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Abstract: Imbalanced colonic microbial metabolism plays a pivotal role in generating protein-bound
uraemic toxins (PBUTs), which accumulate with deteriorating kidney function and contribute to
the uraemic burden of children with chronic kidney disease (CKD). Dietary choices impact the gut
microbiome and metabolism. The aim of this study was to investigate the relation between dietary
fibre and gut-derived PBUTs in paediatric CKD. Sixty-one (44 male) CKD children (9 ± 5 years)
were prospectively followed for two years. Dietary fibre intake was evaluated by either 24-h recalls
(73%) or 3-day food records (27%) at the same time of blood sampling for assessment of total and
free serum levels of different PBUTs using liquid chromatography. We used linear mixed models to
assess associations between fibre intake and PBUT levels. We found an inverse association between
increase in fibre consumption (g/day) and serum concentrations of free indoxyl sulfate (−3.1%
(−5.9%; −0.3%) (p = 0.035)), free p-cresyl sulfate (−2.5% (−4.7%; −0.3%) (p = 0.034)), total indole
acetic acid (IAA) (−1.6% (−3.0%; −0.3%) (p = 0.020)), free IAA (−6.6% (−9.3%; −3.7%) (p < 0.001)),
total serum p-cresyl glucuronide (pCG) (−3.0% (−5.6%; −0.5%) (p = 0.021)) and free pCG levels
(−3.3% (−5.8%; −0.8%) (p = 0.010)). The observed associations between dietary fibre intake and the
investigated PBUTs highlight potential benefits of fibre intake for the paediatric CKD population.
The present observational findings should inform and guide adaptations of dietary prescriptions in
children with CKD.

Keywords: chronic kidney disease; children; diet; fibre intake; uraemic toxins

Key Contribution: Fibre intake has been underappreciated in traditional nutritional CKD manage-
ment; In this context; awareness should be raised among clinicians that current dietary instructions
inadvertently limit fibre intake; which may in turn lead to increased uraemic toxin levels.

1. Introduction

Chronic kidney disease (CKD) in children is a micro-inflammatory state, affecting
nearly every organ system and resulting into an increased morbidity and high mortality,

Toxins 2021, 13, 225. https://doi.org/10.3390/toxins13030225 https://www.mdpi.com/journal/toxins

https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0002-2768-9114
https://orcid.org/0000-0003-2660-7460
https://orcid.org/0000-0002-7641-4707
https://orcid.org/0000-0001-7809-2505
https://orcid.org/0000-0002-6984-1743
https://doi.org/10.3390/toxins13030225
https://doi.org/10.3390/toxins13030225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxins13030225
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins13030225?type=check_update&version=1


Toxins 2021, 13, 225 2 of 10

along with a decreased quality of life [1–4]. The exact pathophysiological mechanisms
underlying the complex and multifactorial paediatric uraemic syndrome are still poorly
understood. In recent years, it was postulated that the accumulation of organic waste
products with failing kidney function, is one of the key contributors of uraemic illness [5]. A
large number of these uraemic toxins arise from protein fermentation by the gut microbiota
and circulate in the blood bound to albumin [5–7]. Two of the most studied protein-bound
uraemic toxins (PBUTs), indoxyl sulfate (IxS) and p-cresyl sulfate (pCS), might be promising
targets for adjuvant toxin-reductive strategies [8]. Accruing observational and experimental
studies suggest that these two toxins, as well as the less studied p-cresyl glucuronide (pCG)
and indole acetic acid (IAA), are associated with poor cardiovascular outcomes and kidney
disease progression [8–12].

