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Abstract
Residential colleges are considering re-opening under uncertain futures regarding the COVID-19 pandemic. We consider
repeat SARS-CoV-2 testing models for the purpose of containing outbreaks in the residential campus community. The
goal of repeat testing is to detect and isolate new infections rapidly to block transmission that would otherwise occur
both on and off campus. The models allow for specification of aspects including scheduled on-campus resident screening
at a given frequency, test sensitivity that can depend on the time since infection, imported infections from off campus
throughout the school term, and a lag from testing until student isolation due to laboratory turnaround and student relocation
delay. For early- (late-) transmission of SARS-CoV-2 by age of infection, we find that weekly screening cannot reliably
contain outbreaks with reproductive numbers above 1.4 (1.6) if more than one imported exposure per 10,000 students occurs
daily. Screening every three days can contain outbreaks providing the reproductive number remains below 1.75 (2.3) if
transmission happens earlier (later) with time from infection, but at the cost of increased false positive rates requiring more
isolation quarters for students testing positive. Testing frequently while minimizing the delay from testing until isolation
for those found positive are the most controllable levers for preventing large residential college outbreaks. A web app that
implements model calculations is available to facilitate exploration and consideration of a variety of scenarios.

Keywords SARS-CoV-2; COVID-19 · Repeat testing · Residential college coronavirus screening · Epidemic model ·
Probability model

Highlights

• Model accounts for test frequency, test specificity,
dependence of test sensitivity on time since infection, lab-
oratory turnaround and individual notification delays,
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imported infections from off campus, intensity and
time dependence of transmissions, and initial infection
conditions

• Characterizes the probability distribution of the time
from infection until detection and isolation

• Compares random and regular testing schedules and
analyzes the more realistic and also more efficient case
of regular testing

• Helps university planners match testing frequency with
anticipated risk behaviors and reveals how the demand
for isolation units evolves over time

• Provides an online tool that implements model calcula-
tions

1 Introduction

Universities and colleges around the world, along with other
businesses and institutions, have spent the past several months
on lockdown on account of the COVID-19 pandemic. Stu-
dents were sent home, classes and faculty meetings went
on-line, and university buildings have remained eerily
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empty. With stay-at-home restrictions being relaxed if not
rescinded, residential universities and colleges are planning
to re-open, and perhaps the most prominent decision to
be made is whether or not to invite students to return in
person. Different schools are approaching this issue in dif-
ferent ways. Some colleges feel they have no choice but to
allow students to return [10, 16], while others have opted
for students to remain off-campus with instruction offered
remotely via the internet [5, 24]. At the heart of this decision
is the anticipated ability of colleges and universities to keep
campuses free from student-driven SARS-CoV-2 outbreaks.
While the details of infection control and social distancing
represent important public health components on campus,
increasingly institutions are considering whether testing stu-
dents for SARS-CoV-2 offers additional protection against
the spread of infection [1, 11, 32].

Coronavirus testing in the general population has been
reserved largely for persons exhibiting symptoms with
the goal of diagnosing individual cases, though testing
of persons who have been in close contact with known
COVID-19 cases is also recommended [6]. The argument
behind such symptomatic testing prioritizes detecting and
referring to medical care those at greatest risk for devel-
oping complications of infection while trying to prevent
further transmission, especially when testing capacity is
limited.

By contrast, asymptomatic testing for preventing SARS-
CoV-2 infections is different than standard diagnostic
testing. Usually when a patient is tested for the presence
of some medical condition, it leads to a specific set
of instructions for the benefit of the patient screened:
a change in diet, the prescription of drugs, or a course
of more intensive medical treatment such as radiation,
chemotherapy, or surgery. With coronavirus, the purpose
of asymptomatic testing is not to gain access to some
treatment. Rather, those who test positive are instructed
to isolate to prevent transmitting infection to others. The
purpose of repeatedly screening students for SARS-CoV-
2 is thus not for the screened patient’s individual health,
but for the benefit of those who would have been in
contact with an infectious person had the detection of
an infection not occurred. Some have argued that repeat
asymptomatic testing at the population level could control
or even eliminate SARS-CoV-2 transmission [20]. Taipale
et al. [31] presented model-based arguments to arrive at
testing frequencies capable of eradicating the spread of the
coronavirus at the population level, while [29] specialized
these arguments to the case of the United Kingdom.

Returning to universities, it is well documented that
contagious infections such as influenza, mumps, and sex-
ually transmitted diseases spread readily in the residen-
tial college context [3, 9, 26], and there is no reason to
expect that SARS-CoV-2 would not be transmitted as well.

However, students themselves are not at great medical
risk from COVID-19 complications resulting from infec-
tion with SARS-CoV-2. Indeed, many if not most students
would experience mild to no symptoms of infection at all.
However, absent testing, all such infected students would
unknowingly pose risks to anyone with whom they are in
contact, whether on campus or off. For residential col-
leges that are themselves isolated geographically, vulnerable
workers and faculty (and some students with underlying
health conditions to be sure) are the main beneficiaries
of repeat student testing. For urban campuses centrally
located within surrounding communities that contain many
more vulnerable persons, the main beneficiary of screen-
ing students is that community itself. In this sense, beyond
protecting the health of vulnerable workers, faculty and
students, the main goal of repeatedly screening students
on campus is to prevent them from unknowingly igniting
transmission chains in the surrounding community.

