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Objective: Post-operative biochemical relapse (BCR) continues to occur in a significant
percentage of patients with localized prostate cancer (PCa). Current stratification methods
are not adequate to identify high-risk patients. The present study exploits the ability of
deep learning (DL) algorithms using the H2O package to combine multi-omics data to
resolve this problem.

Methods: Five-omics data from 417 PCa patients from The Cancer Genome Atlas
(TCGA) were used to construct the DL-based, relapse-sensitive model. Among them, 265
(63.5%) individuals experienced BCR. Five additional independent validation sets were
applied to assess its predictive robustness. Bioinformatics analyses of two relapse-
associated subgroups were then performed for identification of differentially expressed
genes (DEGs), enriched pathway analysis, copy number analysis and immune cell
infiltration analysis.

Results: The DL-based model, with a significant difference (P = 6e-9) between two
subgroups and good concordance index (C-index = 0.767), were proven to be robust by
external validation. 1530 DEGs including 678 up- and 852 down-regulated genes were
identified in the high-risk subgroup S2 compared with the low-risk subgroup S1. Enrichment
analyses found five hallmark gene sets were up-regulated while 13 were down-regulated.
Then, we found that DNA damage repair pathways were significantly enriched in the S2
subgroup. CNV analysis showed that 30.18% of genes were significantly up-regulated and
gene amplification on chromosomes 7 and 8 was significantly elevated in the S2 subgroup.
Moreover, enrichment analysis revealed that some DEGs and pathways were associated with
immunity. Three tumor-infiltrating immune cell (TIIC) groups with a higher proportion in the S2
subgroup (p = 1e-05, p = 8.7e-06, p = 0.00014) and one TIIC group with a higher proportion
in the S1 subgroup (P = 1.3e-06) were identified.
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Conclusion: We developed a novel, robust classification for understanding PCa relapse.
This study validated the effectiveness of deep learning technique in prognosis prediction,
and the method may benefit patients and prevent relapse by improving early detection
and advancing early intervention.
Keywords: prostate cancer, relapse prediction, multi-omics, autoencoder, deep learning, H2O package
INTRODUCTION

Data accumulation is increasing exponentially with the
development and application of advanced technologies such as
chips and sequencing in the biomedical field. Combined with
state-of-the-art algorithms, it is revealing strong biological
associations in the pathomechanism of various cancers (1, 2).
Before this new era, cancer studies concerning single-
dimensional data could only obtain limited information, but
multi-omics data integration approaches can now address
important biological questions. Multi-omics data integration
techniques have been widely applied for identifying subtypes,
and multiple studies have revealed that the deep learning (DL)
method may be effective for transducing multi-omics data to
construct more accurate prognosis models (3, 4).

Prostate cancer (PCa) is one of the most common
malignancies in elderly men, accounting for 26% of all cancers
and 11% of estimated cancer death in males in 2021 (5). After the
PCa patients received either radical prostatectomy (RP) or
external beam radiotherapy, 27−53% of patients experienced
biochemical recurrence (BCR) (6). Combined with surgical
margin status, clinically applied prognostic factors such as
prostate specific antigen (PSA) value, tumor-node-metastasis
(TNM) status and Gleason score can help assess the risk of
relapse after RP (7). However, these parameters lack predictive
accuracy. As we all know, the best medical decisions should be
made according to the patients’ specific situations. Relapse is
indeed a very significant part of it, and prediction represents a
major challenge (8). New methods to discover relapse-sensitive
subtypes are much needed, and a more accurate risk-stratification
tool improve the allocation of medical resources (9).

In recent years, several studies have identified PCa molecular
subtypes (10–14). Huang et al. (10) generated a set of long non-
coding RNAs (lncRNAs) to predict BCR-free survival of PCa
using The Cancer Genome Atlas (TCGA; https://www.cancer.
gov/) dataset, a large and detailed database including omics data
for more than 30 cancer types. The results showed that this four-
lncRNA model was more precise than the American Joint
Committee on Cancer T stage and Gleason score, although
differences were not significant. Chu et al. (11) used a random
forest-based variable hunting approach to select eight messenger
RNA (mRNA), and developed a risk score staging system.
Importantly, this eight-gene model was further validated by
another independent dataset. Wang et al. (13) integrated
mRNA, microRNA (miRNA), and methylation data, selected
TELO2, ZMYND19, miR-143, miR-378a, cg00687383, and
cg02318866 for model construction, and reported a high
concordance index (C-index = 0.713).
2

