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ABSTRACT

Immune checkpoint blockades, such as inhibitors against programmed death 1 
(PD-1) and its ligand (PD-L1), have received extensive attention in the past decade 
because of their dramatic clinical outcomes in advanced malignancies. However, 
both primary and acquired resistance becomes one of the major obstacles, which 
greatly limits the long-lasting effects and wide application of PD-1/PD-L1 blockade 
therapy. PD-1/PD-L1 both regulates and is regulated by cellular signaling pathways 
and epigenetic modification, thus inhibiting the proliferation and effector function of 
T and B cells. The lack of tumor antigens and effective antigen presentation, aberrant 
activation of oncogenic pathways, mutations in IFN-γ signaling, immunosuppressive 
tumor microenvironment such as regulatory T cells, myeloid-derived suppressor cells, 
M2 macrophages, and immunoinhibitory cytokines can lead to resistance to PD-1/PD-
L1 blockade. In this review, we describe PD-1 related signaling pathways, essential 
factors contributing to the resistance of PD-1 blockade, and discuss strategies to 
increase the efficacy of immunotherapy. Furthermore, we discuss the possibility of 
combined epigenetic therapy with PD-1 blockade as a potential promising approach 
for cancer treatment.

INTRODUCTION

The “two-signal theory” of lymphocyte activation 
explains the mechanism of T cell activation or anergy 
when a naive T cell makes contact with an antigen [1, 
2]. Accordingly, efficient activation of antigen-specific 
lymphocytes needs specific antigen recognition by 
lymphocytes and an additional signal. Later, it was found 
that coinhibitory signals also exist. Receptors eliciting 
coinhibitory signals function as immune checkpoints and 
have an essential status in the maintenance of peripheral 
tolerance and inhibition of autoimmunity [3–6].

The best-studied pathway of T-cell costimulation 
involves the B7-CD28-CTLA-4 superfamily, of which 
PD-1 and its ligands belong, revealed that the immune 
system has developed several coinhibitory pathways for 
T cell activation and tolerance [7–11]. Costimulation has 

been of therapeutic interest in cancer therapy because the 
augmentation of costimulatory signals could promote T 
cell activation to enhance antitumor immune responses 
[12]. With the discovery of CTLA-4 as an effective 
immune checkpoint, blockade of CTLA-4 was found to 
promote antitumor immune reactions and gain notable 
clinical effectiveness as cancer therapy [13, 14]. The 
understanding of cancer immunotherapy was modified 
and strategies for removing other coinhibitory signals to 
activate the immune system were widely investigated. The 
tumor immunotherapy targeting PD-1/PD-L1 has achieved 
encouraging therapeutic outcomes, with response rates of 
20% to 40% in various cancer types [15]. Thus far, five 
immune checkpoint inhibitors targeting PD-1/PD-L1 have 
been approved by the US Food and Drug Administration, 
such as PD-1-blocking monoclonal antibodies (mAb) 
pembrolizumab and nivolumab, and PD-L1-targeted mAb 
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atezolizumab, avelumab, and durvalumab. Compared with 
anti-CTLA-4 mAb, immune-related toxicities induced by 
PD-1/PD-L1 blockade were much less frequent and the 
most frequently observed toxicity was fatigue [16, 17].

PD-1 PATHWAY

Expression of PD-1 and PD-1 ligands

PD-1 is expressed on activated CD4 and CD8 
T cells, B cells, monocytes, natural killer (NK) cells, 
and dendritic cells (DCs) [18–21]. The expression of 
PD-1 on T cells can be induced by the common γ chain 
cytokines interleukin-2 (IL-2), IL-7, IL-15, and IL-
21 [22]. PD-1 is encoded in the Pdcd1 gene. Nuclear 
factor of activated T-cells cytoplasmic 1 (NFATc1) is 
a significant transcription factor, which promotes the 
PD-1 expression [23]. Other established transcriptional 
activators such as forkhead box O 1 (Foxo1), Notch 
proteins, and interferon regulatory factor 9 (IRF9) can also 
promote PD-1 transcription, and T-box transcription factor 
TBX21 (T-bet) functions as a transcriptional repressor 
[24–27]. During chronic viral infection, PD-1 expression 
is enhanced and maintained on exhausted virus-specific 
T cells to prevent their proliferation and function [28, 
29]. CpG oligodeoxynucleotides treatment induced PD-1 
expression in human CD19+ B cells [30]. Environmental 
hyaluronan fragments from hepatoma cells produced PD-
1high regulatory B cells via TLR4 activation, during which 
TLR4-mediated Bcl-6 upregulation was critical [31]. 
Interferon (IFN)-sensitive responsive element (ISRE) and 
STAT1/2 regulate PD-1 expression mediated by IFN-γ in 
macrophages [32].