The way screening programs work to impact the
transmission of infection in this context has not been well
studied or analyzed. This paper presents a first attempt to
do so.1 The models we will describe were developed in
support of Yale University’s planning to return students
to campus, and Yale’s current community testing program
relies heavily upon the recommendations of this work.
The model development was prospective: in the absence
of data describing prior university (or other institutional)
repeat screening programs, we developed models based
on biological and operational realism with attention to
policy levers the university could exert: test frequency,
delays in test reporting and notification, and overall
infection control measures. Specifically, based on published
epidemiological data, our models explicitly account for the
timing of transmission since infection, and show directly
how isolating infectious persons identified via repeat testing
interrupts such transmission. The models also account for
the differential ability of screening tests to detect infection
depending upon the age of infection at the time of testing,
and the delays associated with the time from sample
collection until test results are reported and those testing
positive are notified and isolated. The outbreak model
includes imported infections from off campus in addition
to internally generated infections due to contact between
infectious and susceptible community members.

The goal of the analysis is to assess the ability of repeat
testing programs to control outbreaks over the course of
a fixed time horizon such as a college semester. Rather
than attempting to simulate exhaustively the impact of
each model feature on the resulting number of infections,

1A university screening model by Paltiel, Zheng and Walensky
appeared while the present article was in review; see https://
jamanetwork.com/journals/jamanetworkopen/fullarticle/2768923
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our approach focused on characterizing the worst case
inputs that would lead to acceptable levels of infections
under different test frequencies, transmission timing and
logistical delays. Also, rather than trying to detail the
specifics of “who mixes with whom” contact patterns on
campus, we relied on homogeneous mixing recognizing
that such models tend to produce worse outbreaks than
more heterogeneous contact models given the same
epidemiological parameters [19, 21]. In particular, in
structured “small world” contact networks that have been
documented for at least one college population [35], it
is known that the transmission of infections can behave
as if population members were interacting at random
[34]. Testing programs that can control infections under
homogeneous mixing are thus likely to perform even better
when heterogeneous contact patterns are taken into account,
adding a layer of robustness to our analysis.

The remainder of the paper is organized as follows:
we begin with a simple characterization of the early
transmission dynamics associated with nascent outbreaks of
SARS-CoV-2, and in Section 3 show how test frequency,
sensitivity and reporting delay influence transmission via
isolating those testing positive when test results are
obtained. In Section 4 we incorporate this interruption
of transmission directly into a dynamic model of an
internally generated SARS-CoV-2 outbreak on campus, and
we expand the model to include exposures to imported
infections from off-campus due to students traveling,
wandering about town to restaurants, bars or clubs, or due
to visitors. We present the key performance measures by
which to assess repeat screening focusing on the cumulative
incidence of infection, the number of infections detected,
and the number of students placed in isolation for given
outbreak and screening scenarios (different reproductive
numbers governing on-campus transmission, different
imported exposure rates, different screening frequencies,
different test sensitivity, specificity, and delay from testing
until isolation for those testing positive). We consider
numerous examples in Section 5 with a focus on which
outbreaks can and cannot be brought under control. We
discuss implications of our analysis in Section 6.

2 Age-of-infection dependent transmission

The model employed to analyze repeat screening follows
[17] in presuming that at the beginning of an outbreak, a
newly-infected index surrounded by otherwise uninfected
students transmits infections according to a time-varying
Poisson process with intensity λ(a), where a denotes the
time from infection of the index (the age of infection).
The reproductive number denoting the expected number

of infections the index will transmit over all time then
equals

R0 =
∫ ∞

0
λ(a)da (1)

and as is well known, an epidemic cannot be self-sustaining
unless R0 > 1.

The transmission intensity λ(a) can be represented as

λ(a) = R0f (a), a > 0 (2)

where

f (a) = λ(a)

R0
, a > 0 (3)

is the probability density function of the forward generation
time [4, 8, 33]. This representation separates the strength
of transmission (R0) from the timing of infectiousness
(captured by f (a)), enabling flexible investigation of both.

Modeling transmission in this form generalizes many
epidemic models commonly used. For example, Susceptible-
Infectious-Recovered (SIR) models presume constant trans-
mission at rate β during an exponentially distributed infec-
tious period with mean 1/μ [2]. This can be captured by

λSIR(a) = βe−μa (4)

= β
μ

× μe−μa

with R0 = β/μ and f (a) = μe−μa . Similarly, modifica-
tions of Susceptible-Exposed-Infectious-Recovered (SEIR)
models have been widely applied to model SARS-CoV-2
transmission [13, 22, 27]. In such models, newly infected
but not yet infectious persons enter an exposed state for an
exponentially distributed length of time with mean 1/μ1,
after which they become infectious for an exponentially dis-
tributed duration of mean 1/μ2 during which transmission
again occurs at constant rate β. Letting D1 and D2 denote
the duration of time after infection spent in the exposed and
infectious states, early transmission in this model can be
captured by

λSEIR(a) = β Pr{D1 ≤ a < D1 + D2} (5)

= β
μ1

μ1 − μ2
(e−μ2a − e−μ1a)

= β
μ2

μ1μ2

μ1 − μ2
(e−μ2a − e−μ1a)

where R0 = β/μ2 and f (a) = μ1μ2
μ1−μ2

(e−μ2a − e−μ1a).
Beyond SIR and SEIR models, epidemiologists have

approximated generation time distributions directly from
contact tracing data, and several such studies have been
conducted using early SARS-CoV-2 outbreak data from
China (see [28] for a summary). The generation times are
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often presumed to follow gamma distributions, as the latter
provide a flexible statistical model for the time between
the onset of symptoms for infector/infectee pairs within a
transmission chain (the serial interval), and the distribution
of serial intervals is taken as an estimate of the unobservable
times between infections (which is what the generation time
density f (a) is meant to represent).