Genomics, epigenomics, transcriptomics, and other omics
approaches can broadly be defined as systematic methods for
collecting multifarious biological data, and these techniques can
reveal the heterogeneity of tumors and provide new types of
molecular classification. The H2O Deep Learning Estimator has
not been applied to PCa relapse prediction, and meanwhile one
or a few omics layers have been considered in previous studies,
with a small number of biomarkers. To more comprehensively
mine multi-omics data, we herein developed a robust relapse
risk-stratification model for PCa based on up to five-omics data
using the H2O Deep Learning Estimator, consisting of mRNA,
miRNA, DNA methylation, copy number variations (CNVs),
and lncRNA. Five external validation sets were employed to
evaluate its robustness, which was lacking for previous predictive
models. Furthermore, detailed bioinformatic analysis was
performed from multiple perspectives. We evaluated
differentially expressed genes (DEGs), critical signaling
pathways, CNVs, and tumor-infiltrating immune cell (TIIC)
groups associated with PCa relapse.
MATERIALS AND METHODS

Data Acquisition and Study Design
Multi-omics PCa data from TCGA, including mRNA, miRNA,
DNA methylation, CNVs and lncRNA, were subjected to
dimensionality reduction analysis to extract associated genes
using the H2O package in R (v3.6.0) (15), an open-source
machine learning platform that supports the most widely used
machine learningmodels and advancedmodels, such as DL and so
forth. Multi-omics datasets were obtained from the TCGA data
portal. CNV values were generated by GISTIC 2.0, and processing
of methylation data was conducted as previously described (3, 9).
Hyperparameter optimization was performed by grid search, and
DL models were then built. Five additional validation sets were
applied to evaluate the predictive robustness of the best-
performing model. The study workflow is shown in Figure 1.

An autoencoder with three hidden layers (n = 50, 100, 150,
200, 250, 300, 400, 500) was implemented, for which the
bottleneck layer was used to discover new labels from the
multi-omics data, with aa = 0.0001 and aw = 0.001. As
reported, selection parameters to train the autoencoder were
‘TanhWithDropout’ as the activation function, ‘log loss’ as the
objective function, and ‘10 epochs and 50% dropout’ as the
gradient descent algorithm (3).In detail taking the input x = (x1,
..., xn), the output of x

′, for a given i the formula is x′ = tanh(Wix
+bi) whereWi is the weight matrix of size x×x′. For k layer in the
autoencoder , the formula is x ′F1!k(x)= f1° . . . ° f k−1° f k
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( x ) logloss(x, x0) =od
k−1(xklog(x

0
k) + (1 − k)log(1 − x

0
k)) w a s

applied to measure the error between the input and
output . To control overfi t t ing, L(x, x0) = logloss(x, x0) +

ok
i=1(awjjWijj1 + aajjF1!i(x)jj22). Finally, eight DL models were

built based on different hidden layers.

Robustness Assessment and
Model Selection
We extracted deep features from eight DL models, and features
related to relapse were screened out by univariate Cox
proportional hazards (Cox-PH). Next, we used the K-means
clustering algorithm to cluster the samples. Different clusters and
relapse C-index were evaluated by 10-fold cross-validation.

Then, patients were divided into two subgroups based on
relapse-associated deep features according to the models with
good C-index scores, and KM plot was used to analyze the
relapse level. Finally, the most suitable model was chosen for
subsequent validation.
Frontiers in Oncology | www.frontiersin.org 3
Lasso Model Building and DL Model
External Validation
The Lasso method was used to filter out relapse-associated feature
labels from the TCGA database depending on the chosen model,
including mRNA, miRNA, DNA methylation, CNVs and lncRNA.
Five additional validation sets from the GEO database, an
international public functional genomics data repository, were
applied to assess the predictive effectiveness of this DL-based
relapse prediction model (i.e., GSE70768 for mRNA, GSE70768
re-annotation for lncRNA, GSE26367 for miRNA, GSE26126 for
DNAmethylation, and GSE21035 for CNVs). Log-rank p-value and
C-index were applied for performance evaluation.
Bioinformatics Analysis
The characteristics of two relapse-associated subgroups of
TCGA PCa samples were explored through multiple
bioinformatics analysis.
FIGURE 1 | Overall workflow. Firstly, mRNA, miRNA, DNA methylation, CNVs, and lncRNA deep features from the TCGA PCa cohort were stacked up as input features for
the autoencoder, a deep-learning method. Then each of the new and transformed features in the bottleneck layer of the autoencoder were subjected to univariate Cox-PH
models to select the features associated with relapse. Then K-mean clustering was applied to relapse-associated deep features and 10-fold cross-validation was applied to
analyze the C-index for different clusters and relapse in 8 DL models. The best model (model_3) with better discriminative ability was finally selected using Kaplan-Meier plotter
between two models with the highest C-index. Then the Lasso method was used to filter out the relapse-associated feature labels, according to model_3 subgroups, from the
database of TCGA, including mRNA, miRNA, DNA methylation, CNVs and lncRNA. The Lasso model was constructed, and five external validation sets from GEO were used
to evaluate its prediction ability. Last but not least, functional analysis was performed to understand the different characteristics between two relapse-associated subgroups.
June 2022 | Volume 12 | Article 893424
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Identification of DEGs
To identify DEGs between the two subgroups, differential gene
expression analysis was performed for each omics data type. The
DESeq2 R package (16) was used to filter DEGs between
the two subgroups (absolute (log2 fold change >0.585 and
adjusted p-value <0.01). The lumi and limma R packages were
applied for processing DNA methylation (17–19), and filtering
was defined as averaged M value differences >1.
Enriched Pathway Analysis
The clusterProfiler R package was used to perform the GO and
KEGG enrichment analyses (20). Up- and down-regulated genes
and pathways were separately assessed. The GO and KEGG
enrichment analysis results were visualized as bubble plots. GSEA
was also performed using the clusterProfiler package. Hallmark
gene sets c2.cp.kegg.v6.2.symbols.gmt, c2.cgn.v6.2.symbols.gmt,
c5.all.v6.2.symbols.gmt and c6.all.v6.2.symbols.gmt were
downloaded from the MSigDB molecular signatures database
(http://software.broadinstitute.org/gsea/msigdb). GSVA package
was then implemented, and the single sample GSEA method was
used for hallmark gene sets to further calculate the GSVA scores of
each gene set for each sample.
Copy Number Analysis
Firstly, Wilcoxon’s signed-rank test was used to compare
differentially expressed CNVs between two subgroups.
Secondly, the Heatmap function in R was used to present copy
number heatmaps. Thirdly, copy number frequency and gistic
score in different chromosomes was generated by GISTIC 2.0.
Finally, GO enrichment analysis was carried out for CNV
differential genes, proportional Venn diagrams were generated
with a Venn diagram plotter, and functional enrichment analysis
was then separately performed for up- and down-regulated genes.
Immune Cell Infiltration Analysis
The CIBERSORT algorithm was used to calculate the proportion
of infiltrating immune cell subsets, and 22 types of immune cells
were detected in these PCa samples. Cells with statistically
significant differences were screened and analyzed by
Wilcoxon’s signed-rank test, with a threshold of p <0.05.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Identification of Two Differential Relapse
Subgroups in TCGA PCa Samples
A total of 417 tumor samples were obtained from the TCGA PCa
project, which included five-omics data (mRNA, miRNA, DNA
methylation, CNVs and lncRNA). In our study population, all
patients underwent RP due to PCa, and 265 (63.5%) experienced
BCR while 152 (36.5%) did not. As mentioned in the Materials
and Methods, we subsequently performed preprocessing of this
data. The autoencoder architecture or DL framework was applied
(Figure 1), which stacked these five-omics features together.