PD-L1 (B7-H1 or CD274) and PD-L2 (B7-DC 
or CD273) are the ligands of PD-1, which are type I 
transmembrane glycoproteins. There is approximately 
40% of the same acidic identity between PD-L1 and PD-
L2 whereas the similarity between PD-Ls and B7s is 20% 
[33, 34]. PD-Ls have different patterns of expression. 
The expression of PD-L1 constitutively exists on T and 
B cells, DCs, macrophages, mesenchymal stem cells, 
and bone marrow-derived mast cells [19]. PD-L1 is also 
expressed on a large-scale in nonhematopoietic cells 
such as lung, vascular endothelial, fibroblastic reticular, 
liver nonparenchymal, and mesenchymal stem cells, and 
pancreatic islets, astrocytes, neurons, and keratinocytes 
[20]. In contrast with PD-L1, PD-L2 expression is 
restricted to activated DCs, macrophages, bone marrow-
derived mast cells, and over 50% of peritoneal B1 cells 
[35]. PD-L1 expression can be induced by γ chain 
cytokines IL-2, IL-7, and IL-15 on T cells, and IL-21 
promoted PD-L1 expression on CD19+ B cells. LPS or 
BCR activation also stimulate the expression of PD-Ls on 
B cells [36–38]. Treatment of interferon-gamma (IFN-γ) 
or IL-10 results in the expression of both ligands in 
monocytes, and IL-4 and granulocyte macrophage colony-
stimulating factor (GM-CSF) induce PD-L2 expression 

on DCs [39]. In tumor cells, the PD-1 and PD-1 ligands 
ligation mediates inhibitory signals to cause a harmful 
effect on antitumor immunity, resulting in the escape from 
immunosurveillance [40–42].

The influence of epigenetic modification on PD-1 
expression

Epigenetic modification, including DNA 
methylation, histone methylation/acetylation, and 
microRNA regulation, also controls the expression of 
PD-1. During acute infection, CD8+ T cell differentiation 
from naïve T cells was accompanied by transient DNA 
demethylation at Pdcd1 locus, which gained DNA 
methylation during further differentiation into functional 
memory T cells. In contrast, PD-1 promoter was 
dramatically demethylated in exhausted CD8+ T cells 
and imprinted during the effector phase of CD8 T cell 
exhaustion [43, 44]. In patients with chronic HIV, PD-1 
promoter was demethylated in PD-1-high virus-specific T 
cells, and methylated in naïve, PD-1-low T cells from the 
same donors, while after anti-retroviral therapy, there is 
no remethylation of DNA at the PD-1 promoter, indicating 
that the poised epigenetic status for PD-1 remained after 
prolonged exposure to HIV virus [45]. Modifications 
to histone proteins also lead to changes in Pdcd1 
transcription. Enhancers are marked by histone H3 lysine 
4 monomethylation (H3K4me1) and H3K27 acetylation 
(ac) at the “active” status [46], and other activation marks 
such as H3K9ac and H3K27ac were enriched at the 
promoter when PD-1 expression was induced on CD8 T 
cells in vitro [47, 48]. MicroRNAs also take a part in PD-1 
expression. In the melanoma-bearing mice, the expression 
of PD-1 was attenuated after transfection with miR-28 
mimic [49]. In immunocompetent murine models, miR-
138 treatment of GL261 gliomas reduced the expression 
of PD-1, CTLA-4, and FoxP3 in T cells, promoting tumor 
regression [50]. Moreover, in lymphocytes from patients 
with chronic hepatitis B virus, transfection of miR-4717 
mimics significantly decreased PD-1 expression in concert 
with increased tumor necrosis factor-α (TNF-α) and IFN-γ 
production [51].