The link between the gut and the kidney seems to be bidirectional, since uraemic
patients also seem to have a unique dysbiotic colon microenvironment with profoundly
altered composition and metabolism of gut microbes and prolonged transit time [8,13–16].
As the intestinal microbial metabolism is largely driven by nutrient availability, it was
postulated that dietary interventions could reduce toxin generation [16,17]. A higher intake
of dietary fibre may be a suitable candidate to restore the balance, since it reduces the
transit time, might promote beneficial microbial species, and shifts a dominantly proteolytic
microbial metabolism to a saccharolytic one. In saccharolysis, amino acids are incorporated
for bacterial growth and used as an energy source, rather than being metabolised in
precursors of uraemic solutes [16,18]. So far, supplementation studies under uraemic
conditions in humans have been scarce and unsatisfactory. Meta-analyses underline the
weak/suboptimal body of evidence, mainly due to significant study heterogeneity (study
population, methodology, duration) and selection of unsuitable fibre types, while dietary
assessments are very rarely formally performed [17,19–22]. Moreover, most patients with
CKD are on a diet restricting the intake of fibre-rich fruits and vegetables because of their
potassium content. Furthermore, low fibre intake was associated with a higher risk of
inflammation and mortality in adult CKD patients [23]. Recent studies demonstrated that
fibre intake is inadequate in adult as well as paediatric patients with CKD. Daily fibre
intake in these patients is far below the recommendations for the healthy population and
inversely related to advancing CKD stages [24,25].

In our recently published observational study, we found that patients with the highest
fibre intake had lower total and free pCG levels. This study was a cross-sectional ana-
lysis, therefore the confounding effect of intra-patient variability in dietary intake and
uraemic toxin concentrations could not be excluded. A study in an adult haemodialysis
population found a marked intra-patient variability, possibly affecting the significance
of the associations between a single concentration of certain toxins (especially total IxS),
and outcomes [26]. Awaiting similar trials to determine whether these conclusions are
applicable to a paediatric population with varying degrees of kidney dysfunction, we aimed
to take into account potential fluctuations within one patient over time, by conducting
longitudinal mixed-model analyses, using serial PBUT concentration measurements in
blood samples taken at the same time of repeated dietary intake evaluations.

Therefore, the purpose of this study was to evaluate the longitudinal association
between dietary fibre intake and total and free serum levels of four selected PBUTs: IxS,
pCS, IAA and pCG.

2. Results

A total of 61 children (9 ± 5 years) were eligible for analysis, accounting for a total
of 297 visits, with a mean number of 5 visits/patient (range 1–9) and a median follow-up
time of 19 (9–22) months. Baseline characteristics are listed in Table 1. Drop out of patients
was attributed to dialysis initiation (n = 6) or kidney transplantation (n = 2). Other missing
data originated from missing dietary records or the lack of appropriate coupling of dietary
intake with serum PBUT levels the same day. In this CKD cohort, 33% of the children was
diagnosed with CKD stage 1–2, 31% with stage 3, 28% with stage 4 and 8% with stage 5.
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Dietary assessment was obtained through 3-day food records in 27% of the visits and
through 24-h recalls in 73% of the visits. On average, only 76% of the Dietary Reference
Intake (DRI) for fibre was achieved, while only 23% of children reached 100% of the DRI.
In contrast, 92% of children achieved the 100%DRI for protein. Nutrient intake and PBUT
levels across different stages of CKD can be found in Supplementary Tables S1 and S2.

Table 1. Baseline characteristics of the study population (n = 61).

Variables Values

Demographics
Age (years) 9.3 ± 5.0 (1.0–18.0)

Gender: male 44 (72)
Transplant recipients 8 (13)

Anthropometry
Weight SDS −1.0 ± 1.4
Height SDS −1.2 ± 1.2

BMI SDS −0.3 ± 1.3
BSA (m2) 1.0 ± 0.4

Cause of kidney failure
Glomerular 11 (18)

CAKUT 27 (44)
Cystic disease 6 (10)

Other non-glomerular 17 (28)
Laboratory values

eGFR (ml/min/1.73 m2) 47.1 ± 28.9
Chronic medication use
Potassium binding resins 7 (12)

Phosphate binders 2 (3)
Iron supplements 22 (36)

Immunosuppressive therapy 10 (16)
Laxatives 1 (3)