Eight DL models were constructed based on the different
hidden layers. Univariate Cox-PH regression on each of the deep
features as then performed to verify significance (Wald test p-
value <0.05) associated with relapse. We used K-means for
clustering analysis and 10-fold cross-validation (CV) to
calculate C-index for different clusters related to relapse. The
results showed that all eight DL framework models generated a
good C-index value (>0.64), and this value was >0.75 for
model_3 and model_8 (Table 1).

Subgrouping procedures were separately employed using the
relapse-related deep features obtained from model_3 and
model_8. Relapse differences between subgroups were then
evaluated by Kaplan-Meier plotter (KM plot). Two subgroups
of model_3 revealed more significant differences (log-rank p-
value = 6e-09), with a time to relapse ~3.5 years for half of
patients (Figure 2A, Supplementary Figure 1).

Evaluation of Relapse in Five Independent
Validation Sets
Characteristic labels were selected and a Lasso model was
constructed, with 43 mRNAs, 22 miRNAs, 24 lncRNAs, 30
methylation genes, and 72 CNV genes (Supplementary
Table 1). Five independent validation sets from the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
database were then applied to demonstrate the predictive
classification robustness of the model for PCa relapse
outcomes. Each of the validation sets represented mRNA,
miRNA, DNA methylation, CNVs, or lncRNA, respectively
(Figures 2B–F). The GSE70768 dataset was a mRNA
validation set with 111 patients, which had a log-rank p-value
TABLE 1 | Characteristics of eight DL models.

ae_models hidden epochs activation hidden_dropout_ratios l1 l2 model_ids rmse deep_features mean c-
index/SD

model_1 [500, 50, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 0.001 1.00E-05 ae_grid3_model_12 0.400865 8 0.647/0.034
model_2 [500, 100, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 1.00E-05 0.1 ae_grid3_model_16 0.400872 12 0.649/0.026
model_3 [500, 150, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 0.001 0 ae_grid3_model_15 0.400877 21 0.767/0.020
model_4 [500, 200, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 0.1 1.00E-04 ae_grid3_model_3 0.400877 35 0.706/0.055
model_5 [500, 250, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 0.1 0 ae_grid4_model_10 0.400881 42 0.749/0.027
model_6 [500, 300, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 0.01 0 ae_grid4_model_4 0.400886 57 0.668/0.021
model_7 [500, 400, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 1.00E-05 0.001 ae_grid4_model_1 0.400889 60 0.723/0.020
model_8 [500, 500, 500] 10 TanhWithDropout [0.5, 0.5, 0.5] 0 0 ae_grid4_model_14 0.40089 96 0.775/0.016
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of 4.46e-07 between the two PCa relapse-associated subgroups
(low-risk S1 vs. high-risk S2; Figure 2B). The GSE26367 miRNA
validation set consisted of 150 samples with a log-rank p-value of
0.000319447 between S1 and S2 (Figure 2C). The GSE26126
DNA methylation validation set included 85 samples, and the
two subgroups yielded a log-rank p-value of 0.003265681
(Figure 2D). The GSE21035 CNVs validation set with 198
patients had an extremely low log-rank p-value of 0 between
the two subgroups (Figure 2E). Finally, the GSE70768 re-
annotated lncRNA validation set had a log-rank p-value of
0.017250485 between S1 and S2 (Figure 2F).

