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Abstract
Convolutional neural networks (CNNs), a particular type of deep learning architecture, are positioned to become one of the most
transformative technologies for medical applications. The aim of the current study was to evaluate the efficacy of deep CNN algorithm
for the identification and classification of dental implant systems.
A total of 5390 panoramic and 5380 periapical radiographic images from 3 types of dental implant systems, with similar shape and

internal conical connection, were randomly divided into training and validation dataset (80%) and a test dataset (20%). We performed
image preprocessing and transfer learning techniques, based on fine-tuned and pre-trained deep CNN architecture (GoogLeNet
Inception-v3). The test dataset was used to assess the accuracy, sensitivity, specificity, receiver operating characteristic curve, area
under the receiver operating characteristic curve (AUC), and confusion matrix compared between deep CNN and periodontal
specialist.
We found that the deep CNN architecture (AUC=0.971, 95% confidence interval 0.963–0.978) and board-certified periodontist

(AUC=0.925, 95% confidence interval 0.913–0.935) showed reliable classification accuracies.
This study demonstrated that deep CNN architecture is useful for the identification and classification of dental implant systems

using panoramic and periapical radiographic images.

Abbreviations: CI = confidence intervals, CNN = convolutional neural networks, ROC = receiver operating characteristic.
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1. Introduction show a long-term success and survival rate of more than 10 years
Dental implants are used to replace or reconstruct missing teeth.
Systematic and meta-analytic studies published in recent decades
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in over 90% of the cases.[1–3] However, despite the fact that
dental implants have become awidespread and rapidly increasing
treatment option, mechanical and biological complications occur
frequently. Ultimately, the possibility of failure is also steadily
increasing.[4–6] In a long-term systematic review, the cumulative
mechanical complication incidence rate over a period of 5 years
was reported to be 12.7% for loosening of screws or abutments
and 0.35% for screw or abutment fractures.[7] Also observed at a
large multicenter study, a total of 19,087 implant cases were
monitored over 9 years, and confirmed 70 fixture fractures
(0.4%).[8] Another systematic review of biological complications
reported the prevalence of peri-implant mucositis and peri-
implantitis of up to 65% and 47%, respectively.[9]

More than hundreds of manufacturers produce over 4000
different types of dental implant systems globally.[10,11] A wide
variety of fixture structures (straight, tapered, conical, ovoid,
trapezoidal, internal, and external) with different surface
treatment techniques (machined, blasted, acid-etched, hydroxy-
apatite-coated, titanium plasma-sprayed, and oxidized) are
continuously being developed and clinically applied.[12–14]

Therefore, if clinical dental practitioners cannot identify and
classify the dental implant systems when mechanical and
biological complications occur, there is an increased probability
of invasive treatment modalities for repair or replantation.[15,16]

Although panoramic and periapical radiographs are the primary
means for identifying and classifying dental implant systems, it is
exceedingly difficult to distinguish different systems with similar
shapes and features through radiographs. This is due to
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significant inherent weaknesses, such as noise, haziness, and
distortion.[17,18]

Computer-aided diagnostic systems have shown good efficien-
cy and improved outcomes when applied in various medical and
dental fields. In particular, among popular research technologies
of deep learning, convolutional neural networks (CNNs) have
developed rapidly in recent years and demonstrate excellent
performance in regards to image analysis such as detection,
classification, and segmentation.[19,20] However, despite the
excellent performance and reliability of deep CNN algorithms,
basic research and clinical application in the dental field are vastly
limited. The purpose of this study was to demonstrate the efficacy
of deep CNN algorithm for the identification and classification of
dental implant systems using panoramic and periapical radio-
graphs.
2. Materials and methods