3Modeling the impact of testing
and isolation

Suppose that an infected student is isolated at age T days fol-
lowing infection, having been detected via repeat screen-
ing2. We model T as a random variable independent of the
Poisson process of infections. Figure 1 shows the transmis-
sion rate λ(a) with the isolation age T represented by the
vertical black line. The effect of isolation at T is to erase all
infections that would have been transmitted beyond time T ;
this is illustrated as the shaded blue area in Fig. 1.

The sooner an infectious person is isolated (the smaller
the value of T ), the greater the number of infections that can
be prevented, and the fewer the number of transmissions that
escape isolation. Following the Poisson model, conditional
on T , the expected number of transmissions that occur
before isolation is

∫ T

0 λ(a)da. Thus, the expected number
of infections that would escape isolation and still be
transmitted, RT , is given by

RT = E

(∫ T

0
λ(a)da

)
= E

(∫ ∞

0
λ(a)1{T >a}da

)

=
∫ ∞

0
λ(a)Pr{T > a}da; (6)

here 1B denotes the indicator function taking the value 1
if the event B occurs and 0 otherwise. Defining λT (a) =
λ(a)P {T > a} to be the effective transmission rate at age a

taking account of the testing program, RT = ∫ ∞
0 λT (a)da

is the area under the curve λT . Clearly RT ≤ R0 as
Pr{T > a} ≤ 1, with the extent of the reduction in
transmission depending on the distribution of T , which in
turn depends upon testing characteristics such as the timing
of repeat tests, test sensitivity, and the lag time from testing
to isolation.

3.1 Perfect repeat testing

As a contrast to the regularly scheduled testing that is the
subject of most of this paper, consider a perfect test that on
average is administered to each student once every τ days

2Isolation would typically last only two weeks, but incorporating this
would modify our results only slightly while complicating the analysis;
see [17] for details.
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Fig. 1 Impact of isolation. For a person isolated at a random time T

after infection, the blue shaded area shows the expected number of
further infections whose transmissions are prevented by the isolation,
and the red area shows the expected number of further infections that
escape isolation and are still transmitted

but whose timing is random andmemorylesswith a constant
hazard rate. This implies that T would follow an exponential
distribution with mean τ , with

Pr{T > a} = e−a/τ for a > 0. (7)

Alternatively, as a model of regularly scheduled testing,
suppose that students are administered a perfect test literally
once every τ days on a fixed schedule. For example,
scheduled weekly testing would require each student to be
tested once every seven days. One way to implement this
would be for 1/7th of the students to be tested each Sunday,
a different 1/7th each Monday, and so on such that each
student has a specified day of the week (and time slot) for
testing. For such a schedule in continuous time, T would
follow a uniform distribution on (0, τ ), and

Pr{T > a} = max(1 − a/τ, 0) for a > 0. (8)

From Eqs. 7 and 8, it is clear that regularly scheduled
screening would be more effective than memoryless
screening for all values of τ since 1− a/τ < e−a/τ for a >

0. With memoryless screening, on average a newly infected
person would not be detected and isolated until τ time units
after infection, whereas with regularly scheduled screening,
the mean time from infection to isolation would be just
τ/2, while τ would be the maximum time from infection
until isolation. This distinction is important, as expanding
SIR or SEIR models to include testing by applying a
constant testing rate to the infected population amounts to
memoryless screening.

3.2 Imperfect repeat testing

Tests are not perfect, however. The specificity of a test
refers to the conditional probability a test will deliver a
negative result, given that the person tested is not infected.
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Poor specificity gives rise to false positive test results, which
can be a serious issue when persons testing positive are
subjected to isolation. We will return to test specificity in
Section 4.2 below.

The sensitivity of a test is defined as the conditional
probability of receiving a positive test result on an
individual, given that the person tested is in fact infected.We
denote the sensitivity of a screening test by σ . Memoryless
random screening with a mean intertest period of τ

also results in the time of detection being exponentially
distributed, but now with mean τ/σ , inflating the time to
detection by the factor 1/σ .

Regularly scheduled screening, with a deterministic
separation of τ days between successive tests for a given
individual, is more complicated. Let �x� denote the largest
integer less than or equal to x (the floor function). Regularly
scheduled screening with sensitivity σ yields

Pr{T > a} = (1−σ)�
a
τ
�
(
1 − σ

a − � a
τ
�τ

τ

)
for a>0. (9)

This follows because in each screening interval of duration
τ , detection will occur with probability σ , which makes
the number of testing intervals until the interval containing
detection follow a geometric distribution with mean 1/σ .
If detection occurs, the timing of detection within the
interval will be uniformly distributed between 0 and τ .
As a consequence, the expected time from infection to
detection with scheduled imperfect screening once every τ

days equals
(
1

σ
− 1

)
τ + τ

2
=

(
1

σ
− 1

2

)
τ . (10)

Note this time is shorter than the mean time to detection
with imperfect random screening by τ/2 days, which is
the same difference in mean detection times for scheduled
versus random screening with perfect testing (σ = 1).