Analysis of DEGs in Relapse Subgroups
DEGs between the two identified subgroups were identified by
the DESeq2 package. After applying adjusted p-value <0.01 and
absolute fold change >1.5 as cut-off criteria, we obtained 1530
DEGs including 678 up-regulated and 852 down-regulated genes
in the S2 subgroup (the high relapse risk subcluster) compared to
S1 (the low relapse risk subcluster). Gene expression profile
comparisons of these 1530 genes after normalisation is shown in
Figure 3A, and the results are presented as a volcano plot
(Figure 3B). The three most significantly up-regulated genes in
the S2 subgroup, von Willebrand factor a domain-containing
Frontiers in Oncology | www.frontiersin.org 5
5B1 (VWA5B1), uridine 5’-diphosphate glucuronosyltransferase
2B15 (UGT2B15), and urotensin II-related peptide (URP, also
called UTS2B), all with log2[fold change] >2 and -log10[q-value]
>2, are related to genetic polymorphisms (21–23). In addition,
down-regulated genes such as CCK, NRAP and PAH (log2[fold
change] <-2 and -log10[q-value] >2) were also noted.

Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed on
DEGs which were significantly up-regulated (fold change >2 and
p <0.05) or down-regulated (fold change <-2 and p <0.05). GO
analysis results for up-regulated genes were enriched with
cancer-related cell proliferation terms such as organelle fission,
nuclear division, chromosome segregation, mitotic nuclear
division, nuclear chromosome segregation, metaphase/
anaphase transition of the cell cycle, and others (Figure 4A),
KEGG analysis results showed that up-regulated genes were also
involved in the cell cycle, and some other pathways including
neuroactive ligand-receptor interaction, cell cycle, oocyte
meiosis, protein digestion, and absorption were also highly
enriched (Figure 4B). GO analysis revealed that these down-
regulated genes were enriched in many muscle-related biological
process terms including muscle system process, muscle organ/
tissue development, actin-mediated cell contraction, actin-
A B C

D E F

FIGURE 2 | Significant survival differences for model _3 and five external validation sets. Relapse-related deep-features of model_3 were used for subgrouping, and
KM plot was used to show the difference in relapse levels between the two subgroups. The Lasso model constructed according to model_3 was validated in each of
the five external validation sets. (A) KM plot of model_3 (log-rank P-value = 6e-09, the time of half relapse is about 3.5 years). (B) GSE70768 validation set (mRNA,
Number of samples = 111, log-rank p-value = 4.46e-07). (C) GSE26367 validation set (miRNA, N = 149, log-rank P-value = 0.000319447). (D) GSE26126 validation
set (DNA methylation, N = 85, log-rank P-value = 0.003265681). (E) GSE21035 validation set (CNVs, N = 198, log-rank P-value = 0), and (F) Re-annotated
GSE70768 validation set (mRNA, N = 111, log-rank P-value = 0.017250485).
June 2022 | Volume 12 | Article 893424
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myosin filament sliding, and myofibril assembly (Figure 4C).
KEGG analysis showed that DEGs were enriched in calcium
signal ing, IL-17 signal ing, adrenergic s ignal ing in
cardiomyocytes, dilated cardiomyopathy (DBM), mineral
absorption, salivary secretion, and others (Figure 4D).

Next, Gene set enrichment analysis (GSEA) was performed
and the results indicated several malignant hallmarks and
pathways of cancer, of which the top five up-regulated
hallmarks were E2F targets, G2/M checkpoint, mitotic spindle,
myc targets v1 and myc targets v2 (Figure 5A), and the top five
down-regulated hallmarks were apical surface, estrogen response
early, estrogen response late, myogenesis, and TNFA signaling
via NF-kb (Figure 5B). Additionally, several malignant KEGG
pathways of cancer were identified, among which the top five up-
regulated pathways were cell cycle, homologous recombination,
mismatch repair, oocyte meiosis and ribosome (Figure 5C), and
the top five down-regulated pathways were arrhythmogenic right
ventricular cardiomyopathy, cardiac muscle contraction, dilated
cardiomyopathy, glutathione metabolism and hypertrophic
cardiomyopathy hcm (Figure 5D).