2.1. Datasets

This study was conducted at the Department of Periodontology,
Daejeon Dental Hospital, Wonkwang University, and all image
datasets were anonymized and separated from any personal
identifiers. The research protocol was approved by the
Institutional Review Board of Daejeon Dental Hospital,
Wonkwang University (approval no. W1809/001-001). Raw
panoramic and periapical radiographic images (INFINITT
Figure 1. Three types of dental implant systems have a sandblasted, large-grit, aci
common.
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PACS, Infinitt, Seoul, Korea) of patients who underwent dental
implant treatment at the dental hospital were acquired between
January 2010 and December 2019. Three types of dental implant
systems – TSIII SA, Osstem Implant Co. Ltd., Seoul, Korea;
Superline, Dentium Co. Ltd., Seoul, Korea; SLActive BLT
implant, Institut Straumann AG, Basel, Switzerland – were
classified and each dental implant system was labeled based on
electronic dental records. These dental implant systems have a
sandblasted, large-grit, acid-etched surface, and an internal
conical connection with similar tapered structure in common
(Fig. 1).
�

d-e
Osstem TSIII implant system: fixtures with a diameter of 3.5 to
5.0mm and length of 7 to 13mm, designed with double and
corkscrew thread, helix cutting edge, and an apical taper angle
of 1.5°.
�
 Dentium Superline implant system: fixtures with a diameter of
3.6 to 5.0mm and length of 8 to 12mm, designed with double
threads, and a long cutting edge.
�
 Straumann BLT implant system: fixtures with a diameter of 3.3
to 4.8mm and length of 8 to 12mm, designed with full-depth
threads, 3 cutting notches, and an apical taper angle of 9°.

2.2. Preprocessing and image augmentation

The regions of interest, which displayed only 1 implant fixture per
image, were manually cropped and labeled by 3 periodontology
tched surface, and an internal connection with similar tapered morphology in
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residents who were not directly involved in the study using
radiographic image analysis software (Osirix X 10.0 64-bit
version; Pixmeo SARL). Images with severe noise, haziness, and
distortion were excluded. The remaining images included in this
study were calibrated according to contrast and brightness using
global contrast normalization and zero phase whitening.[21,22]

The average value, X̄, and the standard deviation, s, of each
image were obtained, and global contrast normalization of the
image data was performed as follows: X←(X – X̄) / s.
The final dataset consisted of 10,770 cropped radiographic

images (extracted from 5390 panoramic and 5380 periapical
radiographic images). Including 4600 Osstem TSIII implant
systems (extracted from 2340 [50.9%] panoramic and 2260
[49.1%] periapical radiographic images), 4370 Dentium Super-
line implant systems (extracted from 2160 [49.4%] panoramic
and 2210 [50.6%] periapical radiographic images), and 1800
Straumann BLT implant systems (extracted from 890 [49.4%]
panoramic and 910 [50.6%] periapical radiographic images), as
shown in Figure 2. The dataset was randomly divided into 3
groups: training dataset (n=6,462 [60%]), validation dataset
(n=2,154 [20%]), and test dataset (n=2,154 [20%]). The
training dataset was randomly augmented 10 times (n=64,620)
using horizontal and vertical flip, rotation (range of 10°), width
and height shifting (range of 0.1), and zooming (range of 0.8–
1.2). The test dataset was allocated at the same ratio of 200 to
each dental implant system.[23]

2.3. Architecture of the deep convolutional neural network

In this study, we explored the representative deep CNN
architecture, GoogLeNet Inception v3, which achieved excellent
performance in high-level feature abstraction.[24] This architec-
ture was developed by the Google research team and consisted of
9 inception modules, including an auxiliary classifier, 2 fully
connected layers, softmax functions, and 22 dense layers.[24] A
pre-trained model on ImageNet was used for preprocessing and
Figure 2. The dataset consisted of a total of cropped 10,770 radiographic image
consisting of 4600 Osstem TSIII, 4370 Dentium Superline, and 1800 Straumann
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transfer learning. This indicated that the architectures were
capable of learning comprehensive natural features from
approximately 1.28 million images, consisting of 1000 object
categories.[23,25] Additional fine-tuning was performed by
optimizing the weights, and each architecture was trained for
1000 epochs.[26] (Fig. 3)