3.3 Scheduled screening with
age-of-infection-dependent sensitivity

Given both the shorter lags from infection to isolation
and the ease of implementing scheduled versus random
testing, we will narrow our focus to scheduled testing while
increasing model realism. While we have included test
sensitivity in our model, thus far we have presumed constant
sensitivity that does not depend on the time since infection.
This latter assumption is not realistic. For example, viral
tests such as reverse transcriptase polymerase chain reaction
(RT-PCR) cannot detect infections immediately after they
occur, and indeed the ability of a test to detect the virus
presumably behaves in a manner that is somewhat related to
the ability of an infectious individual to transmit the virus

[23]. To model the dependence of sensitivity on time since
infection, we denote the sensitivity of a test administered
at an age of a time units after infection by σ(a), where σ

is called the sensitivity function of the test. For simplicity
we assume here that the results of tests taken at different
times after infection are mutually independent given the
sensitivity function.3

Determining the survivor function Pr{T > a} from the
sensitivity function σ(a) is best approached by first deriving
the probability density function gT (a) for the isolation
age T . In a scheduled repeat testing policy with screening
interval τ , we want the probability that an individual who
has been infected for a time units was not detected over the
previous � a

τ
� tests administered since becoming infected,

but is tested and detected in the time slice (a, a + da).
Owing to the independence of the infection, screening and

detection processes, this probability is given by da
τ

� a
τ
�∏

k=1
(1 −

σ(a − kτ)) σ (a), where an empty product equals 1 by
definition. In other words, the probability density function
for the time T from infection until isolation is given by

gT (a) = σ(a)

τ

� a
τ
�∏

k=1

(1 − σ(a − kτ)) for a > 0, (11)

and the survivor function Pr{T > a} then follows from
integration as

Pr{T > a} =
∫ ∞

t=a

σ (t)

τ

� t
τ
�∏

k=1

(1 − σ(t − kτ))dt for a > 0.

(12)

3.3.1 Example: Step function sensitivity

One simple model of test sensitivity could be described by a
silent window of durationw after infection during which it is
not possible to detect the presence of infection, after which
infection can be detected with constant sensitivity σ until
time r , the reach of the test, beyond which the test becomes
insensitive. In this case the test sensitivity would follow a
step function over the time from infection, that is

σ(a) = σ1{w<a<r}. (13)

The survivor distribution Pr{T > a} is a function of
a ∧ r , the minimum of a and r , and can be thought of as
scheduled screening beginning at time w after infection (for

3This independence assumption could be generalized, and in fact the
only probabilities the current model would require are of the form
Pr{Rt = Rt+τ = · · · = Rt+kτ = 0} where Rt is the result (1 for
positive and 0 for negative) of a test at time t after infection for a given
person.
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no detection is possible within the window period). Due
to the independence of the infection and testing processes,
Eq. 9 still applies, but to the number of days since expiration

of the window period rather than to the age of infection, so
that the survivor distribution of the time from infection until
detection is given by

Pr{T > a} =
{

1 a < w

(1 − σ)�
(a∧r)−w

τ
�
(
1 − σ

τ

(
(a ∧ r) − w − � (a∧r)−w

τ
�τ

))
a ≥ w.

(14)

Accounting for the silent window w can substantially
reduce the efficiency of repeat testing, as illustrated by the
simple result in the case where the test reach r is infinite that
the expected time from infection until detection increases by

w days to
(
1
σ

− 1
2

)
τ + w

3.3.2 Example: Kucirka et al. [23]

An estimated sensitivity function of reverse-transcriptase
polymerase chain reaction (RT-PCR) tests for SARS-CoV-2
is provided by [23], based on a Bayesian hierarchical model
fit to data drawn from 7 previously published studies. Their
sensitivity function is approximated by

σ(a) =
{
logistic

(−29.966 + 37.713 log(a) − 14.452(log a)2 + 1.721(log a)3
)
0 ≤ a ≤ 21

logistic (6.878 − 2.436 log(a)) a > 21
(15)

where logistic(z) = ez/(1+ez) is the logistic function. This
function fits precisely with values obtained by Kucirka et al.
[23] in the range 0 ≤ a ≤ 21, and then the cubic function
of log(a) is extrapolated linearly on the logistic scale for
a > 21.

3.4 Incorporating delay from testing to isolation

Finally, tests take time to process, as does informing stu-
dents of their test result and ensuring the start of isolation.
We refer to this additional delay as the isolation lag, denoted
by �, and note that the impact of incorporating this lag is to
shift any 0-lag survivor distribution for the time from infec-
tion to isolation by � days to account for the additional delay.
Define T� as the time from infection to isolation incorporat-
ing an isolation lag of �, while T0 is the time from infection
until isolation based on whatever screening interval τ or
age-of-infection-dependent sensitivity σ(a) is being studied
in the absence of isolation delay. Our final model for the sur-
vivor function for T�, the time from infection until isolation
accounting for the isolation lag, is given by

Pr{T� > a} =
{

1 0 ≤ a < �

Pr{T0 > a − �} a ≥ �.
(16)

3.5 Illustrative examples

Figure 2 illustrates four examples of sensitivity functions:

1. perfect sensitivity (with no window of zero sensitivity)

2. a step function with sensitivity 0.8 [15] after a window
of 2 days with zero sensitivity,

3. the [23] sensitivity function
4. a step function having a window of 4 days with zero sen-

sitivity, followed by 10 days with sensitivity 0.6, after
which the sensitivity returns to 0 (i.e. reach = 14 days).

Applying these four tests with regular weekly screening
and 1 day of isolation delay in all cases, the corresponding
survivor functions are shown in Fig. 3. This figure shows
how repeat testing is harmed by both imperfect testing
(which forces multiple testing cycles to detect new infec-
tions), and an isolation lag (which shifts the survivor func-
tion one day to the right, increasing the time from detection
to isolation).

Figure 4 plots the transmission function λ(a) correspond-
ing to the forward generation time density implied by [25],
which is a gamma distribution with a mean (standard devi-
ation) of 8.86 (4.02) days, for an outbreak with R0 = 1.6.
Also shown are the effective transmission curves found by
multiplying by the four survivor functions of Fig. 3.