Moreover, a heatmap plot was used to present the different
expression levels of hallmark gene sets (Figure 6A), and a bar
chart further showed 23 differentially expressed hallmark gene sets
based on -log(p) value of the gene set variation analysis (GSVA)
score order (Figure 6B). Five hallmark gene sets were up-regulated
(-log(p) value of GSVA score >10), and 13 hallmark gene sets were
down-regulated (-log(p) value of GSVA score <-10).

CNVs Analysis
Since analysis of functional difference outcomes showed that
DNA damage repair pathways such as homologous
recombination and mismatch repair were significantly enriched
Frontiers in Oncology | www.frontiersin.org 6
in the S2 subgroup, we compared differences in CNVs between
the two subgroups. The results showed that 30.18% (7844/25988)
of genes in the S2 subgroup were significantly up-regulated, and
no significant differences were found in other genes between the
two subgroups (p <2.2e-16; Figure 7A). Further analysis was
performed on the gene copy number for different chromosomes,
with 265 samples in the S1 subgroup and 152 samples in S2
subgroup, and the results showed that gene amplification on
chromosomes 7 and 8 in the S2 subgroup was significantly
greater than that in the S1 subgroup (Figure 7B–H).

GO analysis was applied for CNV differential genes, and the
results showed that protein-DNA complex subunit organization,
chromatin assembly, disassembly and silencing, nucleosome
organization, negative regulation of gene expression
(epigenetic), and DNA replication-dependent nucleosome
assembly and organization were enriched (Figure 8A).
Regarding overlapping CNV differential genes and expression
differential genes, 443 gene expression levels were altered, of
which 190 were up-regulated and 253 were down-regulated
(Figure 8B). Subsequent GO analysis of up-regulated CNV
genes revealed enrichment in chromosome segregation, nuclear
division, organelle fission, skeletal system morphogenesis,
mitotic nuclear division, and others (Figure 8C), and down-
regulated CNV genes were enriched in muscle system process,
antimicrobial humoral response, cellular response to zinc ion,
and thyroid hormone metabolic process terms. Interestingly, a
humoral immune response was also involved (Figure 8D).

Analysis of Tumor-Infiltrating
Immune Cells
We calculated and displayed 22 TIICs per sample from TCGA
analysis for the two subgroups with significantly different relapse-
A B

FIGURE 3 | Differentially expressed genes (DEGs) in the two subgroups from the TCGA PCa samples. (A) Differential expression: S2 vs S1, S1: a low relapse-risk
subgroup of PCa, S2: a high relapse-risk subgroup of PCa. (B) Volcano plot of DEGs.
June 2022 | Volume 12 | Article 893424
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risk subgroups. The heatmap shows the relative levels of TIICs
between the two sample subgroups (Figure 9A). Finally, four types
of TIICs, namely CD4 naïve T cells, CD4 memory-activated T cells,
monocytes, and M2macrophages, differed significantly between the
two subgroups (Table 2, Figure 9B–E). Among them, M2
macrophages, CD4 naïve T cells and CD4 memory-activated T
cells were more abundant in the S2 subgroup (p = 0.00014, p = 1e-
05, p = 8.7e-06), while monocytes were more abundant in the S1
subgroup (p = 1.3e-06).
DISCUSSION

Although patients with localized PCa undergoing RP may have
favorable oncological results, the incidence of BCR can
reportedly be more than one-fourth (24). Thus, it is clinically
important for urologists to distinguish patients at high risk of
relapse from those with low risk to initiate early salvage
treatment, while for those with a low risk of relapse, treatment
can be deferred. Although there are some studies on relapse
Frontiers in Oncology | www.frontiersin.org 7
prognostication of PCa patients, incorporating multi-omics data
to identify subgroups has rarely been reported (25, 26). In
addition, most published PCa subgroup models have either no
or very few independent validation sets, hence the predictive
values of these identified subgroups are not very satisfactory.
Thus, new practical procedures in which a predictive model
could feed back the relapse outcome of PCa patients directly
are needed.

DL has emerged as a versatile approach for predicting complex
biological phenomena (27). Previous DL-based models of PCa
were mainly applied in preclinical discovery, Gleason grading,
and tumor metastasis (28–31). Baek et al. (32) proposed two
biological features based on mRNA, miRNA, and methylation
datasets to predict high-risk pancreatic adenocarcinoma, which
achieved good performance with C-index ~0.8 for both disease-
free survival and overall survival. In terms of liver cancer, a
previous DL-based three-omics (mRNA, miRNA, and
methylation) integration robustly predicted survival, with C-
index = 0.68. Furthermore, another support vector machine
model using bidirectional deep neural networks integrating
A B

C D

FIGURE 4 | GO and KEGG enrichment of upregulated and downregulated genes. (A) GO enrichment analysis of upregulated genes. (B) KEGG enrichment analysis
of upregulated genes. (C) GO enrichment analysis of downregulated genes. (D) KEGG enrichment analysis of downregulated genes.
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DNA methylation and mRNA expression data could also cluster
samples into two survival subgroups (3, 33). Herein, we identified
differences in relapse risk between two subgroups of PCa patients
using five-omics data, and the model performed well, with C-
index >0.75 and log-rank p-value = 6e-9 between the two relapse
subgroups. To our knowledge, this is the first application of a DL
framework for integrating five different datatypes to predict relapse
of PCa, and it achieved the best C-index reported to date and
included sufficient external confirmation cohorts.