2.4. Comparing the performance of the deep CNN
architecture to human expert

A total of 2154 radiographic images (718 images evenly for each
dental implant system) were randomly selected from the test
dataset by a computer aided tool (Keras framework in Python
(Python 3.6.1, Python Software Foundation, Wilmington, DE).
Then, the accuracy performance of the trained deep CNN
architecture and board-certified periodontist (JHL) was evaluat-
ed using the testing dataset.
2.5. Statistical analysis

All statistical analyses were performed using the Keras
framework in Python (Python 3.6.1, Python Software Founda-
tion, Wilmington, DE) and MedCalc statistical package (version
12.7.0, Mariakerke, Belgium), and the accuracy performance of
the test dataset was evaluated using the receiver operating
characteristic curve, 95% confidence intervals (CIs), and
confusion matrix.
3. Results

3.1. Classification of dental implant systems

Table 1 and Figure 4 show a comparison of receiver operating
characteristic curves for appraising the accuracy of the deep CNN
architecture and periodontist. Using combined panoramic and
periapical radiographic images, the deep CNN architecture had
s (extracted from 5390 panoramic and 5380 periapical radiographic images),
BLT dental implant systems.

http://www.md-journal.com


Figure 3. Overall scheme and overview representing the GoogLeNet Inception-v3 architecture. Implementations of the pre-trained convolutional neural network
model using transfer learning. The dataset for the implant fixture images was obtained by cropping the regions of interests and using as input. The final output layer
performs softmax classification and provides the predictions.
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an AUC of 0.971 (95% CI, 0.963–0.978), while the correspond-
ing values for the periodontist were 0.925 (95% CI, 0.913–
0.935). Using only panoramic radiographic images, the deep
CNN architecture had an AUC of 0.956 (95%CI, 0.942–0.967),
while the corresponding values for the periodontist were 0.891
(95% CI, 0.871–0.909). Using only periapical radiographic
images, the deep CNN architecture had an AUC of 0.979 (95%
CI, 0.969–0.987), while the corresponding values for the
periodontist were 0.979 (95% CI, 0.969–0.987), respectively
(Table 1. and Fig. 4).

3.2. Confusion matrix

Another result analyzed was the confusion matrix of the
multiclass classification of dental implant systems, based on
deep CNN architecture using the training dataset (Fig. 5). The
accuracy of Straumann BLT implant system (panoramic
radiographic images: 99.4% and periapical radiographic images:
99.5%) was the highest among the three types of dental implant
systems.

4. Discussion

Using dental implants for the successful rehabilitation of those
who are partially or fully edentulous is growing rapidly over time.
Table 1

Comparison between the deep convolutional neural networks algorithm
of dental implant systems.

Variables AUC SE

Panoramic and periapical radiographic images
Deep CNN 0.971 0.004
Periodontist 0.925 0.006

Panoramic radiographic images
Deep CNN 0.956 0.007
Periodontist 0.891 0.010

Periapical radiographic images
Deep CNN 0.979 0.004
Periodontist 0.959 0.006

AUC= area under the receiver operating characteristic curve, CI= confidence interval, CNN= convolutio
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However, the number of dental implants that cannot be
identified, because of the absence of available dental records,
is also increasing. In addition, dental practitioners with relatively
short clinical experience have more difficulty distinguishing
between various designs of dental implant systems because of
their limited firsthand observations.
In the past, effort has been made to identify dental implant

systems from a forensic, medical viewpoint. However, these
endeavors were conducted with a very small number of datasets,
or resulted in low accuracy for practical clinical application.[27,28]

Sahiwal et al attempted to recognize dental implant systems based
on radiographic images; however, only 20 images per dental
implant were used, and as a result, the dental implant system
could only be accurately recognized within 10 degrees of vertical
angulation.[29] Michelinakis et al also developed a computer-
aided diagnostic based recognition software to identify dental
implant systems, however, it has the limitation of manually
recording the characteristics of the dental implant (such as
diameter, length, type of thread, surface property, and collar
shape).[30]

Before conducting this study, we compared the accuracy
performance of the classification of dental implant systems using
3 major CNN architectures with and without transfer learning
(VGG-19, Inception-v3, and ResNet-50) to find the optimal
model. Although all 3 algorithms had reliable results, the pre-
and periodontist for the identification and classification of 3 types

95% CI Sensitivity (%) Specificity (%)

0.963–0.978 95.3 97.6
0.913–0.935 88.7 87.1

0.942–0.967 93.6 95.7
0.871–0.909 82.9 90.3

0.969–0.987 97.1 99.5
0.945–0.970 94.2 95.8

nal neural network, SE= standard error.