The effect of repeat testing on blocking transmission
is considerable, but harmed by imperfect sensitivity and
isolation delay. One way to quantify this effect is to compute
RT for each scenario; following Eq. 6, each RT is the
area under the corresponding effective transmission curve.
Starting with R0 = 1.6 in the absence of any screening,
testing students each week with perfect sensitivity would
result in RT = 0.26. Replacing perfect screening by a
window of 2 days of zero sensitivity followed by sensitivity
0.8 increases RT to 0.69. Replacing the sensitivity function
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Fig. 2 Examples of test
sensitivity functions
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by that of [23] increases RT to 0.97. The fourth example
sensitivity function with lower sensitivity, longer window
of zero sensitivity, and finite test reach further increases
RT to 1.11; the effect of the test reach is relatively minor
though since it changes the survivor function at times a

large enough so that λ(a) is relatively small. This shows that
weekly screening helps reduce transmission, but is harmed
by imperfect test sensitivity in ways that depend on the
shape of the sensitivity function.

4 Dynamic transmissionmodel

To expand this framework to a dynamic transmission
model, we follow [18] with slightly different notation while
incorporating the effect of repeat screening and define:

s(t) ≡ fraction of the population that is susceptible to
infection at calendar time t;

π(t) = incidence of infection at time t ;
λ(a) ≡ the transmission intensity as a function of age of

infection introduced earlier;
T = the isolation age induced by repeat testing as

discussed previously with distribution characterized by the
survivor function Pr{T > a}

Thinking of time 0 as the start of the term when students
arrive to campus, given initial conditions, the dynamic
screening model can be written as:

π(t) = s(t)

∫ ∞

0
π(t − a)λ(a)Pr{T > a} da, (17)

ds(t)

dt
= −π(t) (18)

for t > 0. Equation 17 sets SARS-CoV-2 incidence propor-
tional to the fraction of the population that is susceptible and
the infected population-weighted age-of-infection adjusted
transmission intensity thinned by the effect of repeat test-
ing and Eq. 18 depletes susceptibles with the incidence of
infection. Note that the distribution of infectiousness over
time from infection is implicitly accounted for in the defi-
nition of λ(a), thus there is no need for explicit removal of
infectious persons from the population as they simply cease
transmitting in accord with λ(a).

To specify initial conditions for the model we suppose
each student is tested in an initial screening. Letting π0

denote the fraction of students who were infectious at time
0 but not detected by the initial screening, we assume that
their ages of infection at time 0 are uniformly distributed
over an interval [0, A], so that π(t) = π0/A for t ∈ [−A, 0].

Fig. 3 Probability that the time
from infection to isolation
exceeds a. Here the isolation
delay in all four scenarios was
taken to be 1 day
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Fig. 4 Transmission curves
under different testing scenarios
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We chooseA large enough so that it is a good approximation
to consider students at time 0 with infections of age greater
than A as no longer infectious. With this assumption there is
no need to keep track of when infections of age greater than
A at time 0 occurred, but rather it is enough to note their
total number as reflected in the initial susceptibility s(0).
Thus initial conditions are given by s(0) and π0.

4.1 Incorporating imported infections

Thus far the model has only considered the detection of
internally generated infections due to a closed outbreak
beginning with the initial conditions s(0) and π0. However,
due to off-campus wanderings as well as visitors to
campus, one can expect on-campus residents to be infected
by external exposures. A screening policy must contain
transmission generated by such imported infections in
addition to internal transmission among college residents.
Let v(t) denote the exposure rate of imported infections
at time t per campus resident. The rate such exposures
lead to actual infections presuming on-campus residents are
exposed at random then equals v(t)s(t).

For example, if there are n on-campus residents, and
on average one such resident has one imported exposure
sufficient to transmit infection weekly (either by direct off-
campus exposure or as the result of exposure to an infected
visitor on-campus), then v(t) = 1/(7n) per day. If instead
a single sufficient imported exposure happens on a daily
basis, then v(t) = 1/n per day. We modify our model
by including transmission from imported infections in the
on-campus incidence rate, and thus modify (17) to

π(t) = s(t)

{∫ ∞

0
π(t − a)λ(a)Pr{T > a} da + v(t)

}

for t > 0. (19)

Note the dual role played by v(t): imported infections will
contribute to on-campus incidence the same way infections
acquired on-campus contribute over time, marking trans-
mission from imported infections. But the persons who

acquired these imported infections immediately deplete the
on-campus susceptible population at their time of infection.
Both effects are accounted for in Eq. 19; v(t)s(t) is the
instantaneous contribution to incidence by imported expo-
sures at time t , and via (18) immediately contribute to the
depletion of susceptibles.

4.2 Performancemeasures: cumulative incidence,
isolation, and undetected infections

The cumulative incidence c(h) of infections that occur over
some planning horizon h is given by

c(h) =
∫ h

0
π(t)dt = s(0) − s(h). (20)

Minimizing transmission is the most important goal of
a repeat testing program, but it is not the only one.
Administrators will also need to have an estimate of the
number of students that screening will detect and isolate.
Until this point in our discussion, we have focused on
detecting actual infections, that is, true positives, but testing
also produces false positive errors [15] that will land
additional students in isolation. We now consider both true
and false positives in determining the number of students
who would require isolation over the planning horizon.