The PD-1 downstream signaling pathway

The mechanism of how PD-1 inhibits T-cell 
receptor signaling is a focus of investigation. Beginning 
with recruiting SHP-2 (SRC Homology 2-Domain-
Containingprotein Tyrosine Phosphatase 2) proximate to 
the T-cell receptor, PD-1 ligation inhibits the activation of 
T-cell receptor proximal kinases, resulting in depression 
of the phosphorylation of ZAP-70 mediated by Lck and 
initiation of downstream events [52].

The PI3K/Akt signaling is an important target of the 
PD-1 downstream pathway [53]. First, PD-1 can inhibit 
the activation of PI3K by recruiting SHP-2 [54]. As a 
serine-threonine phosphatase, PTEN inhibits the activation 
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of PI3K and suppresses the PI3K-Akt pathway signal 
transmission mediated by CK2. During T-cell activation, 
PTEN is phosphorylated by CK2 in the S380-T382-T383 
cluster, resulting in PTEN stability and reducing PTEN 
phosphatase activity. PD-1 can target and inhibit CK2-
mediated PTEN phosphorylation and promote its 
degradation while it induces PTEN phosphatase activity, 
thus repressing PI3K/Akt signaling [55–57].

The Ras/MEK/ERK pathway is another signaling 
pathway regulated by PD-1 [52, 53]. In T cells, the 
activation of RasGRP1 is critical for the activation of Ras 
and downstream MEK/ERK MAP kinase, and RasGRP1 
is activated by calcium and diacylglycerol downstream 
of PLC-γ1 [58]. The activation of PLC-γ1 and Ras are 
inhibited by PD-1, resulting in diminished activation of 
the MEK/ERK pathway [53].

By similar mechanisms in B cells, PD-1 ligation 
with B-cell receptor (BCR) signaling results in SHP-
2 recruitment to the ITSM tyrosine of PD-1, and 
inhibits BCR-mediated Ca2+ mobilization and tyrosine 
phosphorylation of effector molecules, including Ig β, 
Syk, phospholipase C-γ2 (PLC- 2), and ERK1/2 [59].

RESISTANCE TO PD-1/PD-L1 
BLOCKADE

Immunotherapy has been viewed as one of the most 
promising methods for cancer treatment. Blocking of 
PD-1/PD-L1 interaction could overcome the counteraction 
and preserve the antitumor capacity of T cells to repress 
tumor cells [14, 15, 60]. Thus far, five PD-1/PD-L1 
blocking mAbs have been approved by the U.S. FDA, 
and the superiority has been confirmed in over 15 cancer 
types [61]. Nevertheless, as compared to chemotherapy 
and molecular targeted therapy, a relatively higher rate 
of primary resistance with immune checkpoint inhibitors 
occurs and depresses the effectual clinical benefits. The 
efficacy of monotherapy for PD-1/PD-L1 blockade was 
rarely more than 40%, with a large proportion of partial 
responders [15, 62]. Moreover, after an initial response to 
PD-1/PD-L1 blockade, acquired resistance occurs in most 
patients, which leads to disease progression or relapse 
eventually.

The mechanisms of resistance are complex, 
dynamic, and interdependent. There are many tumor cell-
intrinsic and -extrinsic factors relating to PD-1 blockade 
resistance, including PD-L1 expression, tumor neoantigen 
expression and presentation, associated cellular signaling 
pathways, tumor microenvironment (TME), related 
immune genes, and epigenetic modification (Table 1 and 
Figure 1).

PD-L1 expression

In Hodgkin’s lymphoma, frequent amplification of 
chromosome 9p24.1 that encodes PD-1 ligands PD-L1 and 

PD-L2 was observed, and the active JAK/STAT signaling 
further induced PD-L1/2 expression, which could be 
associated with the higher clinical response in Hodgkin 
lymphoma in response to PD-1/PD-L1 blockade [63]. In 
addition, genetic amplification of PD-L1/2 was positively 
correlated with high local immune cytolytic activity 
[64]. Other mechanisms to promote constitutive PD-
L1 expression in cancer cells included PTEN deletions, 
PI3K and/or AKT mutations, EGFR mutations, MYC 
overexpression, CDK5 disruption, and an increase in 
PD-L1 transcripts stabilized by truncation of the 30 UTR 
of this gene [65–69]. It is currently undefined whether 
constitutive PD-L1 expression increases or reduces the 
sensitivity to PD-1/PD-L1 blockade therapy.