Figure 4. Comparison of receiver operating characteristic curves of the deep convolutional neural network (CNN) architecture and the periodontist. (A) Dataset
consisted of 2154 panoramic and periapical radiographic images, (B) Dataset consisted of 1078 panoramic radiographic images, and (C) Dataset consisted of
1076 periapical radiographic images.
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trained Inception-v3 architecture showed the best performance
(AUC=0.922, 95% CI 0.876–0.955), and therefore, we adopted
the Inception-v3 architecture in this study.[31] The GoogLeNet
Inception-v3 architecture, which was developed in 2014 and
modified in 2016, showed excellent multicategorical (or multi-
class) image classification and object detection performance in
the annual ImageNet Large Scale Visual Recognition Chal-
lenge.[24,32] Therefore, this architecture has been widely adopted
in various medical and dental fields, such as clinical diagnosis and
therapeutic aspects. In particular, it has demonstrated superior
performance in detecting and classifying diabetic retinopathy in
retinal fundus photographs, pulmonary tuberculosis from chest
radiographs, skin cancers from skin photographs, and cystic
lesions from panoramic and cone beam computed tomography
radiographs.[33–36]

Our goal was to learn discriminative features for contour
identification and classification, using the well-known and very
effective deep CNN architecture. To the best of our knowledge,
Figure 5. Multiclass classification confusion matrix using deep convolutional
normalization, (B) Periapical radiographic images without normalization.

5

this study is the first to evaluate the efficacy of deep CNN
architecture using panoramic and periapical radiographic
images. We demonstrated that the GoogLeNet Inception-v3
architecture provided a reliable performance (AUC between
0.956 and 0.979) and superiority when compared to the board-
certified periodontist (AUC between 0.891 and 0.959). In
particular, the Straumann BLT implant system had the highest
accuracy in panoramic and periapical radiographic images. This
result is considered to be due to the largest taper of the Straumann
BLT implant system and is considered as one of the major
limitations of the dataset collection in this study.
We retained the cropped, 10,770 panoramic and periapical

radiographic images from the 3 categories. The images were
relatively small for performing reliable training and testing with
deep CNN architecture. To overcome this limitation, and to
avoid overfitting, the training dataset was augmented 10-fold at
random and a fine-tuning strategy with transfer learning was
performed manually and meticulously.[25] Another limitation
neural network architecture. (A) Panoramic radiographic images without

http://www.md-journal.com
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encountered was that each dental implant with the same base
system was still different in structure, depending on its diameter
and length. However, our dataset did not consider these factors.
As already mentioned in the introduction, although there are a
large number of dental implant systems with different designs,
only three types of dental implant systems were included in the
dataset, which limits their practical use.
In recent years, the efficacy of deep learning has been actively

investigated for a 3-dimensional dataset source. A variety of deep
CNN architectures have already been specialized and optimized
based on 3-dimensional computed tomographic images In
contrast, 2-dimensional images (including dental panoramic
and periapical radiography) are more distorted than 3-dimen-
sional images. This factor is another major limitation that
impedes the clear identification and classification of dental
implant systems.[37] Therefore, if additional information (e.g.,
exact diameter and length, based on a 3-dimensional implant
image using dental cone-beam computed tomography) is
included in the dataset, the classification accuracy can be
improved.

5. Conclusions

Deep learning is predicted to become one of the most
transformative technologies for dental applications. We found
that deep CNN architecture was useful for the identification and
classification of dental implant systems by using panoramic and
periapical radiographic images. Further studies should concen-
trate on the effectiveness of deep CNN architectures with high
quality and quantity datasets, obtained from clinical dental
practices.

