruthenium derivatives for
biological and biomedical applications.
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