The open-source H2O platform is a powerful tool that can
automatically select DL strategies and parameter settings to
predict biological differences (34). Furthermore, automated
machine learning has great value for many areas of medicine,
especially in cancer diagnosis and judging prognosis (35–37). In
the present study, we established eight DL-based predictive
models for PCa relapse according to different hidden layers
using H2O. The results showed that the final selected model
(model_3) was robust and might be superior to others, including
previous prediction models, for several levels. Because of its
ability to achieve more accurate outcomes and its great
Frontiers in Oncology | www.frontiersin.org 8
universality, the DL technique is attracting increasing interest
(38). The results of 10-fold CV analysis displayed performance
consistency, indicating the reliability and robustness of the
model (Table 1). This autoencoder framework was more
efficient at identifying features related to relapse compared
with others, with a C-index of 0.767. Li et al. (13) used the DL
method combined with another computational method, namely
similarity network fusion (SNF), for prediction of PCa relapse.
Univariate Cox regression analysis, K-means clustering
algorithms for the autoencoder model, and spectral clustering
algorithms for SNF were then performed sequentially. Finally, six
significantly overlapping biomarkers were considered. These
valuable biomarkers could contribute to the early detection of
high-risk relapse patients. However, limited omics data and only
six biomarkers had a C-index value of 0.713, and an external
validation set was not included. A most recent study identified
relapse-related genes using core enrichment genes extracted
from KEGG pathways via GSEA for univariate Cox regression
analysis. The model was constructed using the Lasso method and
a KM plot was mapped. The receiver operating characteristic
A B

C D

FIGURE 5 | GSEA enrichment analysis in Hallmarks and KEGG (S2 vs S1). (A) The top five upregulated hallmarks. (B) The top five downregulated hallmarks.
(C) The top five upregulated pathways in KEGG. (D) The top five downregulated pathways in KEGG.
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(ROC) curve of the model was then used to evaluate predictive
efficiency. The results showed that the area under the curve
(AUC) for 3- and 5-year time-dependent ROC curves were 0.739
and 0.729 (39). Of equal importance, our model was also
validated using five additional validation sets, each associated
with a different omics level (mRNA, miRNA, DNA methylation,
CNVs and lncRNA). The Lasso model constructed with these
molecular labels according to model_3 was equally well able to
classify these external validation sets into high relapse-risk and
low relapse-risk subgroups (Figure 2), indicating that the
relapse-related subgroups clustered using the DL-based
model_3 have a broad spectrum of biological significance.

Using this model, more than 1000 differential genes were
identified between S1 and S2 subgroups. VWA5B1, UGT2B15,
and UTS2B were significantly up-regulated. In a previous study,
vonWillebrand factor (vWF) antigen was differentially abundant
between patients with PCa or BPH and other prostatic diseases
(40). Of note, the level of vWF antigen was elevated in patients
Frontiers in Oncology | www.frontiersin.org 9
with metastases, compared to localized PCa. However, VWA5B1
has not been reported in PCa, which may be a potential
biomarker or target, but confirming this requires further
research. The other two DEGs are closely related to PCa. In
particular, UGT2B15 contributes to PCa risk, diagnosis and
disease progression (41, 42), and 3a-diol-17 glucuronide, a
product of UGT2B15/B17, is linked to prostate volume
changes, indicating that this metabolite might serve as a
biomarker of androgen activity. Moreover, UGT2B15 is one of
the main determinants controlling the expression of target genes
of androgen receptors in PCa cells (43). In addition, the
UGT2B15 Asp85Tyr polymorphism is associated with PCa risk
(41). Urotensin II receptor (UT) is involved in regulating the
biological functions of urotensin II and UTS2B in mammals (44).
UT mRNA expression was decreased in androgen-independent
DU145 and PC3 cells, but increased in androgen-dependent
LNCaP cells, and UT expression was strongly correlated with the
prognosis of PCa, providing a potential prognostic marker for
A

B

FIGURE 6 | GSVA enrichment analysis in Hallmarks. (A) Heatmap plot. (B) Bar Chart (-log(p) value of GSVA score were used, S2 vs S1).
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this disease (45). In summary, these three significantly up-
regulated genes were directly or indirectly correlated with the
progression and prognosis of PCa. All the identified DEGs may
assist the prediction or prevention of PCa relapse.