Acknowledgments

We would like to thank the periodontology residents (Dr Eun-
Hee Jeong, Dr Bo-Ram Nam, and Dr Do-Hyung Kim) who
helped prepare the dataset for this study.
Author contributions

Conceptualization: Jae-Hong Lee.
Data curation: Jae-Hong Lee, Seong-Nyum Jeong.
Formal analysis: Jae-Hong Lee, Seong-Nyum Jeong.
Funding acquisition: Jae-Hong Lee.
Investigation: Jae-Hong Lee, Seong-Nyum Jeong.
Methodology: Jae-Hong Lee, Seong-Nyum Jeong.
Project administration: Jae-Hong Lee, Seong-Nyum Jeong.
Resources: Jae-Hong Lee, Seong-Nyum Jeong.
Validation: Jae-Hong Lee, Seong-Nyum Jeong.
Writing – original draft: Jae-Hong Lee, Seong-Nyum Jeong.
Writing – review & editing: Jae-Hong Lee, Seong-Nyum Jeong.
References

[1] Albrektsson T, Donos N, Working G. Implant survival and complica-
tions. The third EAO consensus conference 2012. Clin Oral Implants Res
2012;23(Suppl 6):63–5.

[2] Srinivasan M, Vazquez L, Rieder P, et al. Survival rates of short (6mm)
micro-rough surface implants: a review of literature and meta-analysis.
Clin Oral Implants Res 2014;25:539–45.

[3] Ramanauskaite A, Borges T, Almeida BL, et al. Dental implant outcomes
in grafted sockets: a systematic review and meta-analysis. J Oral
Maxillofac Res 2019;10:e81–13.
6

[4] JungRE, Zembic A, Pjetursson BE, et al. Systematic review of the survival
rate and the incidence of biological, technical, and aesthetic complica-
tions of single crowns on implants reported in longitudinal studies with a
mean follow-up of 5 years. Clin Oral Implants Res 2012;23(Suppl 6):
2–1.

[5] Lee JH, Lee JB, Kim MY, et al. Mechanical and biological complication
rates of the modified lateral-screw-retained implant prosthesis in the
posterior region: an alternative to the conventional Implant prosthetic
system. J Adv Prosthodont 2016;8:150–7.

[6] Lee JH, Lee JB, Park JI, et al. Mechanical complication rates and optimal
horizontal distance of the most distally positioned implant-supported
single crowns in the posterior region: a study with a mean follow-up of 3
years. J Prosthodont 2015;24:517–24.

[7] Jung RE, Pjetursson BE, Glauser R, et al. A systematic review of the 5-
year survival and complication rates of implant-supported single crowns.
Clin Oral Implants Res 2008;19:119–30.

[8] Lee JH, Kim YT, Jeong SN, et al. Incidence and pattern of implant
fractures: a long-term follow-up multicenter study. Clin Implant Dent
Relat Res 2018;20:463–9.

[9] Derks J, Tomasi C. Peri-implant health and disease. A systematic
review of current epidemiology. J Clin Periodontol 2015;42(Suppl 16):
S158–71.

[10] Esposito M, Ardebili Y, Worthington HV. Interventions for replacing
missing teeth: different types of dental implants. Cochrane Database Syst
Rev 2014;7:CD003815.

[11] Jokstad A, Ganeles J. Systematic review of clinical and patient-reported
outcomes following oral rehabilitation on dental implants with a tapered
compared to a non-tapered implant design. Clin Oral Implants Res
2018;29(Suppl 16):41–54.

[12] Binon PP. Implants and components: entering the new millennium. Int J
Oral Maxillofac Implants 2000;15:76–94.

[13] Jokstad A, Braegger U, Brunski JB, et al. Quality of dental implants. Int
Dent J 2003;53:409–43.

[14] Millennium Research G. European markets for dental implants and final
abutments 2004: executive summary. Implant Dent 2004;13:193–6.