Lack of tumor antigens and effective antigen 
presentation

The most straightforward reason why tumors would 
not respond to PD-1/PD-L1 blockade therapy is lack 
of recognition by T cells because of absence of tumor 
antigens [70]. Human melanoma, renal cell carcinoma 
(RCC), and non small cell lung cancer (NSCLC) are highly 
immunogenic mutations, ranging from 5 to 10 per mega-
base of DNA in the range of individual cell mutations [15, 
71]. This finding is consistent with the clinical results that 
these tumors are most sensitive to PD-1/PD-L1 blockade 
therapy [72, 73]. Poorly immunogenic tumors that tend to 
have between 0.1-1 somatic mutation per mega-base of 
DNA largely show no response to PD-1/PD-L1 blockade, 
such as in the pancreas and prostate [71]. Meanwhile, 
mutational load is also associated with efficacy in specific 
tumor types. In two groups of patients with NSCLCs, a 
higher burden of nonsynonymous somatic mutations in 
tumors was detected, which was related to better clinical 
response and longer survival [72].

Decrease in neoantigens is also an important 
mechanism for acquired resistance to immunotherapy. 
In T cell-dependent immunoselection, Elimination of 
neoantigens has been considered as a mechanism of cancer 
immunoediting in mice [74]. A recent study revealed that 
the evolution of neoantigen loss could augment acquired 
resistance as an escape mechanism after PD-1/PD-L1 
blockade treatment. In the NSCLC relapsed patients 
after initial response, a loss of 7 to 18 putative mutation-
associated neoantigens in resistant clones was observed 
in the analysis of protein coding genes of matched 
pretreatment and resistant cancers [75].

Moreover, cancer cells may also develop 
mechanisms to avoid antigen processing and presenting 
to the cell surface, via silencing or altering the expression 
of antigen-presenting machinery, beta-2-microglobulin 
(B2M), or MHC molecules [76, 77]. B2M plays an 
essential role in supporting MHC class I molecules to 
present tumor specific peptides to T cells. Dysfunctional 
mutations in B2M have been viewed as an important 
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Table 1: The mechanism of resistance to PD-1/PD-L1 blockade
Mechanism Description Reference

PD-L1 expression PD-L1/2 expression could be associated with the higher local 
immune cytolytic activity and clinical response. [63–69]

Lack of effective antigen presentation

The most straightforward reason why tumors would not 
respond to PD-1/PD-L1 blockade therapy is lack of recognition 
by T cells via the mechanisms such as absence of tumor 
antigens, loss of HLA expression, and Dysfunctional mutations 
in B2M.

[15, 70–78]

Cellular signaling pathways

PI3K/AKT pathway
Loss of PTEN-mediated PI3K/AKT activation significantly 
correlated with the decreased expression of IFN-γ, granzyme 
B, less CD8 T cell infiltration.

[79]

WNT/β-catenin pathway Stabilization of b-catenin resulting in constitutive WNT 
signaling pathway could induce T cell exclusion from cancers. [80]

JAK/STAT/IFN-γ pathway
Cancer cells could escape the effects of IFN-γ by 
downregulating or mutating molecules including IFNGR1/2, 
JAK2, and IRF1.

[81–88]

MAPK pathway With the inducement of VEGF and IL-8, MAPK signaling has 
inhibitory effects on T cell recruitment and function. [89–92]

Tumor microenvironment

Immunosuppressive cells

Exhaustion T cells Disfunctional T cells and PD-1high phenotype exhaustion T cells 
cannot benefit from PD-1 blockade. [94]

Tregs Suppress effector T cell (Teff) responses by secretion of IL-10, 
IL-35, and TGF-β. [95–101]

MDSCs Promote angiogenesis, tumor invasion and metastasis. [102–106]

TAMs Higher frequencies of TAMs are associated with poor 
prognosis. [41, 107–110]

Immunosuppressive cytokines
Often released by tumor or macrophages for local suppression 
of anti-tumor immune responses, including TGF-β, CCL5, 
CCL7, CXCL8, IDO, etc.

[111–118]

Inhibitory receptors

Apart from PD-1, over-expression of multiple inhibitory 
receptors including TIM3, CTLA4, LAG3 and BTLA is 
associated with inhibition of T-cell function and resistance to 
PD-1/PD-L1 blockade therapy.

[119, 120]

Immune related genes

IPRES signatures
Within TME, co-enrichment of a group of 26 transcriptomic 
signatures (named IPRES signatures) was also related to 
primary resistance to PD-1/PD-L1 blockade.