Antibiotics 19 (31)
Nutrient intake

Fibre intake (g/day/m2) 12.6 ± 6.8
%DRI fibre 76.0 ± 36.0

Protein intake (g/day/m2) 54.4 ± 28.4
%DRI protein 220.1 ± 138.2

Protein/fibre index 4.3 (2.7–5.8) *
Energy (kCal/kg/day) 59.8 ± 30.9

Energy (kCal/day) 1428.4 ± 504.9
Gut-derived protein-bound uraemic toxins

Free Total
pCG (mg/dL) 0.004 (0.001–0.013) 0.006 (0.001–0.015)
IAA (mg/dL) 0.004 (0.002–0.007) 0.042 (0.028–0.061)
IxS (mg/dL) 0.006 (0.003–0.015) 0.247 (0.101–0.514)
pCS (mg/dL) 0.017 (0.006–0.034) 0.761 (0.269–1.372)

CAKUT: congenital anomalies of the kidney and urinary tract; SDS: standard deviation score; BMI: body mass
index; BSA: body surface area; eGFR: estimated glomerular filtration rate according to Schwartz et al.; %DRI:
achieved percentage of the recommended 100% dietary reference intake; pCG: p-cresylglucuronide; IAA: indole
acetic acid; IxS: indoxyl sulfate; pCS: p-cresyl sulfate. Data are expressed as mean ± standard deviation (SD),
number (percentage) or median (25th–75th percentile) as appropriate. * n = 58, three patients with a fibre intake
of 0 g/day were excluded for mathematical reasons.

As shown in Table 2, after adjustment for body surface area (BSA), estimated glomeru-
lar filtration rate (eGFR) and protein intake, for every g/day increase in fibre consumption,
mixed-model analysis revealed a 1.6% (−3.0%; −0.3%) lower total IAA concentration
(p = 0.020), whereas free IAA levels were 6.6% (−9.3%; −3.7%) (p < 0.001) lower. Further,
total pCG levels were 3.0% (−5.6%; −0.5%) (p = 0.021) lower, and free serum pCG 3.3%
(−5.8%; −0.8%) (p = 0.010) lower per g/day increase in daily fibre consumption.
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Table 2. Association between nutrient (fibre and protein) intake and selected gut-derived protein-
bound uraemic toxins.

Gut-Derived Protein-Bound
Uraemic Toxins (mg/dL) Estimated Mean Ratio

Confidence Interval (CI)
p

Lower 95% Upper 95%

pCG

Free concentration
Fibre intake (g/day) 0.967 0.943 0.992 0.010

Protein intake (g/day) 1.005 0.998 1.012 0.120

Total concentration
Fibre intake (g/day) 0.970 0.944 0.995 0.021

Protein intake (g/day) 1.006 0.998 1.012 0.116

IAA

Free concentration
Fibre intake (g/day) 0.934 0.907 0.963 <0.001

Protein intake (g/day) 1.011 1.003 1.019 0.007

Total concentration
Fibre intake (g/day) 0.984 0.971 0.997 0.020

Protein intake (g/day) 1.001 0.998 1.005 0.430

IxS

Free concentration
Fibre intake (g/day) 0.969 0.941 0.997 0.035

Protein intake (g/day) 1.005 0.997 1.012 0.259

Total concentration
Fibre intake (g/day) 0.986 0.965 1.006 0.196

Protein intake (g/day) 1.001 0.996 1.007 0.645

pCS

Free concentration
Fibre intake (g/day) 0.975 0.953 0.998 0.034

Protein intake (g/day) 1.005 0.998 1.011 0.137

Total concentration
Fibre intake (g/day) 0.984 0.956 1.011 0.261

Protein intake (g/day) 1.004 0.9962 1.012 0.282
Total and free uraemic toxin concentrations showed a skewed distribution and were (natural) log-transformed
prior to linear mixed-model analysis. Data are expressed as estimated mean ratio and 95% confidence interval (CI).

For every gram of increment in daily fibre intake, free IxS levels were 3.1% (−5.9%;
−0.3%) (p = 0.035) lower, and free pCS were 2.5% (−4.7%; −0.3%) (p = 0.034) lower. In
contrast, total IxS and pCS serum concentrations were not associated with daily fibre intake
(Table 2).

3. Discussion

This longitudinal, observational study investigated whether dietary fibre intake is
linked to levels of circulating PBUTs in a paediatric CKD cohort. We showed that indepen-
dent of eGFR, each g/day fibre intake increase was associated with dose-dependent lower
levels of free pCS and IxS and both free and total pCG and IAA concentrations.

