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Prior to the 2016 WHO update, adult astrocytomas were
graded exclusively by histologic features, where grade III
anaplastic astrocytomas were separated from grade II dif-
fuse infiltrating astrocytomas on the basis of mitotic figures,
and glioblastomas (GBM; grade IV) were defined based on
the presence of microvascular proliferation and/or tumor
necrosis [9]. With the establishment of the 2016 WHO
Classification of Tumours of the Central Nervous System
guidelines, adult astrocytomas have been segregated into
IDH-wildtype and IDH-mutant groups due to the signifi-
cant prognostic advantage conferred by the presence of an
IDH1 or IDH2 mutation [9, 14]. Since this update, much
work has been done to establish additional prognostic fac-
tors in both IDH-wildtype and IDH-mutant astrocytomas
to further subclassify these groups and to aid in the under-
standing of the underlying biology [1–3, 5].
We have previously investigated the influence of total

copy number variation (CNV) on clinical outcome in
adult astrocytomas in a variety of cohorts, including cases
from The Cancer Genome Atlas (TCGA) dataset [10–13].
In IDH-mutant lower-grade gliomas (grades II and III), el-
evated total CNV (16–22%) is associated with poor clinical
outcome (defined in these earlier reports as rapid progres-
sion to GBM and patient survival intervals < 24months)
compared to histologically similar tumors with lower total
CNV (8–10%), and the level of total genomic CNV is
inversely correlated with both progression-free and overall
survival in linear regression models. Total CNV appears to

have no prognostic value in IDH-wildtype astrocytoma or
IDH-mutant GBM groups [10–12].
Unlike other prognostic factors, however, CNV is

more difficult to utilize clinically, as it is not a simple
“present-or-absent” model like IDH1/2 mutations. To
address this, we used the cBioPortal interface [4, 7] to
reanalyze the survival and CNV data from IDH-mutant
grade II/III astrocytomas in our previous publications
(n = 67) [10, 12] to establish a simple and reasonable
threshold that could be used to reliably predict clinical
outcomes within the IDH-mutant, 1p/19q-retained
lower-grade astrocytoma subgroup. We defined CNV as
the percentage of the genome with alterations meeting
the criteria of log2 > 0.3; copy number data was derived
from Affymetrix SNP6 (Santa Clara, CA, USA) and
Agilent 224 K/415 K (Santa Clara, CA, USA) platforms
[1]. Preliminary data from our previous studies
suggested potential clinically useful CNV cutoff levels of
10, 15, and 18% [10, 12].
Using Kaplan-Meier analysis on cases from our previ-

ous publications and additional cases from the TCGA
database (total n = 194 IDH-mutant lower-grade astrocy-
tomas), we evaluated each of these potential thresholds.
There was a significant survival difference between cases
at each threshold evaluated: 10% (< 10% CNV, 105.2
month median survival; > 10% CNV, 62.2 month median
survival; p = 0.0020) (Fig. 1a), 15% (< 15% CNV, 105.2
month median survival; > 15% CNV, 50.1 month median
survival; p < 0.0001) (Fig. 1b), and 18% (< 18% CNV,
98.2 month median survival; > 18% CNV, 41.2 month
median survival; p = 0.0003) (Fig. 1c). There was no sig-
nificant patient survival difference in the 10% vs 15%
CNV thresholds, and an additional group with CNV
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between 10 and 15% (130.8 month median survival) was
not significantly different than the group with < 10%
CNV (p = 0.6003), however these cases had significantly
better clinical outcomes than cases with > 15% CNV
(p = 0.0113) (Fig. 1d), suggesting 15% as the better cutoff
point. No significant difference was found between the
15 and 18% thresholds (Fig. 1e) or the 10 and 18%
thresholds (Fig. 1f ), however the 18% threshold would
exclude > 50% of cases from one of our previously re-
ported poorly performing cohorts [12]. The 15% CNV
threshold had a sensitivity of 85%, specificity of 90%,

positive predictive value (PPV) of 77%, and negative
predictive value (NPV) of 94%. The 10% CNV threshold
had a relatively low specificity (57%) and PPV (32%) and
the 18% CNV threshold had a lower sensitivity (75%)
(Table 1). Based on these models, we suggest that a judi-
cious CNV cutoff for predicting poor clinical outcome in
adult IDH-mutant lower-grade astrocytomas would be
around 15%. It is important to note that these results are
from a single, albeit relatively large, data source and as
such should be validated prospectively. It would be of
interest to evaluate our suggested cutoff using other

Fig. 1 Kaplan-Meier survival curves demonstrating survival differences using 10% overall CNV as a threshold for poor clinical outcome (p = 0.0020)
(a), using 15% overall CNV as a threshold for poor clinical outcome (p < 0.0001) (b), and using 18% overall as a threshold for poor clinical
outcome (p = 0.0003) (c). Kaplan-Meier survival curves demonstrating no significant difference between 10 and 15% CNV thresholds (additionally,
< 10% vs 10–15% p = 0.6003; 10–15% vs > 15% p = 0.0113) (d), no significant difference between 15 and 18% CNV thresholds (< 15% vs < 18, p =
0.5949; > 15% vs > 18% p = 0.9015) (e), and no significant difference between 10 and 18% CNV thresholds (< 10% vs < 18, p = 0.4791; > 10% vs >
18% p = 0.2672) (f). Copy number variation is expressed as a percentage of the total genome, log2 > 0.3 as reported previously [10, 12]
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large-scale cohorts to confirm our recommendation of
15% CNV or alternatively help improve the robustness
of our model and refine this threshold.
While total CNV is not currently a regularly measured

factor at the time of diagnosis, recent proof-of-concept
studies have shown that genetic and epigenetic variables
such as CNV and various mutations, individual gene am-
plifications/deletions, and chromosomal gains/losses can
be identified rapidly [6, 8], and thus CNV estimates may
soon be available within days of histologic diagnosis,
raising the possibility for its use as an additional clinical
factor guiding prognosis in IDH-mutant lower-grade
astrocytomas.
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Table 1 Comparison of 10, 15, and 18% CNV thresholds

CNV Level Sensitivity Specificity PPV NPV

10% 88% 57% 32% 96%

15% 85% 90% 77% 94%

18% 75% 93% 75% 93%
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