[121]

Epigenetic modification

DNA methylation and histone 
acetylation

Epigenetic modification may lead to changes in immune-
related genes expression to impact antigen processing, 
presentation, immune evasion and T cell exhaustion, and DNA 
methyltransferase inhibitors and histone deacetylase inhibitors 
can reverseimmune suppression via several mechanisms.

[122–134]
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mechanism of tumor resistance to T cell-mediated immune 
responses and lead to resistance to immunotherapy [78].

Cellular signaling pathways

The aberrant cellular signaling transduction is 
also a central factor contributing to the resistance to 
immunotherapy, such as PI3K/AKT pathway, WNT/β-
catenin pathway, JAK/STAT/IFN-γ pathway, and mitogen-
activated protein kinase (MAPK) pathway.

Oncogenic PI3K/AKT pathway has been proved 
to be associated with primary resistance to PD-1/PD-
L1 checkpoint inhibition. PI3K/AKT signaling controls 

a variety of cellular processes including apoptosis, 
proliferation, motility, and metabolism, and contributes 
to tumor development and progression. Tumor suppressor 
PTEN, a lipid phosphatase, suppresses the activity 
of PI3K, and the loss of PTEN-mediated PI3K/AKT 
activation has been observed in many tumor types. In 
the Cancer Genome Atlas melanoma dataset, PTEN loss 
significantly correlated with the decreased expression 
of IFN-γ, granzyme B, less CD8 T cell infiltration, and 
further correlated with resistance to immune checkpoint 
therapy. In mice, the effectiveness of either PD-1/PD-L1 
blockade or anti-CTLA4 mAb was enhanced by treatment 

Figure 1: The factors that lead to resistance to PD-1 blockade include PD-L1 expression, tumor neoantigens expression 
and presentation, cellular signaling pathways (PI3K, WNT, IFN-γ, MAPK), tumor microenvironment (TME) 
(exhausted T cell, Treg, MDSC, TAM, other chemokines), and related immune genes (IPRES). The inhibitors against target 
molecules are indicated, which could enhance antitumor responses in in mouse models when combined with PD-1/PD-L1 blockade.
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with a selective PI3K inhibitor [79]. Whether the PI3K/
AKT inhibitors would reverse the resistance to immune 
checkpoint blockade needs further clinical study.

In addition to the loss of PTEN, the potential of 
oncogenic signaling pathways to induce T cell exclusion 
from cancers has also been described through the 
stabilization of β-catenin resulting in constitutive WNT 
signaling pathway [80]. In a murine model, tumors with 
elevated β-catenin lacked a subset of CD103+ dendritic 
cells (DCs), due to decreased expression of CCL4, a 
chemokine that attracts CD103+ DCs. In addition, murine 
tumors lacking β-catenin responded effectively to immune 
checkpoint therapy whereas β-catenin-positive tumors did 
not. Non-T cell-inflamed human melanoma, which lacks 
T cells and CD103+ DCs in the tumor microenvironment, 
had significantly higher expression of tumor intrinsic 
β-catenin signaling genes. Therefore, cancer immune 
evasion and resistance to PD-1/PD-L1 blockade therapy 
could result from some crucial oncogenic signals, which 
might be new candidate targets for immune potentiation.

The IFN-γ pathway is emerging as a key player in 
primary, adaptive, and acquired resistance to checkpoint 
blockade therapy [81–83]. It has both favorable and 
detrimental effects on anti-tumor immune responses. 
Interferon-γ produced by tumor-specific T cells that 
have recognized their cognate antigen on cancer cells 
or APCs induces an effective anti-tumor immune 
response. However, continuous IFN-γ exposure can lead 
to immunoediting of cancer cells, resulting in immune 
escape [84, 85]. One mechanism by which cancer cells 
could escape the effects of IFN-γ is by decreasing the 
expression or mutations in molecules in IFN-γ signaling 
pathway, which goes through the IFN-γ receptors JAK1 
and/or JAK2 and the signal transducer and activators of 
transcription (STATs) [86]. Analysis of tumors in patients 
who did not respond to therapy with the anti-CTLA-4 
antibody ipilimumab revealed an enriched frequency of 
mutations in the IFN-γ pathway genes IFN-γ receptor 
1 and 2 (IFNGR1 and IFNGR2), JAK2, and interferon 
regulatory factor 1 (IRF1) [81]. Any of these mutations 
would prevent signaling in response to IFN-γ and give 
an advantage to the tumor cells escaping from T cells, 
thereby resulting in primary resistance to anti-CTLA-4 
therapy, and may also be a reason for the resistance to 
PD-1/PD-L1 blockade therapy. Mutations in this pathway 
would additionally result in lack of PD-L1 expression 
upon IFN-γ exposure, thereby resulting in cancer cells 
that would be genetically negative for inducible PD-L1 
expression. In such a condition, blocking PD-L1 or PD-1 
with therapeutic antibodies would not be useful, and these 
would be patients who are primarily resistant to PD-1/PD-
L1 blockade therapy [87, 88].