Our findings are in line with a study in adult patients with CKD stage 3–4 which found
significantly lower serum IxS levels in a high-fibre versus a low-fibre intake group [27].
Another observational cohort study in adult non-dialysed patients with CKD 4–5 found
that a high dietary fibre intake was negatively correlated with both total and free pCS, but
not with IxS [28]. To our knowledge, there are no interventional trials supplementing fibre
prebiotics in the paediatric CKD population. In adult haemodialysis (HD) patients, bene-
ficial effects of prebiotics on either pCS [29] or (free) IxS [18,30] have been demonstrated.
With the exception of one single-blind pilot study, which found a lower level of p-cresol
after combined pea hull fiber and inulin supplementation [31], three other trials performed
in adult CKD patients who were not on dialysis found no effect on either pCS or IxS after
administration of different prebiotics [32–34]. The only two studies evaluating either pCG
or IAA in adults with CKD found no significant reduction [32,34]. The essentially negative
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results in adult patients with CKD who were not on dialysis might be attributable to the
aforementioned heterogeneity in study design and fibre choice. In addition, dietary intake
was often not taken into account in these analyses.

Our data suggest that fibre intake might primarily influence free PBUT concentrations.
It is hypothesised that changes in free solute levels of PBUTs are more relevant than
total concentrations in the pathophysiology of the uraemic syndrome [18,35]. In analogy
with studies of protein-bound pharmaceutical agents, the free fraction is regarded as the
biologically active one and is considered a better indicator of potential toxicity [17,18,35–37].
Several studies investigating pCS concentrations in adult patients either with CKD or
on haemodialysis revealed that only the free levels were associated with cardiovascular
morbidity and mortality [38–40]. Although still under discussion, it has therefore been
suggested that future studies exploring clinically relevant markers and outcomes should
take into account both total and free concentrations [35].

Nutrient availability, more specifically the balance between undigested protein and
carbohydrate, can modulate microbial metabolism towards either saccharolytic or prote-
olytic fermentation [16]. The protein/fibre index, taking into account the interplay between
the two single nutrients, could thus be informative about the prevailing fermentation
profile. In our study, 92% of the children achieved the daily recommended protein in-
take, whereas fibre intake was below the daily recommended intake, and only 23% of
the children achieved 100% DRI for fibre. In addition, in our analysis we adjusted for
protein intake. A higher fibre intake in our results is thus coupled to a lower protein/fibre
ratio and could be interpreted accordingly. Rossi et al. reported an association between
protein/fibre index and serum pCS and IxS levels, while fibre intake alone was associated
with pCS and not IxS, and dietary protein intake with neither of these toxins [28]. This is
in line with our results, as most likely, the lack of association between protein intake and
toxin concentrations is due to a low variability in protein intake, and the variability of the
protein/fibre ratio is thus completely due to variation in fibre intake.

Theoretically, a diet with a lower protein/fibre ratio should be reflective of a low
nitrogen/carbohydrate ratio in the colon, thus promoting carbohydrate fermentation and
subsequently decreasing the production of PBUTs. Our data point to the fact that fibre
intake is largely inadequate in children with CKD [25]. Some children who are exclusively
fed with a powdered amino acid formula or a formula adapted to the needs of patients
with CKD have even no fibre intake at all. In addition, the popular practice of protein
restriction in adults with CKD stage 3–5 contrasts sharply with the minimum 100−140%
DRI for proteins to maintain proper growth in children [41]. The low fibre intake in children
is therefore far outweighed by the protein intake, resulting in a relatively high baseline
protein/fibre ratio in comparison to adults and predisposing to proteolytic microbial
activity. Future prebiotic intervention trials in children should thus aim to provide ample
fibre content, while allowing sufficient protein intake and avoiding too high potassium
loads. Further studies, adding the taxonomic and functional gut microbial profile to the
equation, are needed to demonstrate causal relationships and unravel the meaning and
relevant clinical implications of these findings.