Various up- and down-regulated genes were respectively
enriched in GO and KEGG terms. Organelle fission
enrichment has been linked to tumor tissues (46, 47). Hec1, a
component of the nuclear division cycle 80 complex, was found
to be elevated and associated with cancer progression in PCa
(48). Emerging evidence suggests that chromosome segregation
plays a vital role in PCa tumorigenesis, development and bone
metastasis (49, 50). Neuroactive ligand-receptor interactions
contribute to therapy-related neuroendocrine PCa, a lethal
castration-resistant PCa subtype (51, 52). Both the initiation
and progression of PCa have been associated with enhanced cell
proliferation and cell cycle dysregulation (53).
Frontiers in Oncology | www.frontiersin.org 10
GO/KEGG analyses focus on differential genes, and target a
subset of genes that are significantly different between groups, and
may therefore miss genes that are not significantly different but
biologically significant. By contrast, GSEA identifies a set of genes
with concordant differences from an expression matrix of all
genes, and therefore takes into account genes that are less
different. We applied GSVA, and the results suggested several
relapse-related hallmarks/pathways of PCa, including 5 up-
regulated and 13 down-regulated in the S2 subgroup. Several
studies have proved that E2F factors play a critical role in
mediating cell cycle gene expression and progression in PCa
(54, 55). Nucleolar and spindle-associated protein (NuSAP),
which binds DNA to the mitotic spindle, is associated with
relapse after RP, and its promoter region contains two CCAAT
motifs and binding sites for E2F, overexpression of which appears
to be mediated partly by E2F1 activation (56). Similarly, the G2/M
A B

C D

E F

G H

FIGURE 7 | CNVs difference analysis between S1 and S2. (A) CNVs difference analysis by Wilcoxon. (B) Hierarchical clustering. Red indicates amplification, whereas
blue indicates deletion. (C–H) Chromosomal distribution of copy number by GISTIC. Red indicates amplification, whereas blue indicates deletion.
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checkpoint plays a vital role in the cell cycle. Caspase-8, depletion
of which can result in G2/M arrest, is involved in DNA damage
(57). Furthermore, MYC enhances the expression of related genes
to help cancer cells survive, grow, proliferate and metabolize, and
MYC plays a central role in PCa according to tissue proteomics
research (58). In summary, our results reconfirmed numerous
genes or pathways closely linked with PCa, identified some
potential tumor markers or therapeutic targets for PCa relapse,
and revealed that DNA damage repair-related pathways, such as
nuclear division and chromosome segregation, were significantly
enriched in the S2 subgroup.

We investigated CNVs and found that 30.18% of genes had a
significantly higher proportion of CNVs in the high relapse-risk
S2 subgroup. As we all know, CNVs may be associated with
malignancy through the accumulation of driver aberrations, and
genomic instability can increase because DNA damage responses
are absent and replication pressure is elevated in cancer cells (59,
60). Interestingly, cancer cells might be more vulnerable due to
the relative specificity of these defects, which also has potential
for increasing therapeutic indices of antineoplastic therapies,
thereby improving the prognosis of cancer patients. Several
clinical studies assessed the safety and effectiveness of state-of-
Frontiers in Oncology | www.frontiersin.org 11
the-art strategies such as DNA repair-targeted agents in various
cancers (61, 62). Higher genomic instability was suggested for
metastatic PCa (mPCa), based on the observation that the
burden of CNVs and the weighted genome instability index
were significantly higher in mPCa than localised PCa (63).
Moreover, a significant correlation was observed between the
burden of CNVs and PCa relapse and death (64, 65), indicating
the potential of CNVs as prognostic biomarkers (66), consistent
with our results.

Importantly, GO enrichment analysis of up-regulated DEGs
(Figure 4A) yielded consistent results, suggesting a strong
correlation between genomic or chromosomal instability and
PCa relapse. Massive alterations in genetic information are the
main feature distinguishing cancer cells and healthy cells. In
addition to point mutations and small insertions/deletions
(indels), large-scale changes occur, including chromosomal
rearrangements, and chromosome gains and losses (individual
or entire sets) (67). In other words, chromosome mis-segregation
is rare in normal tissues, but chromosome (whole or part) gains
and losses are common in cancer tissues. This chromosomal
instability is correlated with intra-tumor heterogeneity, and it
contributes to resistance to medical therapy as well as adverse
A B

C D

FIGURE 8 | Functional analysis of CNV differential genes. (A) GO enrichment analysis of CNV differential genes. (B) Venn diagrams of CNV differential genes and
expression differential genes. (C) GO enrichment analysis of upregulated CNV genes. (D) GO enrichment analysis of downregulated CNV genes.
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outcomes of disease (68). Analysis of the distribution of these
CNVs in chromosomes has important implications for future
clinical and research studies on PCa relapse. Our CNV analysis
results revealed that the S2 subgroup expressed significantly
more genes on chromosomes 7 and 8 than did the S1
subgroup. Copy number-induced alterations are considered to
be critical for tumor evolution (67). A 1991 study suggested that
centromeric CNVs of chromosome 7 are closely related to tumor
histological grade, and might be highly predictive for tumor
aggressiveness in human bladder cancer (68). Alcaraz et al. (69)
reported that aneuploidy and aneusomy of chromosome 7 are
Frontiers in Oncology | www.frontiersin.org 12
generally observed in the poor prognosis PCa patients.
Meanwhile, allelic loss is frequently observed on the short arm
of chromosome 8 (70). Ichikawa et al. (71) applied the microcell-
mediated chromosome transfer technique to introduce human
chromosome 8 into highly metastatic rat PCa cells and found
that metastatic ability was suppressed, but similar trends were
not observed in growth rate or tumorigenicity, indicating that
chromosome 8 contains genes inhibiting metastasis of PCa, and
implying a vital role in the progression of PCa. Regardless,
chromosomes 7 and 8 may be correlated with PCa relapse
according to current and previous research.
A B