The MAPK pathway plays an essential role in cell 
proliferation, and hyperactivation of MAPK signaling 
might also be related to the resistance to immunotherapy. 
With the inducing of VEGF and IL-8, MAPK signaling 

has inhibitory effects on T cell recruitment and function 
[89]. Inhibition of MAPK pathway promoted CD8+ T cell 
activation and infiltration, and induced the expression of 
tumor antigens as detected in human melanoma samples; 
in addition, acquired resistance to MAPK-targeted therapy 
was correlated with depletion of intratumor T cells, 
exhaustion of CD8 T cells, and loss of antigen presentation 
[90, 91]. Moreover, the combination of PD-1 blockade 
and short-term dual inhibition of BRAF and MEK could 
enhance tumor immune infiltration and improved tumor 
regression, suggesting that a nongenomic mechanism of 
MAPK inhibitor resistance might mediate cross-resistance 
to PD-1/PD-L1 blockade therapy [92].

Tumor microenvironment

Tumor cells closely interact with the stromal cells, 
immune cells, and extracellular in the immunosuppressive 
TME, protecting tumor cells from being detected and 
eradicated by immunosurveillance [93]. Within the 
TME, other than tumor cells, components that might be 
associated with primary or acquired resistance include 
exhausted T cells, Tregs, myeloid derived suppressor cells 
(MDSCs), M2 macrophages, and other inhibitory immune 
checkpoints and cytokines.

T cell exhaustion is manifested by dysfunction, 
sustained expression of inhibitory receptors, and different 
transcriptional status with functional effector or memory T 
cells. Exhausted CD8 T cells with intermediate expression 
of PD-1 can benefit from PD-1/PD-L1 blockade, whereas 
the severely exhausted CD8 T cells with PD-1high 
phenotype cannot benefit even impair the efficacy [94]. 
Thus, the ratio of partially exhausted PD-1intermediate CD8+ 
T cells to severely exhausted PD-1high CD8+ T cells might 
be a critical factor for the reversal of T cell exhaustion by 
PD-1/PD-L1 blockade.

Tregs are known to suppress effector T cell (Teff) 
responses by secretion of certain inhibitory cytokines, 
such as IL-10, IL-35, and transforming growth factor 
beta (TGF-β) [95–97]. In vivo studies have shown that 
depletion of Treg cells from the TME can strengthen 
the anti-tumor immune response [98–100]. Moreover, 
response to PD-1/PD-L1 blockade therapy was shown to 
be associated with increased ratio of Teff to Treg [101]. 
These data suggest that tumors without an increase of Teff 
and decrease of Treg following immunotherapy might be 
resistant to the treatment.

Myeloid-derived suppressor cells (MDSCs) have 
been considered as major regulators of immune responses 
in various pathological conditions. MDSCs could promote 
angiogenesis, tumor invasion, and metastasis [102]. 
Clinical findings have pointed out that the presence of 
MDSCs may be related to short survival in human cancers, 
such as breast and colorectal cancer [103]. Furthermore, 
the presence of MDSCs in TME contributed to decreased 
efficacy of immunotherapies, including immune 
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checkpoint blockade [104]. In various tumor-bearing 
mice models, selective inhibition of MDSC by using 
PI3K inhibitors enhanced expression of proinflammatory 
cytokines and inhibited immunosuppressive factors, 
synergized with immune checkpoint inhibitors to promote 
tumor regression [105, 106]. These studies highlight 
inhibitors of PI3Ka as a potential therapeutic target for 
combination strategies with PD-1/PD-L1 blockade 
therapy.