Let δT P (t) denote the true positive isolation rate, that is,
the rate at which infected students are isolated accounting
for scheduled screening frequency, test sensitivity, window
and reporting lag at time t from the start of the planning
horizon. This isolation rate is given by

δT P (t) =
∫ ∞

a=0
π(t − a)g

(t−a)
T (a) da (21)

where g
(u)
T (·) denotes the probability density function for

the isolation age T for an infection that occurred at time u.
This carries some dependence on u because in our model
we assume that regular screening begins at time 0 so that
an individual infected at time u < 0 is not tested for the
first |u| units of time following infection. For u < 0 the
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density g
(u)
T (a) may be obtained by the general density (11)

applied to a test sensitivity function that has been modified
by multiplying it by the indicator function 1{a>|u|}, since
we can think of not being tested for the first |u| time
units after infection as equivalent to using a test that has
sensitivity 0 for the first |u| time units. In our calculations
we approximate δT P (t) by replacing the infinite upper limit
of integration in Eq. 21 by A.

To model the false positive isolation rate δFP (t), we let
φ denote the false positive rate of the test (which equals one
minus the specificity) and continue to use the notation � for
the isolation lag and τ for the spacing of the regular tests.
To become a false positive isolated in a time interval dt , a
person needs to be susceptible and tested in the time interval
dt − �, which happens with probability s(t − �)dt/τ , and
receive a false positive error on the test with probability φ,
so that

δFP (t) = s(t − �)φ/τ . (22)

Students testing positive thus enter isolation at time t

with total rate δ(t) = δT P (t) + δFP (t), and remain isolated
for duration 	. The fraction of the population in isolation
at time t , ι(t), when the duration of isolation is equal to 	

(typically 14 days) thus equals

ι(t) =
∫ t

max(0,t−	)

δ(u)du, (23)

with corresponding formulas for true positive and false
positive isolations, ιT P and ιFP , in terms of the functions
δT P and δFP . We assume that false positive detections are
not susceptible while in isolation but then they return to
the susceptible pool and to regular testing once they leave
isolation.

Finally, integrating (21) up to a given time yields the total
fraction of the population that was infected and detected
over the course of the outbreak up to that time. Comparing
this result to the cumulative incidence in the population
at that time yields the fraction of the population that was
infected but not detected by that time, that is,

E(undetected infections at time t)=
∫ t

0
(π(u)−δTP(u))du.

(24)

5 Controlling outbreaks via repeat testing
and isolation

The models described throughout this paper have been
implemented in a web app available at https://jtwchang.
shinyapps.io/testing/. The app allows the user to select
values from a wide range of model input parameters as

illustrated in Fig. 5. The app also allows users to address
the timing of transmission as implied by the forward
generation time density f (a). We consider two different
models for f (a). The first is the gamma distribution with
mean 8.87 days and standard deviation 4.02 days, drawn
from Li et al.’s [25] study of early transmission dynamics
in Wuhan referred to earlier, which is widely cited as the
first detailed analysis of early SARS-CoV-2 transmission.
The second is also a gamma distribution but with mean
(standard deviation) equal to 8.50 (6.07) days; this is based
on parameter point estimates in the Bayesian meta-analysis
conducted by Park et al. [28]. These two forward generation
time densities are displayed in Fig. 6. Comparing these
distributions, we see that while the Park et al. and Li et al.
densities have similar means of 8.9 and 8.5 days, the
standard deviation is smaller for the Li density, causing
generation times to cluster closer to the mean which implies
delayed transmission. The Park et al. density rises more
steeply and peaks earlier, presenting an early transmission
challenge.

We illustrate the model with four testing scenarios over
an 80 day period simulating an abbreviated fall term in a
population of 10,000 students with reproductive numbers
of 1.0, 1.5, 2.0, and 2.5 using the Li et al. [25] forward
generation time distribution. We assume that testing takes
place every three days, set v(t) = 1 imported exposure per
day, test specificity equals 99.8% [15], and test sensitivity
follows the trajectory estimated by Kucirka et al. [23]
discussed earlier. The outbreaks begin with three initially
infectious students at the start of school (everyone else in the
population is susceptible), and a 24 hour delay from testing
to student isolation for students testing positive. The first
plot in Fig. 7 shows the cumulative number of infections
over time in these four scenarios. Cumulative infections at
day 80 increase from 131, to 187, to 312, and then 658 as
R0 increases from 1.0 to 2.5 in increments of 0.5, while the
time averaged number of students isolated equals 102, 109,
124, and 162 in these same scenarios. There are about 90
false positives in isolation on average in all four scenarios.
The nonlinear effect of R0 on these otherwise equivalent
scenarios is notable. University preparations in the realms
of social distancing and infection control are meant to
lower R0, and if students comply with such directives,
the likelihood of achieving a favorable epidemic outcome
should increase. However, some are skeptical that students
will comply with such directives [30], which could lead
to higher reproductive numbers (and imported exposures)
and worse epidemic outcomes, perhaps comparable to
cruise ship transmission [36]. The second plot in Fig. 7
shows the number of undetected infected persons given by
Eq. 24. Not all undetected infected persons are actually
infectious; some will have been very recently infected so
that their transmission intensity λ would still be very low.
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Variable Projection

Total infections 500

Total true positive detections 419

Total undetected infections 81

Total false positives 874

Average in isolation 202

Maximum in isolation 278

Average positive tests 16

Maximum positive tests 20

R0 if no testing:

Number of students:

Number of days:

Initial susceptibility:

Infectious students undetected by gateway
screen (rate out of 10000):

"Imported" infection exposures per day (rate
out of 10000):

Time step for computations (part of a day; smaller
should tend to be more accurate but slower):

Include RT and escape function plots
("NO" is good if non-step sensitivities are too slow):

1 52.2

1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5

500 50,00010,000

30 30080

0.8 1

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0 203

0 2 4 6 8 10 12 14 16 18 20

0 101

0 0.1 0.2 0.4 0.8 1 2 4 8 10

0.5 0.25 0.125 0.1

Yes NO

Infectivity (forward recurrence) distribution:

Testing interval (days):

Test reporting and isolation delay (days):

Test specificity:

Test sensitivity time dependence:

Sensitivity (maximum over time since infection):

1 143.5

1 2.5 4 5.5 7 8.5 10 11.5 13 14

0 41

0 0.5 1 1.5 2 2.5 3 3.5 4

0.95 10.996

0.95 0.9555 0.961 0.972 0.983 0.994 1

Step Morozova Kucirka

0 10.81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Li et al.