C D E

FIGURE 9 | Immuno-infiltration analysis between S1 and S2. (A) Heatmap plot of the 22 tumors infiltrating immune cells (TIICs) in two groups. (B–E) Relative
proportion of the differential four types of TIICs between two subgroups, respectively.
TABLE 2 | Characteristics of four significantly different tumor-infiltrating immune cells.

Cell type S1 subgroup S2 subgroup p-value adj p-value

T cells CD4 naive 0.03706419 0.061121026 1.375140e-05 0.0002475252
T cells CD4 memory active 0.00000000 0.002554248 8.680098e-06 0.0001649219
Monocytes 0.08214986 0.061738947 8.389214e-04 0.0142616642
Macrophages M2 0.06320131 0.082005050 5.701414e-06 0.0001140283
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Interestingly, we also observed that immune infiltration
might be involved in PCa relapse from the functional
enrichment analysis of multiple differential CNVs (Figure 8D)
and DEGs (Figure 4D). Emerging evidence shows that tumor
immune cell infiltration, a significant hallmark of the tumor
microenvironment, is an enormous contributing factor to
therapeutic circumvention, cancer progression, and subsequent
adverse outcomes (72). We calculated the proportion of
infiltrating immune cell subsets of the two subgroups using the
CIBERSORT algorithm (https://cibersort.stanford.edu/) and
identified four TIICs with a significant difference.

However, four types of TIICs were not all elevated in the high
relapse-risk S2 subgroup. Among them, monocytes were more
abundant in the low relapse-risk S1 subgroup (Figure 9D). In a
clinical study on 1107 participants, histopathological findings
showed that patients with positive prostate biopsy had higher
monocyte counts than negative patients, and multivariate Cox
regression analyses showed that a high monocyte count was an
independent prognostic factor of both cancer-specific and other
mortalities (73). Even when adjusted by clinicopathological
signatures, these outcomes were statistically significant, further
confirming the independent correlations between high monocyte
count and poor prognosis of PCa, contrary to our PCa relapse
results. Therefore, whether monocytes differ during distinct
stages of PCa, and whether this plays a major regulatory role
in PCa progression, requires further investigation. Further
studies of the influence of monocytes on PCa are also
warranted. Recent work on aging men undergoing RP showed
that the peripheral monocyte count was not linked to long-term
results in PCa (74). The study included black and white RP men,
but the peripheral monocyte count was not found to be a useful
marker of PCa long-term results. One limitation of this work was
the lack of Asian participants. Macrophages are important in
cancer, too. Macrophages, derived from circulating monocytes,
can be routinely classified into M1-type and M2-type
macrophages. Classically activated M1 macrophages, acting as
part of the innate immune response, are of great significance in
the fight against invading pathogens, while activated M2
macrophages , a lso known as M2 tumor-associated
macrophages, are vital components of tissue restoration and
tumor promotion (75). M2 macrophages are involved in tumor
development in various ways. They can directly interact with
T cells and secrete factors associated with immunosuppression to
inhibit CD8+ T cell immunity against cancer (72). Furthermore,
some M2 macrophages influence tumor development via the
destruction of antitumor T cell immunity, providing novel
perspectives for immune tolerance and escape properties of
cancers, consistent with our results.

Despite our best efforts, there remain some limitations with
the current work. Firstly, because some raw data cluster labels
were absent and survival information was lacking, it was difficult
to compare directly with previous research. To confirm its
predictive performance and direct application value in clinical
practice, five external validation sets consisting of different omics
data were applied, and the results were encouraging. Secondly, it
remains unclear how many of the novel biological features we
Frontiers in Oncology | www.frontiersin.org 13
identified are linked to PCa relapse. Despite this, the results
provide new directions for further exploration. Thirdly, while we
demonstrated the effectiveness and robustness of this DL model
in various ways, future experiments and clinical data are needed
to realize its potential.

In summary, we successfully constructed a DL-based
predictive model integrating five-omics for PCa relapse with a
significant relapse difference between two subgroups.
Furthermore, validation using five independent omics datasets
confirmed its robustness. A number of critical DEGs, pathways,
and functions were found to be associated with PCa relapse. The
model provides new insights for distinguishing relapse-risk
patients, and it could benefit patients due to its early predictive
ability and subsequent early therapeutic intervention. The
findings contribute to our current understanding of PCa
relapse, and the developed model may serve clinical
applications and support decision-making.
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