Tumor-associated macrophages (TAMs) are 
another subset of cells that influence the responses to 
immunotherapy. TAMs include M1 macrophages, which 
are involved in promoting anti-tumor immunity, and M2 
macrophages, which possess pro-tumorigenic properties 
[107]. Clinical studies have identified an association 
between higher frequencies of TAMs and poor prognosis 
in human cancers [108]. In a lung adenocarcinoma mice 
model, depletion of TAMs inhibited tumor growth as a 
result of decreased M2 TAM recruitment, possibly due 
to the inactivation of CCL2 and CCR2 signaling [109]. 
Reports suggest that macrophages can directly suppress T 
cell responses through PD-L1 in hepatocellular carcinoma 
[41]. To overcome the potential resistance of macrophages, 
blocking of CSF-1R, a receptor for macrophage colony-
stimulating growth factor, in a pancreatic cancer-bearing 
mice model, decreased frequencies of TAMs, with 
subsequent increase in interferon production and tumor 
rejection. Importantly, CSF-1R blockade in combination 
with antibody against PD-1 or CTLA-4, in addition to 
gemcitabine, led to strengthened tumor regression [110].

Immunosuppressive cytokines are often released by 
tumor or macrophages for local suppression of anti-tumor 
immune responses. TGF-β plays an important role in 
immunosuppression by stimulating Tregs [111]. Increased 
TGF-β is associated with poor prognosis in multiple 
cancer types [112]. A preclinical study on radiation therapy 
combined with TGF-β inhibitor showed anti-tumor 
responses [113]. In addition, specific chemokines and 
chemokine receptors play a necessary role in trafficking of 
MDSCs and Tregs into tumors. For example, tumor secrete 
ligands CCL5, CCL7, and CXCL8, bind to their receptors 
CCR1 or CXCR2 expressed on subtypes of MDSCs, and 
attract MDSCs in the tumor microenvironment. Inhibitors 
of these chemokine receptors could abrogate immune 
evasion and improve anti-tumor T cell responses [114].

Indole 2,3-dioxygenase (IDO), which can be 
produced by tumors or immune cells, could improve 
the generation and activity of Tregs and MDSCs [115, 
116]. IDO, as a rate-limiting enzyme, influences the 
catabolism of tryptophan, producing immunosuppressive 
metabolites to inhibit the proliferation of T cells and 
induce T cell anergy and apoptosis [117]. Holmgaard et 
al. found a marked delay in B16 melanoma tumor growth 
and increased overall survival in IDO knockout mice as 
compared with wild-type mice when treated with anti-
CTLA-4/PD-1 antibody [118]. Based on the study, the 

combination of IDO inhibitors and PD-1/PD-L1 blockade 
may lead to more efficacious therapeutic anti-tumor 
immunity than applying the individual agent.

The immune response is dynamic, and the 
expression of immune molecules is fluctuated. Other 
than PD-1, overexpression of multiple inhibitory 
receptors such as T-cell immunoglobulin mucin 3 (TIM3), 
CTLA4, lymphocyte activation gene 3 (LAG3), and B 
and T lymphocyte attenuator (BTLA) is associated with 
inhibition of T-cell function and hamper to PD-1/PD-L1 
blockade [119, 120]. Moreover, a recurrent tumor after 
PD-1/PD-L1 blockade treatment might be the result 
of increased expression of TIM-3 on T cells. Notably, 
preclinical studies showed that PD-1/PD-L1 blockade 
plus anti-TIM-3 led to improved responses in the tumor-
bearing mice. Based on the fact that when one immune 
checkpoint is blocked, the other immune checkpoints 
may be induced, and hence, combination of PD-1/PD-L1 
blockade with other immune checkpoint inhibitors may 
promisingly enhance antitumor responses.

IPRES signatures

IPRES signatures, a set of 26 transcriptomic 
signatures, were found co-enriched to improve resistance 
to PD-1/PD-L1 blockade in tumors form nonresponding 
melanoma patients and the upexpression of IPRES related 
to the regulation of mesenchymal transition, cell adhesion, 
extracellular matrix (ECM) remodeling, angiogenesis and 
wound-healing [121]. The confirmation of IPRES co-
enrichment in other independent tumor such as pancreatic 
adenocarcinoma indicates a transcriptomic program 
among different type of cancers and it may be a new 
way to enhance the efficacy of PD-1/PD-L1 blockade by 
inhibit the IPRES relevant biological processes.