Fig. 5 A web app available at https://jtwchang.shinyapps.io/testing/ that implements the model and facilitates exploring a variety of scenarios

However, others will be infectious while escaping detection
thus far, and as illustrated in the case R0 = 2.5 in the
present example, a growing number of undetected infectious
individuals could pose a threat not only to college residents,
but to the surrounding community as well.

This model is flexible in allowing users to simulate many
different testing scenarios, but it is perhaps most useful
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Li et al. (2020)
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Forward generation time distributions

Fig. 6 Two estimated generation time distributions found in published
studies. We refer to these distributions as featuring relatively early
transmission [28] and late transmission [25]

in identifying the limits of outbreak control for alternative
repeat-testing policies. The proposed approach is to first
identify an acceptable control level of infection within a
defined time periord, such as 5% of the student popula-
tion over the course of a semester. Such a control level
could reflect the maximum number of infections university
health systems can handle considering realistic testing (both
collection and laboratory resources) and isolation capacity
(residential space, human resources for monitoring, coun-
seling and compliance). The control level could also reflect
university concern with secondary transmission from stu-
dents to vulnerable persons such as certain faculty, workers,
or the residents of the surrounding community in which the
university is embedded. The control level could even fol-
low from a mortality goal such as ensuring the probability
of zero COVID-19 fatalities is at least a specified value.

For a given repeat testing interval, one can use the app to
determine the most challenging parameter values for which
total infections remain within the previously stated control
level. Repeating this for different testing frequencies thus
helps determine the limits of control for each policy. While
identifying appropriate control limits is the responsibility
of university leadership as opposed to analysts, having
the ability to show officials the limits of different control
strategies enables senior decision makers to trade off
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Fig. 7 Cumulative infections
and undetected infections over
time in scenarios with testing
every 3 days and fixed infectivity
function, sensitivity function,
and delays, as R0 varies
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infection outcomes against other important considerations
including testing costs as well as intangibles such as the
importance and value of residential education in the midst
of a pandemic.

We illustrate by again considering a scenario where
10,000 students will be repeatedly tested over 80 days. We
maintain the assumptions that there is one imported expo-
sure per day, test specificity equals 99.8%, there are three
initially infectious students, and a 24 hour delay from tes-
ting to student isolation. There are four transmission and de-
tection scenarios considered, corresponding to using the
late-transmission [25] or early-transmission [28] forward
generation time density with either the Kucirka et al.
[23] or step-function sensitivity, where the step-func-
tion presumes a two day non-detection window followed
by constant 80% sensitivity [15]. For weekly screening and
testing every three days, we determine the largest value of
R0 (in increments of 0.05) such that total infections are held
beneath 500 (or 5% of the population tested), and report
total infections, average and maximum daily numbers of
students isolated, and average daily positive tests.

Table 1 reports the maximal values of R0 for weekly
screening that can keep infections below 5% of the popu-
lation. The most pessimistic scenario -- early transmission
and Kucirka et al. [23] sensitivity -- requires that R0 falls
at 1.4 or below. The most optimistic scenario -- late trans-
mission and the presumed step-function sensitivity -- keeps
infections below 5% providing R0 falls below 2.25. The
two intermediate scenarios contain infections below 5% of
the population providing R0 is at most 1.6-1.8. While all
four of these scenarios result in comparable numbers of
infections and daily positive tests, note that both scenarios
employing the step-function sensitivty on average isolate
more students than the remaining scenarios. This is because
of the high 80% test sensitivity that applies once the two-day

non-detection window expires in the step-function scenar-
ios. A greater number of infected students are detected as a
consequence, leading to the larger number of students in
isolation. CDC [7] recommends considering R0 to fall in
the range from 2 to 3 in modeling studies, with 2.5 serving
as their recommended base case value. Our analysis sug-
gests that weekly testing could not contain infections below
5% for CDC’s base case reproductive number. However,
the CDC recommendations are not specifically for resi-
dential college outbreaks, where one would hope that social
distancing and infection control protocols would result in
milder outbreaks with lower values of R0. On the other
hand, conservative planning principles would suggest that
hope is not enough, especially given recent evidence regard-
ing outbreaks already occurring at residential colleges [12,
14]. The wide range of results reported in Table 1 suggests
that while weekly screening could contain an otherwise
large-scale outbreak under favorable conditions of late
transmission and (relatively) early detection with 80% test
sensitivity, overall weekly screening is not sufficiently
robust to reliably contain outbreaks in the residential college
setting.

Table 2 reports results for testing once every three days.
The worst case scenario combining early transmission with
Kucirka et al. [23] sensitivity can now contain outbreaks
for any reproductive number lower than 1.75, while the
optimistic scenario combining late transmission with step-
function sensitivity could contain outbreaks with R0 as
large as 4.8. The intermediate scenarios can keep infections
below 5% of the population for reproductive numbers as
large as 2.3-2.65. Of course, compared to weekly screening,
the number of students isolated increases greatly due to
the inevitable increase in false positives associated with
more frequent testing. Testing students every three days
is thus more robust than weekly screening in that the
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Table 1 Weekly screening
results for an 80-day term for
various scenarios described in
the text

Scenario

(f (a), σ(a)) Maximal R0 Infections Average Isolated Maximum Isolated Positive Tests/day

Li et al.