[15] Esposito M, Hirsch J, Lekholm U, et al. Differential diagnosis and
treatment strategies for biologic complications and failing oral implants:
a review of the literature. Int J Oral Maxillofac Implants 1999;14:
473–90.

[16] Greenstein G, Cavallaro J. Failed dental implants: diagnosis, removal
and survival of reimplantations. J Am Dent Assoc 2014;145:835–42.

[17] Dudhia R, Monsour PA, Savage NW, et al. Accuracy of angular
measurements and assessment of distortion in the mandibular third
molar region on panoramic radiographs. Oral Surg Oral Med Oral
Pathol Oral Radiol Endod 2011;111:508–16.

[18] Kayal RA. Distortion of digital panoramic radiographs used for implant
site assessment. J Orthod Sci 2016;5:117–20.

[19] Suzuki K. Overview of deep learning in medical imaging. Radiol Phys
Technol 2017;10:257–73.

[20] Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general
overview. Korean J Radiol 2017;18:570–84.

[21] Hyvarinen A, Oja E. Independent component analysis: algorithms and
applications. Neural Netw 2000;13:411–30.

[22] Goodfellow IJ, Warde-Farley D, Mirza M, et al. Maxout networks.
arXiv e-print 2013;arXiv:1302.4389.

[23] Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks
for computer-aided detection: CNN architectures, dataset characteristics
and transfer learning. IEEE Trans Med Imaging 2016;35:1285–98.

[24] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception
architecture for computer vision. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2016;2818–26.

[25] Peng X, Sun B, Ali K, et al. Learning deep object detectors from 3D
models. 2015 IEEE International Conference on Computer Vision
(ICCV) 2015;1278–86.

[26] Chollet F. Keras. 2017;Available at: https://github.com/fchollet/keras.
[27] Berketa JW, Hirsch RS, Higgins D, et al. Radiographic recognition of

dental implants as an aid to identifying the deceased. J Forensic Sci
2010;55:66–70.

[28] Nuzzolese E, Lusito S, Solarino B, et al. Radiographic dental implants
recognition for geographic evaluation in human identification. J Forensic
Odontostomatol 2008;26:8–11.

[29] Sahiwal IG,Woody RD, Benson BW, et al. Radiographic identification of
nonthreaded endosseous dental implants. J Prosthet Dent 2002;87:
552–62.

https://github.com/fchollet/keras


Lee and Jeong Medicine (2020) 99:26 www.md-journal.com
[30] Michelinakis G, Sharrock A, Barclay CW. Identification of dental
implants through the use of Implant Recognition Software (IRS). Int Dent
J 2006;56:203–8.

[31] Jae-Hong L. Identification and classification of dental implant systems
using various deep learning-based convolutional neural network
architectures. Clin Oral Implants Res 2019;30:217.

[32] Szegedy C, LiuW, Jia Y, et al. Going deeper with convolutions. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
2015;1–9.

[33] Gulshan V, Peng L, Coram M, et al. Development and validation of a
deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA 2016;316:2402–10.
7

[34] Lakhani P, Sundaram B. Deep learning at chest radiography: automated
classification of pulmonary tuberculosis by using convolutional neural
networks. Radiology 2017;284:574–82.

[35] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level
classification of skin cancer with deep neural networks. Nature
2017;542:115–8.

[36] Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic
and cone beam computed tomographic images based on deep learning
neural network. Oral Dis 2020;26:152–8.

[37] Riecke B, Friedrich RE, Schulze D, et al. Impact of malpositioning
on panoramic radiography in implant dentistry. Clin Oral Investig
2015;19:781–90.

http://www.md-journal.com

	Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Preprocessing and image augmentation
	2.3 Architecture of the deep convolutional neural network
	2.4 Comparing the performance of the deep CNN architecture to human expert
	2.5 Statistical analysis

	3 Results
	3.1 Classification of dental implant systems
	3.2 Confusion matrix

	4 Discussion
	5 Conclusions
	Acknowledgments
	Author contributions
	References