Epigenetic modification

Epigenetic modification in cancer cells may lead 
to changes in gene expression of immune-related genes, 
which can affect antigen processing, presentation, immune 
evasion, and T-cell exhaustion [122, 123]. Epigenetic 
modifying agents, DNA methyltransferase inhibitors 
and histone deacetylase inhibitors can reverse immune 
suppression via enhancing the expression of tumor-
associated antigens, costimulatory molecules, components 
of antigen processing and presenting, other immune-
related genes and chemokines [124, 125]. In addition, 
the low-dose DNA demethylating agent decitabine 
could directly promote T cell activation and cytolytic 
capacity with increased frequency of IFN-γ-expressing T 
cells [126]. Based on these findings, it is probably that 
epigenetic modification may ‘prime’ the host immune 
response for subsequent immunotherapy in combination 
therapy [124, 127, 128], and the efficacy of the combined 
strategy has been confirmed in both clinical studies and 
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animal models [129–131]. Furthermore, immune priming 
by epigenetic therapy has been observed in combination 
with immune checkpoint inhibitors [132, 133]. Recently, 
it has been revealed that T cell exhaustion is associated 
with de novo DNA methylation, which can persist and be 
passed on to successive generations of T cells, whereas 
inhibition of DNA methylation by decitabine could reverse 
the exhausted state and promote T-cell rejuvenation [134]. 
These results establish a highly promising strategy for 
combination treatments by using epigenetic modifying 
agents and immune checkpoint blockade in cancer 
patients.

Hyperaggressive disease with anti-PD-1/PD-L1 
therapy

Besides primary and acquired resistance to 
immunotherapy, it was recently reported that PD-1/PD-
L1 blockade might develop “hyperprogressive disease” 
in some patients, which means accelerated tumor growth 
after anti-PD-1/PD-L1 inhibitors [135]. A trial of 131 
patients with PD-1 blockade therapies reported that 
12 patients (9%) were considered as hyperprogressive 
disease; moreover, the hyperprogressive status seemed to 
be more common in elder patients over 65 year old [136]. 
Kurzrock et al reported that 6 patients out of 155 had 
extra copies of MDM2 or MDM4 genes and experienced 
time-to-treatment failure (TTF) of less than 2 months 
after immune checkpoint blockade therapy. Among these 
6 patients, 4 patients developed hyperprogressive disease. 
In addition, patients with mutations in EGFR were also 
likely to experience short TTF and cause hyperprogressive 
disease [137]. Thus, exploring the mechanisms of 
resistance and hyperprogressive status to PD-1/PD-L1 
blockade is particularly crucial. Actually, there is still not 
enough evidence to confirm that the accelerated tumor 
growth is pinned on immunotherapy, the hyperprogressive 
status could only occur with PD-1/PD-L1 blockade 
therapy in certain patients.

PROSPECTIVE

PD-1 has now been proved to be an important 
checkpoint inhibitory receptor that impacts the T-cell 
stimulation, differentiation, and anti-tumor immune 
function. Both primary and acquired resistance to anti-
PD-1/PD-L1 antibodies inspired us to investigate novel 
strategies to augment the efficiency of PD-1/PD-L1 
blockade. First, radiotherapy, chemotherapy, epigenetic 
therapy, and other immune stimulatory agents combined 
with PD-1/PD-L1 blockade could enhance the sensitivity 
of immunotherapy in tumors with low immunogenicity. 
Second, modulating the immunosuppressive tumor 
microenvironment and breaking the inhibitory status, such 
as depletion of Tregs, interference with the suppressive 
cytokines, and silencing of co-inhibitory receptors could 

also help increase the therapeutic responses of PD-1/PD-
L1 blockade. Third, further understanding and exploring 
the mechanisms of both the upstream regulators of PD-1 
and its downstream biological events and targets will 
be necessary for the design of combination therapies, to 
illuminate the resistance mechanisms, and identify the 
reliable predictive biomarkers of PD-1/PD-L1 blockade. 
Last, with the progress made in human genome sequencing 
and bioinformation analysis, detection and understanding 
of the patients’ genetic and epigenetic information of 
tumors and immunocytes will help establish individualized 
immunotherapy, to obtain clinical benefits for more 
patients.
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