Fibre supplementation is an appealing strategy to attenuate PBUT generation and
its subsequent burden. On population level, early stages of CKD have a much higher
prevalence, and an easy and relatively cheap intervention that can delay the progression
of kidney disease and dialysis initiation is therefore a worthwhile intervention to further
explore. Fibre intake is underappreciated and deserves more attention in the classic nutri-
tional approach of the patient with CKD, which is largely based on sodium, phosphorous
and potassium restriction. Dietary fibre is mainly supplied by the consumption of fruits
and vegetables, which are often restricted to avoid hyperkalaemia. Such dietary restrictions
may, however, worsen dysbiosis and further contribute to uraemic toxicity [42,43].

Limitations of the present study include the observational nature which limits causal
inference and possible measurement error inherent to dietary recalls, despite careful eval-
uation. Transit time and microbiota composition were not assessed. Since urine samples



Toxins 2021, 13, 225 6 of 10

of the children were not collected, urinary excretion of the respective uraemic toxins, as
markers for generation, could not be estimated. Although we also focused on IAA and
pCG, in addition to the well-known IxS and pCS, conclusions cannot be extended to the
expanding array of other microbial metabolites of interest. Finally, we only included a small
group of patients with CKD stage 4–5 from a single country. Accordingly, cultural and
geographic effects could be at play, limiting extrapolation to other settings or populations
with different dietary habits.

This study also has several strengths. To our knowledge, this is the first longitudinal
study evaluating the effect of fibre intake on PBUTs in a cohort of children with non-
dialysis CKD. The analysis of multiple PBUT measurements, taking into account the
fluctuations within one patient over time, bridges the existence of intra-patient variability
of UTs. In addition, nutrient intake was captured through repeated dietary assessments,
which allowed us to account for possible intra-individual day-to-day variations as well
as seasonality effects. Furthermore, we expanded our focus beyond the most thoroughly
studied pCS and IxS, including pCG, which is the less concentrated glucuronidated fraction
of p-cresol and IAA, the latter being, just as IxS, a product of tryptophan, originating directly
in the colon by an alternative microbial metabolism pathway [44].

4. Conclusions

In conclusion, increasing amounts of fibre intake were associated with overall lower
PBUT levels, and this independent of eGFR. As most children with CKD have a low
fibre intake and a high protein requirement to allow growth, the protein/fibre ratio is
re-latively high in comparison to adults, and this predisposes them to proteolytic microbial
activity. The present observational findings are helpful to guide the development of well-
conceived randomised controlled trials evaluating well-balanced dietary interventions in
the paediatric population.

5. Materials and Methods
5.1. Study Population

For this study, longitudinal data were analysed from the multicentric, prospective, ob-
servational UToPaed study, running from 1 September 2015 to 31 December 2017. Children
younger than 18 years of age with CKD stage 1–5, including transplant recipients, were
eligible for inclusion. In accordance with the eGFR, determined by the updated Schwartz
equation [45], CKD patients (defined using the Kidney Disease Improving Global Outcomes
(KDIGO) guidelines) were stratified into stages: stage 1: ≥90 mL/min/1.73 m2; stage 2:
60–89 mL/min/1.73 m2; stage 3: 30–59 mL/min/1.73 m2; stage 4: 15–29 mL/min/1.73 m2;
stage 5: <15 mL/min/1.73 m2. Children receiving any type of dialysis during follow-up
were excluded from the analysis. Other exclusion criteria were the presence of malignancies,
active infections or active systemic inflammatory disease. Participants were recruited from
the Departments of Paediatric Nephrology of Ghent University Hospital, Antwerp Univer-
sity Hospital, University Hospitals Leuven and University Hospital Saint-Luc, Brussels.
Ethical approval was granted by each participating site (number 2600/304, B670201524922;
B670201422206). Prior to enrolment, written informed consent was obtained from all
parents and patients above the age of 12.