Kucirka 1.6 472 87 152 7

Li et al.

step-function 2.25 465 93 155 8

Park et al.

Kucirka 1.4 447 87 139 7

Park et al.

step-function 1.8 456 99 156 8

range of reproductive numbers for which infections can be
kept below 5% is larger for all scenarios. Such improved
performance comes at the expense of isolating many more
students over the semester, in addition to the cost of the
increased number of tests required.

These examples illustrate how, other things being equal,
more frequent screening enables adequate infection control
to be achieved over wider ranges of values of R0. The
examples also indicate that it is more difficult to contain
scenarios where more transmission occurs earlier after
infection (as with the Park et al. [28] generation time
distribution) rather than later (as with Li et al. [25]). Another
factor that can make infection control more difficult is the
rate of imported exposures. Both Tables 1 and 2 presumed a
single daily imported exposure over the modeled outbreaks;
increasing this rate can make matters much worse. For
example, for the Li et al. [25]/ Kucirka et al. [23] scenario
when testing every 3 days shown in the first row of Table 2,
if the rate of imported exposures were to increase from 1 to 2
out of 10000 students, the maximal R0 for which infections
could be kept below 500 would decrease from 2.3 to 1.8.
Another factor of key importance is the delay from testing
until isolation for those receiving a positive test result. For
example, again in the example of the first row of Table 2,
if the delay from testing to isolation increased from 24 to

48 hours, the maximal R0 at which infections could be kept
below 500 would drop from 2.3 to 1.9, and adding one more
day to increase the delay to 72 hours would further reduce
the maximal controllable R0 to 1.65. This shows that two
additional days of post-test delay would render testing once
every three days no more effective than weekly testing with
one day of delay.

6 Discussion

With much of the world only now emerging from COVID-
19 lockdowns, educational institutions are struggling with
a fundamental question: absent a vaccine against SARS-
CoV-2 or an effective treatment for COVID-19, is it safe
to bring residential students back to campus? Presuming
infections can enter the student population, and recognizing
that many if not most such infections will be asymptomatic,
the ability to detect and isolate infections as they occur
is crucial to prevent large outbreaks among students on
campus and ignited by students off campus. Testing itself is
not a panacea; it is the isolation of infectious students that
prevents transmission, and should isolation not follow the
detection of infected students, repeat screening would be
relegated to producing descriptive outbreak statistics rather

Table 2 Testing every three
days Scenario

(f (a), σ(a)) Maximal R0 Infections Average Isolated Maximum Isolated Positive Tests/day

Li et al.

Kucirka 2.3 474 143 207 11

Li et al.

step-function 4.8 491 150 206 12

Park et al.

Kucirka 1.75 459 143 194 11

Park et al.

step-function 2.65 499 153 197 12

Results when testing every 3 days replaces the weekly testing in the scenarios of Table 1
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than actively stopping outbreaks from happening. This
article has shown how repeat testing interrupts transmission
via the isolation of infectious students, and analyzed
numerous transmission scenarios.

We hope that this model and its web-based implemen-
tation are useful in helping college officials assess and
anticipate quantitative influences of key factors that affect
the performance of repeat screening programs. In particu-
lar, with substantial uncertainty surrounding multiple model
inputs, it is prudent to explore a range of plausible scenarios,
and it quickly becomes clear that plausible scenarios exhibit
a wide range of outcomes from well controlled to badly out
of control. While uncertainty and imprecise knowledge of
inputs to our model preclude precise projections of future
results, we can draw insights from the modeling that can
help inform planning and implementation. For example,
delay from testing until isolation emerges as a key target for
control as we see how much each day of delay is expected
to degrade the infection control benefits that high-frequency
repeat testing can bring.

This analysis suggests that administrators must proceed
cautiously and with open eyes when designing residential
college screening programs, for while repeat testing for
SARS-CoV-2 infection can be a powerful tool for prevent-
ing infections and preserving public health in the residential
college setting, it is not guaranteed to succeed. Even if stu-
dents are tested once every three days, there are plausible
transmission scenarios where the model projection has 5%
or more of a student population becoming infected over
the course of an abbreviated 80 day semester. Unlike engi-
neering systems that are built conservatively to withstand
multiple failures, the repeat testing system is necessarily
fragile in that to succeed, all of the system components
must work. Students must comply with infection control,
social distancing, test scheduling and (if testing positive)
isolation requirements for the repeat testing system to work
effectively. The tests themselves must perform at or above
expectation in terms of their ability to detect infected stu-
dents. Isolation delay, including laboratory turnaround time,
must be minimized as extra delay markedly degrades the
ability of repeated testing to control outbreaks. While many
of the factors involved are beyond control, college adminis-
trators should be able to implement systems that minimize
isolation delay, both by contracting with testing laboratories
to guarantee acceptable test turnaround times and by putting
in place efficient communications and support mechanisms
so that students who do test positive can be isolated as
quickly as possible. Colleges can also effectively inform
students what behaviors will be expected of them on campus
while also clearly communicating the consequences of fail-
ing to comply with the adopted behavioral code. Finally, if
a repeat testing and isolation program begins to lose control
and infections are detected at higher rates than anticipated,

colleges can shut down and confine students to quarters
while ensuring that all those in need of medical attention
receive it. The whole point of repeat screening is to avoid
such an outcome, but nonetheless university administra-
tors must be ready to close their residential colleges should
repeat testing fail to contain the spread of SARS-CoV-2 on
campus.
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