5.2. Data Collection and Biochemical Measurements

Patients were followed prospectively during 24 months. Demographic parameters
were recorded at baseline. In addition, clinical parameters (age, height, weight, etc.),
dietary intake as detailed below and medical therapy were recorded at each visit. Blood
samples were allowed to clot for 20–30 min and then centrifuged (2095× g; 10 min; 4 ◦C).
Serum aliquots were stored at −80 ◦C awaiting batch analysis. Standard lab assays at
the Clinical Laboratory of the Ghent University Hospital (Ghent, Belgium) were used
to measure biochemical parameters including urea, creatinine (Photometric (Architect
c16000, Abbott, IL, USA)), C-reactive protein, albumin and total protein. Concentrations
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of IxS, IAA, pCS and pCG were quantified as previously described [46]. Briefly, for total
concentrations, serum samples were deproteinised by heat denaturation, followed by
a filtration step through Amicon Ultra 0.5 mL filters (molecular weight cut-off 30 kDa,
Millipore Merck, Darmstadt, Germany). For the free fraction, untreated plasma samples
were filtered first through the Amicon Ultra Filters. Reversed-phase ultra-performance
liquid chromatography (UPLC; Agilent 1290 Infinity device) (Agilent, Santa Clara, CA,
USA) was used to separate the uraemic toxins. IxS (λex: 280 nm, λem: 376 nm), pCS, pCG
(λex: 264 nm, λem: 290 nm) and IAA (λex: 280 nm, λem: 350 nm) were detected by an
Agilent G1316C fluorescence detector.

5.3. Dietary Assessment

Participants’ dietary intakes were assessed 3-monthly by either a 3-day food record
or a 24-h dietary recall at an aimed 50/50 ratio. Structured 3-day diary templates were
completed prior to the visit and reviewed by a trained dietician in face-to-face interviews.
The 3-day food record was substituted by a 24-h recall in case parents/patients failed to fill
it out or forgot to bring it to the consult, so that dietary data could be coupled to serum
PBUT levels from the same day. In order to increase the accuracy of portion size estimation
for 24-hour recalls, standardised food models and a food photo album (Portiegroottes boek,
Valetudo Consulting, third edition, march 2014) were utilised, along with a manual for the
conversion of household measures to weight equivalents [47]. Fibre, protein and energy
consumption were calculated by entering dietary data into Evry-Diëtist 6.7.7.0 (Evry BV,
Alphen aan den Rijn, The Netherlands), based on the Belgian Branded Food Products
Database (Nubel, 5th edition). A search in either the Dutch nutrient database (Nevo, 4th
edition) or the online database of trade names (Internubel) was done in case of unknown
food items. These were recorded in our coding book, together with standard recipes to
ensure reproducibility and accuracy. Non-standard recipes and compound ingredients
were broken down into their constituents. Percentage Dietary Reference Intake (%DRI) for
fibre was calculated by expressing the total dietary fibre intake per patient as a percentage
of the age-dependent DRI for fibre [48]. Because of the age dependency of the Belgian
nutrition recommendations of protein and fibre and the small sample size for analyses
in each subgroup, intakes were corrected for body surface area (BSA), calculated by the
Haycock formula (0.024265 × height (cm) 0.3964 × weight (kg) 0.5378). The protein/fibre
ratio was calculated.

5.4. Statistical Analyses

Descriptive data are expressed as mean ± standard deviation (SD) or median (25th;
75th percentile), as appropriate. Absolute and relative frequencies are reported for categor-
ical variables.

Linear mixed-effects models were fitted to analyse the association between dietary
fibre intake and the four selected gut-derived PBUTs. A compound symmetry covariance
matrix was used to take into account a fixed correlation between measurements from the
same patient. Linear mixed models for (natural) log-transformed plasma concentrations
were fitted with a random intercept for the patient and with fibre intake (g/day), protein
intake (g/day), BSA as a proxy for age (m2), eGFR (mL/min/1.73 m2). Exponentiated
regression coefficients with corresponding 95% confidence intervals (CI) are reported.
These reflect the geometric mean ratios. Based on the variance inflation factor, there was
no indication for multicollinearity between the different explanatory variables.

All hypothesis tests were performed at the two-sided 5% significance level. Descriptive
analyses were performed using SPSS 25.0 (IBM, New York, NY, USA), while the package
“lme4” in R version 3.6.1 was used for linear mixed-model analyses. Statistical analyses
were executed by an independent biostatistician.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-665
1/13/3/225/s1, Table S1: Nutrient intake across different CKD stages, Table S2: Serum concentrations
of total and free gut-derived, protein-bound uraemic toxins across different CKD stages.
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